Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
|
|
- Ingeborg Samuelsson
- för 6 år sedan
- Visningar:
Transkript
1 Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D E Alll : På n lokal upptäcks tt svagt htrozygotundrskott i flra av d polymorfa loci som undrsöks. Hur kan dtta förklaras? 3: Hur myckt gntisk variation förlorar man pr gnration i n population som bstår av (antag idala förhållandn i alla andra avsndn) a) 0 honor och 0 hanar 9 honor och han 4: Hur myckt gntisk variation har förlorats på 0 gnrationr i ovanstånd uppgift? 5: Ett bvarandprogram startas och man vill att 90% av dn ursprungliga gntiska variationn ska finnas kvar ftr 00 år. Hur stor måst dn ffktiva populationsstorlkn vara om gnrationstidn är a) år 0 år 6: Hur snabbt ökar inavln i n population om N50 som är idal i alla avsndn utom vad gällr avkommproduktion om variansn i antalt avkommor pr individ är: a) 9 7: En foundr-hona av sibirisk tigr har producrat fyra avkommor av hankön. Vilkn är sannolikhtn att hnns fmt ung blir n hona?.
2 8: a) Rita tt pdigr övr n kusinparning. Bräkna inavlskofficintn från n sådan parning. c) Vad sägr dnna kofficint? 9: Ett uppfödningsprogram för n starkt hotad djurart basras på tt viltfångat syskonpar. Hur myckt av foundr-djurns alllr har man förlorat gnom n sådan start? Motivra! Antag att dt vildfångad syskonpart får två avkomlingar (n han som döps till Kaspr och n hona som döps till Rosa). Kaspr och Rosa paras md varandra, vilkn inavlsgrad får dras avkomma? Hur sr stamträdt ut för dssa djur? 0: Populationn av järv i Svrig antas uppgå till ca. 50 djur. Antag att dn ffktiva storlkn är /4 av dn vrkliga, hur snabbt ökar inavln i populationn? Finns dt något gntiskt hot mot järvn undr dtta antagand? Antag att dt framkommr att d 50 järvarna i själva vrkt är uppdlad på två hlt isolrad dlpopulationr om 50 rspktiv 00 djur i vardra. Hur snabbt ökar inavln i dssa båda populationr? (Antag samma förhålland mllan N och som ovan). Finns dt något gntiskt hot mot järvn undr dtta antagand? : a) Bräkna inavlskofficintn för markrad individr i ndanstånd pdigr. Hur många foundrs finns dt i dtta pdigr? F? F? F? X F? X.
3 : Bräkna man kinship för G och H i ndanstånd pdigr. Strukna individr är döda. Vilkn av G och H anss vara mst gntiskt värdfull? 3: Bräkna man kinship för I och J i pdigrt ndan. 4: I population A obsrvras i tt stickprov gnotyprna i A-locus: AA, Aa och aa. I population B obsrvras i tt stickprov 5 AA, 0 Aa och 0 aa. a) För vardra av populationrna ang alllfrkvnsr, obsrvrad htrozygositt, förväntad htrozygositt. Förliggr Hardy-Winbrgproportionr inom population A? Inom population B? c) Bräkna F ST mllan populationrna. 3.
4 SVAR. Gnomsnittlig htrozygositt för locus md två alllr pq m För locus md flr än två alllr i x i, vilkt btydr - frkvnsn av samtliga homozygotr A B C D 0 0 E ( ) Htrozygositt H Dt är int n nda Mndlsk population som studras. Stickprovt kan bstå av flra populationr md olika gnfrkvns. Slktion för homozygoti (krystad förklaring om man int har andra blägg) Varför är dt int htrozygotundrskott i alla studrad polymorfa loci? Svar: Man upptäckr int alla skillnadr brond på statistiska faktorr. D olika populationrna bhövr int ha olika alllfrkvnsr i alla polymorfa loci. 3 a) N 4N f m ( N + N ) f N m N N ( 0 + 0) 0 Svar:.5% gntisk variation går förlorad pr gnration Svar: 3% gntisk variation går förlorad pr gnration. 4.
5 4 a) H H t 0 N t Svar: Man har förlorat % av dn gntiska variationn på 0 gnrationr Svar: Man har förlorat 76% av dn gntiska variationn på 0 gnrationr. 5 a) Dn ffktiva populationsstorlkn måst vara 475 (om gnrationstidn är tt år) för att 90% av dn gntiska variationn skall finnas kvar ftr 00 år. Uppgiftn kan lösas gnom att man provar sig fram md olika N i kvationn. Korrkt lösnings nås ävn gnom: H 0. Δ ln ln 0. 9 ln0. ln 009 ln 0.9 ln 00 ln ln
6 ln 0.9 / /00 ( ) ln Svar: Dn ffktiva populationsstorlkn måst vara 475 (om gnrationstidn är tt år) för att 90% av dn gntiska variationn skall finnas kvar ftr 00 år. H 0. Δ /0 ( ) ln 47.7 Svar: Dn ffktiva populationsstorlkn måst vara 48 (gnrationstidn är 0 år) för att 90% av dn gntiska variationn skall finnas kvar ftr 00 år. 6 a) N 4N ( V + ) ( 9 + ) ( ) k Svar: Inavln ökar md ca 3% pr gnration. N 4N ( V + ) ( + ) ( ) k Svar: Inavln ökar md % pr gnration. 7. Svar: 50% 6.
7 8 a) F I Σ(/) i ( + F A ) F I Inavlskofficintn för n individ i F A Inavlskofficintn för n förfadr (ancstor) A i antalt gnövrföringsstg Vi har följand gmnsamma förfädrar i dtta pdigr: A: GDAEH B: GDBEH Räkna ut F A för varj gmnsam förfadr. I dtta fall är båda F A 0. Räkna ut sannolikhtn för autozygositt: F I ((/) 5 (+0)) + ((/) 5 (+0)) /6 Svar: Inavlskofficintn för n sådan parning är %. c) Svar: Sannolikhtn att idntisk homozygoti förliggr i tt nskilt locus hos n individ. 9 a) D vilda föräldrarna btraktas i dtta fall som foundrs. För var och n av dssa foundrs gällr att sannolikhtn att n nskild alll i tt nskilt lokus int förts vidar till var sig avkomma llr avkomma är: Svar: 0. 5 Dtta innbär att förlustn är
8 A B C D Kaspr E F Rosa F? Gmnsamma förfädr: EDACF EDBCF ECADF ECBDF ECF EDF F I 4((/) 5 (+0)) + ((/) 3 (+0)) /8 + /4 3/8 Svar: Kasprs och Rosas avkomma får n inavlsgrad på %. 0 a) Antal järvar i Svrig 50, 50/ Svar: Inavln ökar md 0.8% pr gnration. På kort sikt är hott kansk int övrhängand om vi kan förvänta oss att populationn kommr att bli störr. Järvn uppdlad i två populationr om vardra 00 rspktiv 50 djur 00/ /
9 Svar: Inavln ökar md rspktiv.3% pr gnration. På bara 0 gnrationr förloras mr än 3% av gndivrsittn. Tumrgln att bvara 90% av htrozygosittn övr 00 år följs int. a) Svar: Första individn som ftrfrågas har n inavlskofficint på 0 (j inavlad), andra på 0.5 (.5%), trdj på 0 och sista individn (F x ) på Svar: 4 styckn foundrs.. Man kinship: Gnomsnittligt kinship för n individ och samtliga individr i dn lvand populationn, inklusiv sig själv. Kinship: inavlsgradn för n hypottisk avkomma. kinship G-C G-D G-E 0.50 G-G 0.65 G-H 0.5 MK 0.35 MK G ( )/5 kinship H-C 0.5 H-D 0.5 H-E 0.50 H-G 0.5 H-H MK 0.5 MK H ( )/5 Svar: G har man kinship 0.35 och H har man kinship
10 0. H har lägst man kinship och anss därmd mst gntiskt värdfull. 3. kinship I-G 0.50 I-H I-I I-J MK MK I ( )/4 kinship J-G 0.50 J-H J-I J-J MK 0.0 MK J ( )/4 Svar: I har man kinship 0.30 och J har man kinship 0.. J har lägst man kinship och anss därmd vara mst gntiskt värdfull. 4: a) Population A: p(a) 0.68, q(a) 0.3, Hobs0.48, Hxp 0.44 Population B: p(a)0.9 p(a)0.7, Hobs0.8, Hxp0.4 Population A: ingn avvikls från HW. Chi0.6, 0.8<P<0.9 Population B:ingn avvikls från HW. Chi3.5, 0.<P<0. c) Gnomsnittlig H S 0.44, H T F ST
Räkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
där a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04
TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...
Bilaga 1 Kravspecifikation
Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Ekosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten
Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
Lektionsuppgifter i regressionsanalys
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN Lktionsuppgiftr i rgrssionsanalys A A ENKEL LINJÄR REGRESSION Från n undrsökning av vilka faktorr som påvrkar prist på villor i n sydsvnsk ort insamlads n dl
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
ANALYS AV DITT BETEENDE - DIREKTIV
Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).
Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner
Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...
2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Lust och risk. ett spel om sexuell hälsa och riskbeteenden
Lust och risk tt spl om sxull hälsa och riskbtndn 2 / 11 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad pdagogikn
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int
OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917
BRANDUTREDNINGSPROTOKOLL Datum: 20121130 Vår rfrns: Grt Andrsson Dnr: 2013-000138 Er rfrns: MSB Uppdragsgivar: Uppdrag: Undrsökningn utförd: Bilagor: Landskrona Räddningstjänst Brandorsak, brandförlopp
Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002
ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Föreläsning 10 Kärnfysiken: del 2
Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt
Enkätsvar Sommarpraktik - Grundskola 2016
Enkätsvar Sommarpraktik - Grundskola 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr och 5
ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
Köpeavtal för del av Gorsinge 1:1
JÄNSULÅAND Samhällsbyggnadskontort Dnr KS/:5-3 Mark- och xploatringsnhtn -04- /2 Handläggar Frdrik Granlund 02-2 95 Kommunfullmäktig Köpavtal för dl av Gorsing : Förslag till bslut Kommunstyrlsn förslår
DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget
t g a t R Frö ar pl m x ns r f R 1 1. Välkommn till Frö-Rtagt Hj, nu ska du och dina klasskompisar starta rt alldls gna förtag. Vi på FramtidsFrön har valt att kalla dt Frö-Rtag. Md Frö mnar vi att du
Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening
Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot
Atomer: rörelsemängdsmoment och spinn. Pauliprincipen och periodiska systemet.
Förläsning 1 Atomr: rörlsmängdsmomnt och spinn. Pauliprincipn och priodiska systmt. Från kvantmkanikn, lösning till Schrödingrkvationn i 3 dimnsionr, har vi att lktronrna har rörlsmängdsmomnt L ( 1) Klassiskt
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
SAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod...
Rvisionsrapport 2010 Malmö stad Granskning av policy och riktlinjr samt intrn kontroll mot mutor tc. Jakob Smith och Josabth Alfsdottr dcmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1. INLEDNING...
Tentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om
L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr
Uppskatta lagerhållningssärkostnader
B 13 Uppskatta lagrhållningssärkstnadr Md lagrhållningssärkstnadr ass alla d kstnadr sm hängr samman md ch ppstår gnm att artiklar hålls i lagr. Dt är fråga m rsaksbtingad kstnadr ch därmd särkstnadr,
NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2
Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,
Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna
Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning
TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:
Del 1 Teoridel utan hjälpmedel
inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst
Fasta tillståndets fysik.
Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.
Ett sekel av samarbete
johanns jansson / nordn. org Första nordiska mött för hushållsvtar hölls i Sorø i Danmark år 1909, dt sista i finländska Åbo år 2009. Ett skl av samarbt Ett skl. Så läng sdan är dt danskan Magdalna Lauridsn
24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
Uppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d särkstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
ICEBREAKERS. Version 1.0 Layout: Kristin Rådesjö Per Wetterstrand
Icbrakrs 2 / 10 Götborgs Rgionn och GR Utbildning GR är n samarbtsorganisation för 13 kommunr i Västsvrig tillsammans har mdlmskommunrna 900 000 invånar. Förbundts uppgift är att vrka för samarbt övr kommungränsrna
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Växa i trafikn Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Växa
Per Sandström och Mats Wedin
Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786
Uppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
6.14 Triangelelement (CST Constant Strain Triangle)
Övning 4 riangmnt ickard Shn -- FEM för Ingnjörstiämpningar, SE rshn@kth.s 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E-modu E Poissons ta På tunn påt md fria tor kan man göra antagand om
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Cykln Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Min cykl Sidan
Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag
A Distributions ktör på DISTRIBUTIONSFÖRARE 1(5) Arbtsplatsförlagd dl av tstmodul, validring llr utbildning När du dokumntrar dn arbtsplatsförlagda dln i ndanstånd chcklista gör då ävn bdömning inom säkrhts-,
Tentamen i Kemisk termodynamik kl 8-13
Tntamn i misk trmdynamik 20040-23 kl 83 Hjälpmdl: Räkndsa, BETA ch Frmlsamling för kursrna i kmi vid TH. Endast n uppgift pr blad! Skriv namn ch prsnnummr på varj blad! Alla använda kvatinr sm int finns
Lösningsförslag: Tentamen i Modern Fysik, 5A1246,
Lösningsförslag: Tntamn i Modrn Fysik, 5A146, 6-6- Hjälpmdl: 1 A4-blad md gna antkningar (på båda sidor), Bta oh fikkalkylator samt institutionns tabllblad utdlat undr tntamn. Examinatorr: Vlad Kornivski
Arkitekturell systemförvaltning
Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm
.. ANKOM SODERTALJE KOMMUN ~ \-1:/' -., Dnr... :'.IbY..R.~... ~:.~~~mmunstyrelsen. ~cuildningsnämnden Kommundelsnämnderna
Södrtälj kommun TJÄNSTESKRIVELSE 2017-09-05 Utbildningskontort.. ANKOM SODERTALJE KOMMUN 2017-09~. 1 9 \-1:/' -., Dnr... :'.IbY..R.~... ~:.~~~mmunstyrlsn. ~cuildningsnämndn Kommundlsnämndrna 1 (3) Rvidring
Matematisk statistik
Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd
KLIMATSMARTA & LÖNSAMMA LUNCHER
Frasig Prfktion KLIMATSMARTA & LÖNSAMMA LUNCHER Krispig panad och mjuk saftig fisk, dt är n "prfct match" och tt riktigt gott sätt att äta mr fisk. Vi har tt brtt sortimnt md myckt att välja mllan olika
Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO. Bengt Sebring Februari 2004 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2003
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO Bngt Sbring Fbruari 2004 Sida: 1 Kommunrvisionn Innhållsförtckning Sammanfattning... 3 1. Inldning... 4 1.1 Uppdrag... 4 1.2 Avgränsning... 4 1.3
Delårsrapport 2014-08-31
TRELLEBORGS KOMMUN Srvlcriämndn 2014-09-22 Dlårsrapprt 2014-08-31 Sammanfattning Nämndsttal (tkr) Dlår 140831 Årsbudgt 2014 Prgns 2014 Avvikls Vrksamhtns intäktr 260 267 386 016 385 016-1 000 Vrksamhtns
6.14 Triangelelement (CST Constant Strain Triangle)
Övning 4 FEM för Ingnjörstiämpningar ickard Shn 9 6 rshn@kth.s FEM anas md triangmnt 9 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E modu E Poissons ta På tunn påt kan man oftast göra antagand
KLIMATSMARTA LUNCHER MED PANERAD FISK
KLIMATSMARTA LUNCHER MED PANERAD FISK Krispig panad och mjuk saftig fisk, dt är n "prfct match" och tt riktigt gott sätt att äta mr fisk. Vi har tt brtt sortimnt md myckt att välja mllan - olika sortrs
Ostra konununhuset, rum B 1 08, kl ANSLAG/BEVIS Protokollet är justerat. Information har skett genom anslag
SAMMANTRADSPROTOKOLL Intgrationsrådt l (1) Plats ochtid Ostra konununhust, rum B 1 8, kl.17. 19. Bslutand Radovan Javurk,(L) ordförand Övriga närvarand Sabina Månsson Hultgrn, vic ordförand Lovisa Gntz
Tanken och handlingen. ett spel om sexuell hälsa och ordassociationer
Tankn och handlingn tt spl om sxull hälsa och ordassociationr 2 / 13 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad
Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Margarin ur miljö- och klimatsynpunkt.
Margarin ur miljö- och klimatsynpunkt. Dt är skillnad på och smör. Ävn när dt gällr miljön. Till barn i förskola och skola rkommndrar Livsmdlsvrkt och lätt för smör och smörblandad produktr. En ny analys
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
Månadsrapport för januari-mars 2015 för Landstingsfastigheter Stockholm. Anmälan av månadsrapport för Landstingsfastigheter januari-mars 2015.
locum. VÄRD FR VÅRD 2015-05-07 2015-05-28 - ÄRD 12 AMÄLA r.oc 1501-0234 1 (1) Styrlsn för Locum AB Månadsrapport för januari-mars 2015 för Landstingsfastightr Stockholm Ärndt Anmälan av månadsrapport för
Bengt Sebring OKTOBER 2001 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2001
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV JÄVSFÖRHÅLLAN- DEN VID UPPHANDLING Bngt Sbring OKTOBER 2001 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING SAMMANFATTNING OCH SLUTSATSER... 3 1 BAKGRUND
Företag - Skatteverkets kontroll på webben
Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.
NYTT STUDENT. från Växjöbostäder. Nu öppnar vi portarna på Vallen, kom och titta, sidan 3. Så här håller du värmen, sidan 4.
STUDENT DECEMBER 2014 NYTT från Växjöbostädr p p a n d m t l k n d i Boka tvätt ttar ä r b s u p m a C å ig p Områdsansvar Nu öppnar vi portarna på Valln, kom och titta, sidan 3. Så här hållr du värmn,
Företag - Skatteverkets kontroll på webben
Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.
BAKÅTVÄND ELLER FRAMÅTVÄND BILBARNSTOL FÖR DEM MELLAN ETT OCH FEM ÅR - en kategoridataanalys med logistisk regression
Statistiska Institutionn BAKÅTVÄND ELLER FRAMÅTVÄND BILBARNSTOL FÖR DEM MELLAN ETT OCH FEM ÅR - n katgoridataanalys md logistisk rgrssion Ylva Brg och Christina Brummr Uppsats i statistik poäng Nivå 4-6
www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid
www.librhrmods.s Kurskatalog 2008 Libr Hrmods för n lysand framtid 1898 n a d s lärand t l b i x s fl d o m r H Libr Välkommn till Libr Hrmods! hos oss når du dina mål Från och md januari 2008 bdrivr Libr
Uppskatta ordersärkostnader för tillverkningsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad
Bengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV RESEKOSTNADER OCH REPRESENTATION Bngt Sbring Sptmbr 2000 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING 1. Inldning... 2 2. Rsultat av granskningn...
Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Öppenhet påp. olika marknader. Öppenhet för f r handel och kapitalrörelser. Handelsbalansunderskott. relser
Blanchard kapil 18-19 19 Dn öppna konomin Vad innbär öppnh? Vad bsämmr val mllan uländska och inhmska illgångar och varor? Vad bydr växlkursv xlkurs- och frfrågf gförändringar för f r BNP och handlsbalans?
Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag
Tntamnsskivning i Mkanik Dl Dynamik fö M 558 Lösningsföslag. Låt v btckna kulans fat fö stöt och v kulans fat ft stöt. Låt btckna impulsn fån golvt på kulan. Enligt impulslagn gäll: ( ) : = mv cos mv cos
Revisionsrapport 2010. Hylte kommun. Granskning av upphandlingar
Rvisionsrapport 2010 Hylt kommun Granskning av upphandlingar Jakob Smith fbruari 2011 Innhållsförtckning SAMMANFATTNING... 3 1 UPPDRAGET... 4 1.1 Bakgrund och syft... 4 1.2 Mtod och avgränsning... 4 2
Sommarpraktik - Grundskola 2017
Sommarpraktik Grundskola 2017 1. Födlsår 1996 1997 1998 1999 2000 2001 2002 2003 2. Inom vilkt praktikområd har du praktisrat? 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Förskola/fritidshm Fritid/kultur
ENTREPRENÖRSLÖSNINGAR INOM VÅRD, SKOLA OCH OMSORG
Forskning och studir kring kvinnors arbtsliv, karriärutvckling, hälsa och gna förtagand. Förlag som spridr kunskapn ENTREPRENÖRSLÖSNINGAR INOM VÅRD, SKOLA OCH OMSORG MONICA RENSTIG VD, forskar,dbattör
Bengt Sebring September 2003 Sida: 1 Ordförande GRANSKNINGSRAPPORT 3/2003
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2003-06-30 Bngt Sbring Sptmbr 2003 Sida: 1 Kommunrvisionn 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel
TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,
Yrkes-SM. tur och retur. E n l ä r a r h a n d l e d n i n g k r i n g Y r k e s - S M
Yrks-SM tur och rtur E n l ä r a r h a n d l d n i n g k r i n g Y r k s - S M Yrks-SM 2010 Dt prfkta studibsökt Dn 19-21 maj 2010 arrangras nästa svnska mästrskap i yrksskicklight. Platsn är Götborg och
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight