Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
|
|
- Barbro Göransson
- för 9 år sedan
- Visningar:
Transkript
1 Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v Alla systm i likformig rörls i förålland till varandra är lika mykt värda. Fysikns lagar är dsamma i alla systm. Tidsdilatation: Δt = Δt (kloka i rörls går långsammar) Längdkontraktion: L = L lab / (objkt i rörls kontraras) Rlativistiskt dolrskift (Rödförskjutning då källa avlägsnar sig) 1 f f 1 Rlativistisk rörlsmängd o nrgi mu 1 u γmu Ljus åvrkas av gravitation nligt m ff =f/ m 4 F Vilonrgi: =m m m r g g g G γ m SH1009, modrn fysik, VT01, KTH Masslös artikl: = kin m instin (1905): Ljust uträdr som artikl, foton, md nrgi f = f SH1009, modrn fysik, VT01, KTH
2 Comtonsridning Comton t al visad 19 att röntgnljusts sridning mot fria lktronr int kund förklaras md klassisk vågmkanik utan krävd att vi bandlad ljust som artiklar o räknad rlativistiskt. Våglängdsskillnadn i inkommand o sritt ljus bror int av intnsittn utan bara av sridningvinkln. Låt inkommand foton a rörlsmängd. Sridd foton ar rörlsmängd. Vinklar θ,φ ur figurn. Rörlsmängdn bvaras. : sin sin : os os liminra : os sin os os sin os Ävn nrgin bvaras mn vi ar ävn: 4 gr uttryk för m m m m m m ( ) () Kombinra (1) o (): 1 os m Md =/λ fås: os m λ' λ 1 1 osθ m SH1009, modrn fysik, VT01, KTH Comtonsridning (forts) Dn ärldda formln stämmr väl övrns md data!! Comtonsridning i grafit Vridning kan sk för olika Comtonvinklar Notra att lktronn tillförs maximal kintisk nrgi då θ = -π. Våglängdsanalysator (s nästa förläsning) För fotonnrgir γ >> m kan man visa att lktronns maximala kintiska nrgi är: kin γ ½ (m ) SH1009, modrn fysik, VT01, KTH
3 Parbildning Vi ar studrat två sätt md vilkt lktromagntisk strålning kan växlvrka md matria. För ögr nrgir ar vi ävn n trdj: Parbildning m Innbär att omvandling mllan nrgi o massa kan sk. Om fotonns nrgi är mr än dubblt så stor som lktronns vilonrgi (m ): mn båd nrgi o rörlsmängd måst bvaras + Z Z där Z är n atomkärna som tar u rkyln Positron: ositivt laddad lktron dvs lktronns antiartikl. (Z massiv gör att dn rörlsmängd dn får ndast gr försumbar kintisk nrgi) SH1009, modrn fysik, VT01, KTH M-strålning: Våg llr artikl? Svar: båd o!! Gnrllt i kvantfysikn: för att obsrvra (mäta) stör vi systmt. Dt sätt vi stör systmt å avgör om vi obsrvrar våg- llr artiklgnska. Till xml: om våglängdn är mykt mindr än dt objkt vi användr för studin sr vi artiklgnska, om våglängdn är av samma storlk llr störr sr vi våggnska. Intrfrns för ljus i dubblsalt gr tyiskt mönstr md max o min. Våggnska! Mätning av ljust, t..x ma av n fotografisk film, är n artiklgnska. Vi får träffar i nstaka unktr (intnsittsbrond). Träffar bara där vi int ar intrfrnsminimum. SH1009, modrn fysik, VT01, KTH
4 Gnom vilkn salt assrad artikln? För att kunna avgöra dtta stör vi systmt så att vi tvingar fram n artiklgnska. Våggnskan försvinnr o intrfrnsmönstrt utblir!! SH1009, modrn fysik, VT01, KTH Partiklars våggnskar D Brogli (193): om ljus ar artiklgnskar, bör artiklar kunna a våggnskar. Studra n lktronstrål som infallr mot n dubblsalt. Intrfrnsmönstr obsrvras!!! Våglängd: Frkvns: f SH1009, modrn fysik, VT01, KTH
5 Ofta mr raktiskt att använda vågtal o vinklfrkvns: k f Inför: 1, J s 6, V s Vi får då: / k f Vågns astigt (fasastigtn): v fas f Dtta är i allmänt int dtsamma som artikls astigt, gruastigtn. SH1009, modrn fysik, VT01, KTH lktrondiffration (Davisson Grmr, 197). =90, =50, V=54 V, /m = 54 V Nikl: d =,15 Å dbrogli Uq m 6, ,610 V C9,1110 Js 1,67Å kg d sin n,15åsin 50 1,65Å SH1009, modrn fysik, VT01, KTH
6 I n annan gomtri rfrras vinkln nligt figur. Konstruktiv intrfrns fås då: n d sin n = 1,, 3, Dtta används md röntgnstrålning av W.H. & W.L. Bragg (samt M. von Lau) för att dls våglängdsanalysra dn, mn okså för att undrsöka kristallstruktur ma känd strålning. SH1009, modrn fysik, VT01, KTH Hisnbrgs obstämbartsrini Låt n lktronstrål träffa n i x-ld smal salt. Om saltns vidd Δx är av samma storlksordning som våglängdn llr mindr kommr stråln (s våg-kursn) att utbrdas i x-ld ftr saltn. Dtta innbär att lktronrna ar n variation i rörlsmängd i x-ld Δ x Smalar salt störr Δ x Dtta gr: Δ x 1/Δx Hisnbrgs obstämbartsrini (osäkrtsrinin) Dt är tortiskt omöjligt att för fnomn av vågnatur samtidigt rist bstämma osition o rörlsmängd längs n o samma axl. Δ x o Δx kan int samtidigt vara noll. Tortiskt gs gränsn strikt av: x x Vi användr standardaviklsn som osäkrtsmått Q Q i Q ni Q Q ni SH1009, modrn fysik, VT01, KTH
7 Tank : s artikl som tt vågakt ubyggt av vågor nligt Fourirsrir (kommr nästa förläsning). Bättr bstämd i rummt krävr flr våglängdr, dvs störr osäkrt i rörlsmängd. SH1009, modrn fysik, VT01, KTH Hisnbrgs obstämbartsrini innbär ingn skillnad för stora objkt: Sing-sing rör ju int å sig : Btrakta tglstn, massa a kg, våglängd röd, säg 600 nm. Lägt kan knaast bstämmas bättr än n alv ljusvåglängd. Rörlsmängdn bräknas klassiskt. Prsonlign orkar jag nog bara mäta undr 17 minutr att tglstnn ar förflyttad sig ögst n alv ljusvåglängd. Δx 300 nm, Δ x =mv kg 300 nm/1000 s kgm/s Δ x Δx 1, Js >> / Annorlunda för atom: Antag att lktronns ositionsosäkrt i x-ld är 0.1 nm. Vilkn är då dss osäkrt i astigt? xx v x m x 34 1,05510 Js 31 mx 9,1110 kg 0, ,8 10 m 5 m/s Obstämbartsrlationn kintiska nrgin för n bundn lktron kan int vara noll. I tr dimnsionr: I nrgi o tid: xx t y y zz Dt går int att bstämma osition o rörlsmängd oändligt bra längs samma axl, därmot kan t.x. Δ y o Δx bstämmas godtykligt bra samtidigt. Viktig för svag växlvrkan, möjliggör att vi lånar nrgi Δ undr kort tid Δt så att Δ Δt för lånt int övrstigr / SH1009, modrn fysik, VT01, KTH
Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):
Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa
ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Föreläsning 10 Kärnfysiken: del 2
Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt
Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Räkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
Förra gången: fördelningar Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer.
örläsning 5 örra gångn: fördlningar Omfattand systm md många partiklar kan praktiskt bara bskrivas i statistiska trmr. Antal partiklar inom nrgiintrvall E till E +de gs av dn = D (E ) N (E ) de där D (E
Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening
Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D
Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
Ekosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Atomer: rörelsemängdsmoment och spinn. Pauliprincipen och periodiska systemet.
Förläsning 1 Atomr: rörlsmängdsmomnt och spinn. Pauliprincipn och priodiska systmt. Från kvantmkanikn, lösning till Schrödingrkvationn i 3 dimnsionr, har vi att lktronrna har rörlsmängdsmomnt L ( 1) Klassiskt
Del 1 Teoridel utan hjälpmedel
inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int
Lösningsförslag: Tentamen i Modern Fysik, 5A1246,
Lösningsförslag: Tntamn i Modrn Fysik, 5A146, 6-6- Hjälpmdl: 1 A4-blad md gna antkningar (på båda sidor), Bta oh fikkalkylator samt institutionns tabllblad utdlat undr tntamn. Examinatorr: Vlad Kornivski
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid
www.librhrmods.s Kurskatalog 2008 Libr Hrmods för n lysand framtid 1898 n a d s lärand t l b i x s fl d o m r H Libr Välkommn till Libr Hrmods! hos oss når du dina mål Från och md januari 2008 bdrivr Libr
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04
TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget
t g a t R Frö ar pl m x ns r f R 1 1. Välkommn till Frö-Rtagt Hj, nu ska du och dina klasskompisar starta rt alldls gna förtag. Vi på FramtidsFrön har valt att kalla dt Frö-Rtag. Md Frö mnar vi att du
där a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight
Fasta tillståndets fysik.
Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
NYTT STUDENT. från Växjöbostäder. Nu öppnar vi portarna på Vallen, kom och titta, sidan 3. Så här håller du värmen, sidan 4.
STUDENT DECEMBER 2014 NYTT från Växjöbostädr p p a n d m t l k n d i Boka tvätt ttar ä r b s u p m a C å ig p Områdsansvar Nu öppnar vi portarna på Valln, kom och titta, sidan 3. Så här hållr du värmn,
Lösta exempel och gamla tentor i Materialfysik för E, IF1602 M. Göthelid Materialfysik, KTH-Electrum, Kista
Lösta xmpl oc gamla tntor i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Lösa xmpl oc gamla tantr i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Innållsförtckning
spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
ANALYS AV DITT BETEENDE - DIREKTIV
Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).
Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
Relativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu.
Föreläsning 3: Relativistisk energi Om vi betraktar tillskott till kinetisk energi som utfört arbete för att aelerera från till u kan dp vi integrera F dx, dvs dx från x 1 där u = till x där u = u, mha
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
5~ Atomer, joner och kemiska reaktioner
146 Atomr, jonr och kmiska raktionr 5~---------------------------- --Ifl nhå 11 1 sid. 148 I atomns inr sid. 152 Priodiska systmt Mtallr Jonr -- sid. 156 sid. 162 Syror och basr 2 sid. 166 Saltr sid. 170
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
KLIMATSMARTA & LÖNSAMMA LUNCHER
Frasig Prfktion KLIMATSMARTA & LÖNSAMMA LUNCHER Krispig panad och mjuk saftig fisk, dt är n "prfct match" och tt riktigt gott sätt att äta mr fisk. Vi har tt brtt sortimnt md myckt att välja mllan olika
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Växa i trafikn Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Växa
OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917
BRANDUTREDNINGSPROTOKOLL Datum: 20121130 Vår rfrns: Grt Andrsson Dnr: 2013-000138 Er rfrns: MSB Uppdragsgivar: Uppdrag: Undrsökningn utförd: Bilagor: Landskrona Räddningstjänst Brandorsak, brandförlopp
Laboration 1a: En Trie-modul
Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr
Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner
Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om
L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk
Knagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv.
Knagg Knaggarna kan t.x. användas vid förbindning mllan ar och ar. I kombination md fäst är bärförmågan stor vid vältand och lyftand kraftr. Knaggarna tillvrkas av 2,0 ± 0,13 mm galvanisrad stålplåt och
HSB ENERGIAVTAL EXEMPLET VÄRMLAND PER WIKSTRAND, HSB VÄRMLAND PRESENTATION HSB-BÅTEN 2015
HSB ENERGIAVTAL EXEMPLET VÄRMLAND PER WIKSTRAND, HSB VÄRMLAND PRESENTATION HSB-BÅTEN 2015 PRISUTVECKLING PÅ FÖRBRUKNINGSMEDIA 1996-NU HSB ENERGIAVTAL Full kontroll på r förbrukning och ra utgiftr för förbrukningsmdia.
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten
Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2
Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:
Vågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
Rörelsemängd och energi
Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )
energibyggare EnergiTing Sydost 2015-11-12 Co-funded by the Intelligent Energy Europe Programme of the European Union
EnrgiTing Sydost 2015-11-12 Intraktiv utbildning för byggnadsarbtar och installatörr Ldand branschaktörr står bakom En utbildningskampanj md syft att öka byggnadsarbtar och installatörrs komptns för lågnrgibyggand
ICEBREAKERS. Version 1.0 Layout: Kristin Rådesjö Per Wetterstrand
Icbrakrs 2 / 10 Götborgs Rgionn och GR Utbildning GR är n samarbtsorganisation för 13 kommunr i Västsvrig tillsammans har mdlmskommunrna 900 000 invånar. Förbundts uppgift är att vrka för samarbt övr kommungränsrna
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system
Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Cykln Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Min cykl Sidan
Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
Köpeavtal för del av Gorsinge 1:1
JÄNSULÅAND Samhällsbyggnadskontort Dnr KS/:5-3 Mark- och xploatringsnhtn -04- /2 Handläggar Frdrik Granlund 02-2 95 Kommunfullmäktig Köpavtal för dl av Gorsing : Förslag till bslut Kommunstyrlsn förslår
Vi bygger för ett hållbart Trollhättan. Kvarteret Fridhem. 174 nya hyreslägenheter i klimatsmarta passivhus.
Vi byggr för tt hållbart Trollhättan vartrt ridhm 174 nya hyrslägnhtr i klimatsmarta passivhus. Ett grönt kvartr i n skön stad. vartrt ridhm är vrigs hittills största satsning på så kallad Passivhus. 174
Arkitekturell systemförvaltning
Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm
Uppskatta ordersärkostnader för tillverkningsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad
SAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod...
Rvisionsrapport 2010 Malmö stad Granskning av policy och riktlinjr samt intrn kontroll mot mutor tc. Jakob Smith och Josabth Alfsdottr dcmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1. INLEDNING...
KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag
A Distributions ktör på DISTRIBUTIONSFÖRARE 1(5) Arbtsplatsförlagd dl av tstmodul, validring llr utbildning När du dokumntrar dn arbtsplatsförlagda dln i ndanstånd chcklista gör då ävn bdömning inom säkrhts-,
Lust och risk. ett spel om sexuell hälsa och riskbeteenden
Lust och risk tt spl om sxull hälsa och riskbtndn 2 / 11 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad pdagogikn
Bilaga 1 Kravspecifikation
Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )
6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så
EKOTRANSPORT 2030. Vägen till en fossiloberoende fordonsflotta. #eko2030
FOTO: CHINAFACE #ko2030 mmmnn m m o k o ä k l V Vä ssnn oom n n r r f ttiillll kkoonf hållbaarraa ns ffrraam mtid tt occhh rröörrlliigghh rtrr ort trtraannssppo EKOTRANSPORT 2030 Vägn till n fossilobrond
Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:
Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad
12 Elektromagnetisk strålning
LÖSNINGSFÖRSLAG Fysik: Fysik oc Kapitel lektromagnetisk strålning Värmestrålning. ffekt anger energi omvandlad per tidsenet, t.ex. den energi ett föremål emitterar per sekund. P t ffekt kan uttryckas i
Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden?
Upp gifter 1. Räkna om till elektronvolt. a. 3,65 10 J 1 J. Räkna om till joule. a.,8 ev 4,5 ev 3. Vilket är den längsta ljusvåglängd som kan slå loss elektroner från en a. natriumyta? kiselyta? 4. Kan
Tentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
Villaelpanna. Installation, drift och skötsel
Installation, drift oh skötsl Villalpanna 250 Arklstorpsvägn 88 tl 044-22 63 20 info@varmbaronn.s 291 94 Kristianstad fax 044-22 63 58 www.varmbaronn.s ELOMAX_250_v2_sv_2010-09-23_4.13 utg: v.4.13 Ersättr:
Uppskatta lagerhållningssärkostnader
B 13 Uppskatta lagrhållningssärkstnadr Md lagrhållningssärkstnadr ass alla d kstnadr sm hängr samman md ch ppstår gnm att artiklar hålls i lagr. Dt är fråga m rsaksbtingad kstnadr ch därmd särkstnadr,
Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem
Institutionn för Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-845 ntamn i 4 Mani II, 845 Hjälpmdl: Pappr, pnna, linjal. Lca till! Problm ) B l r Ett sänghjul md
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
KLIMATSMARTA LUNCHER MED PANERAD FISK
KLIMATSMARTA LUNCHER MED PANERAD FISK Krispig panad och mjuk saftig fisk, dt är n "prfct match" och tt riktigt gott sätt att äta mr fisk. Vi har tt brtt sortimnt md myckt att välja mllan - olika sortrs
Enkätsvar Sommarpraktik - Grundskola 2016
Enkätsvar Sommarpraktik - Grundskola 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr och 5
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.
Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur
Månadsrapport för januari-mars 2015 för Landstingsfastigheter Stockholm. Anmälan av månadsrapport för Landstingsfastigheter januari-mars 2015.
locum. VÄRD FR VÅRD 2015-05-07 2015-05-28 - ÄRD 12 AMÄLA r.oc 1501-0234 1 (1) Styrlsn för Locum AB Månadsrapport för januari-mars 2015 för Landstingsfastightr Stockholm Ärndt Anmälan av månadsrapport för
Uppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2
Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,
Sommarpraktik - Grundskola 2017
Sommarpraktik Grundskola 2017 1. Födlsår 1996 1997 1998 1999 2000 2001 2002 2003 2. Inom vilkt praktikområd har du praktisrat? 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Förskola/fritidshm Fritid/kultur
Semesterstugor. Stugorna är tillgängliga för Kommunal Skånes medlemmar året om
Smstrstugor Stugorna är tigängiga för Kommuna Skåns mdmmar årt om Fbruari 2012 (rv 2013-09-12) Layout: Kajsa Hydgaard Innhåsförtckning Sid 4 Sid 5 Sid 6 Sid 7 Sid 8 Sid 9 Sid 10 Sid 11 Sid 12 Sid 13 Sid
Ostra konununhuset, rum B 1 08, kl ANSLAG/BEVIS Protokollet är justerat. Information har skett genom anslag
SAMMANTRADSPROTOKOLL Intgrationsrådt l (1) Plats ochtid Ostra konununhust, rum B 1 8, kl.17. 19. Bslutand Radovan Javurk,(L) ordförand Övriga närvarand Sabina Månsson Hultgrn, vic ordförand Lovisa Gntz
Relativitetsteorins grunder, våren 2016 Räkneövning 1 Lösningar
> < Relativitetsteorins grunder, våren 2016 Räkneövning 1 Lösningar 1. En myon (en elementarpartikel som liknar elektronen, men är 200 ggr tyngre) bildas i atmosfären på L 0 = 2230 m:s höjd ovanför jordytan.
Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna
Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning