Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening
|
|
- Gunnar Lindberg
- för 8 år sedan
- Visningar:
Transkript
1 Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn 1
2 2
3 3
4 Mot alla konstns rglr, startar md sammanfattning En liknand tabll övr frmionrnas anti-partiklar ( anti-frmionr ). Dssa är idntiska md frmionra förutom att d har motsatta kvanttal (t.x. laddning) 3 familjr/gnrationr 4
5 Frmion: En partikl som följr Frmi-Dirac statistik. Partiklar md spin=1/2 är frmionr (,p,n..) Boson: En partikl som följr Bos-Einstin statistik. Partiklar md hltaligt spin är bosonr (γ, gluonr,...) Växlvrkan: utbyt av nrgi och rörlsmängd mllan partiklar samt möjlight att skapa llr förinta (annihilra) partiklar. Rll partikl: En partikl md total nrgi E och rörlsmängd p som tillfrdsställr kvationn: E= pc ² m 0 c² ² (1) Virtull partikl: n partikl som har n sannolikht att xistra inom Hisnbrgs osäkrhtsrlation E t ħ, mn som int uppfyllr nrgivillkort (1) ovan. 5
6 Antimatria Paul Dirac tolkad 1928 d ngativa nrgir som fås vid rotutdragning av E 2 = pc ² m 0 c² ² E=± pc ² m 0 c² ² som tt "hål" i n sjö fylld av lkronr E(γ)>2m c 2 +m c 2 - rlla lktronr -m c 2 + sjö md lktronr 6
7 Matria och antimatria förintas i möt md varandra γ + γ, Q=2 511 kv=1.022 kv γ + - γ Upptäckt: positron 1932 Kosmisk p antiproton 1955 Acclrator, USA 3 Hantihliumkärna 1972 Acclrator. USSR H antivätatom 1995 CERN. Schwiz 7
8 Partiklkollision md vätkärna i Bubblkammar 8
9 Fynmandiagram Richard Fynman hitta på tt praktiskt sätt att bskriva lktromagntisk växlvrkan mllan partiklar som nu används vid visualisring av all kvantfälttori. t E 1 E 2 Undr Δt finns övrskottsnrgi i systmt. Fotonn mllan 1 och 2 är virtull. Övrskottsnrgin ΔE = E γ Δt 1 α α 2 E ħ t E 1 E 2 Coulombrpullsion 9 x
10 Punktrna 1 och 2 i diagrammt kallas vrtx och sannolikhtn för att procssn skall sk α (kopplingskonstant) bror i första hand av vilkn styrka växlvrkan har. Mllan 1 och 2 propagrar kvantat som övrför dn växlvrkand kraftn. Ex: γ γ Comptonspridning 10
11 Kraftr I dag kännr vi fyra fundamntala kraftr Stark kraft Elktromagntisk kraft Svag kraft Gravitation 11
12 12
13 Stark kraft Dn starka växlvrkan skr mllan kvarkar och är därmd orsakn till att nuklonn hålls ihop. Kvantat för dn starka kraftn htr gluon. Partiklar som växlvrkar gnom stark kraft kallas Hadronr (och bstår därför av kvarkar). Partiklar som bstår av två kvarkar kallas Msonr: q 1 q 2 Ex. π + : ud, π - : ud, π 0 : (uu-dd)/ 2. K + : us, D - : cd, D s + : cs, B - : ub Partiklar som bstår av tr kvarkar kallas Baryonr: q 1 q 2 q 3 Nuklonrna (n och p) är baryonr Ex. p: uud, n: udd, p: uud Σ + : uus, Σ 0 : uds, Σ - : dds Ξ 0 : uss, Ω - : sss, Λ + c : udc, Λ 0 b :udb 13
14 Ävn dn starka kärnkraftn som skr mllan nuklonr är stark växlvrkan. π-msonn förmdlar kraftn undr dn korta tid Hisnbrgs osäkrhtsrlation tillåtr. Starka kraftn har kopplingskonstantn α s.(rlativ styrka =1) n π 0 n n π + p n n p n 14
15 Kvanttalt för stark växlvrkan htr färg (color). Alla kvarkar kan anta n av tr färg kvanttal (röd, blå och grön). På samma sätt som utslutningsprincipn sägr att spin-1/2 partiklar int kan bsätta samma kvanttillstånd så kan int samma färg ingå två gångr i n Hadron. Alla partiklar som xistrar i naturn är färglösa. Dtta är n av hörnstnarna i Kvant Kromodynamikn (QCD) x. Proton p u-kvark, q=+2/3 d-kvark, q=-1/3 15
16 Elktromagntisk kraft Dn lktromagntiska växlvrkan skr mllan laddad partiklar. Partikln som förmdlar dn lktromagntiska kraftn är fotonn. Räckviddn för dn lktromagntiska växlvrkan är oändlig. Kvant lktrodynamikn (QED) bskrivr dn lktromagntiska kraftn och är antaglign dn mst tstad tori i världn. Elktromagntiska kraftn har kopplingskonstantn α EM. (Rlativ styrka =1/137) EM = ħ c 16
17 Svag kraft Nutrinr växlvrkar nbart via svag växlvrkan som är för svag att märkas då laddad partiklar växlvrkar. Vid nutrinoväxlvrkan är ndast svag växlvrkan möjlig. Kraftn förmdlas av W +, W - och Z 0 bosonrna som är myckt tunga. W ± : m W c 2 = 82 GV Z 0 : m z c 2 = 91 GV } upptäckts av C. Rubbia CERN 1981 W - p llr W + p ν n ν n 17
18 Svaga kraftnhar p.g.a. bosonrnas höga massa n myckt kort räckvidd. E = E K m W c 2 t ħ E = ħ E K m w c 2 ħ m w c 2 s=sc t ħ c m w c 2 = fm 400 ggr mindr än protonns storlk Svaga kopplingskonstantn α w. (Rlativ styrka ~10-5 ) 18
19 p - ν n p ν W - α w α w Bta söndrfall n Nutrala strömmar p + p + ν Z 0 p + ν p + ν p γ/z 0 p ν p p Växlvrkan mllan och p skr gnom n kombination av lktromagntisk kraft + svag kraft = lktrosvag växlvrkan 19
20 Gravitation Alla partiklar md massa växlvrkar via gravitation. Gravitationn förmdlas av kvantat graviton som antas vara masslös. I likht md dn lktromagntiska växlvrkan är gravitationns utbrdning oändlig. Gravitationn är myckt svag i förhålland till d övriga kraftrna md rlativ styrka
Föreläsning 6 och 7 Krafter; stark, elektromagnetisk, svag. Kraftförening
Förläsning 6 och 7 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot
Föreläsning 10 Kärnfysiken: del 2
Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5
Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5
Förra gången: fördelningar Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer.
örläsning 5 örra gångn: fördlningar Omfattand systm md många partiklar kan praktiskt bara bskrivas i statistiska trmr. Antal partiklar inom nrgiintrvall E till E +de gs av dn = D (E ) N (E ) de där D (E
Atomer: rörelsemängdsmoment och spinn. Pauliprincipen och periodiska systemet.
Förläsning 1 Atomr: rörlsmängdsmomnt och spinn. Pauliprincipn och priodiska systmt. Från kvantmkanikn, lösning till Schrödingrkvationn i 3 dimnsionr, har vi att lktronrna har rörlsmängdsmomnt L ( 1) Klassiskt
Higgsbosonens existens
Higgsbosonens existens Ludvig Hällman, Hanna Lilja, Martin Lindberg (9204293899) (9201120160) (9003110377) SH1012 8 maj 2013 Innehåll 1 Sammanfattning 2 2 Standardmodellen 2 2.1 Kraftförmedlarna.........................
ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
Fasta tillståndets fysik.
Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?
Introduktion till partikelfysik. CERN Kerstin Jon-And Stockholms universitet
Introduktion till partikelfysik CERN 2008-10-27 Kerstin Jon-And Stockholms universitet elektron (-1) 1897 Thomson (Nobelpris 1906) 1911 Rutherford (Nobelpris kemi 1908!) proton +1 1919 Rutherford neutron
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
Räkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
där a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Lösningsförslag: Tentamen i Modern Fysik, 5A1246,
Lösningsförslag: Tntamn i Modrn Fysik, 5A146, 6-6- Hjälpmdl: 1 A4-blad md gna antkningar (på båda sidor), Bta oh fikkalkylator samt institutionns tabllblad utdlat undr tntamn. Examinatorr: Vlad Kornivski
Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D
KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Knagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv.
Knagg Knaggarna kan t.x. användas vid förbindning mllan ar och ar. I kombination md fäst är bärförmågan stor vid vältand och lyftand kraftr. Knaggarna tillvrkas av 2,0 ± 0,13 mm galvanisrad stålplåt och
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Bilaga 1 Kravspecifikation
Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.
spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
Standardmodellen. Figur: HANDS-ON-CERN
Standardmodellen Den modell som sammanfattar all teoretisk kunskap om partikelfysik i dag kallas standardmodellen. Standardmodellen förutspådde redan på 1960-talet allt det som man i dag har lyckats bevisa
4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int
NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2
Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,
LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, 2010-10-09
LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09 Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner
Partikelfysik och Kosmologi
Partikelfysik Partikelfysik och Kosmologi Materiepartiklar (spinn = ½ ): kvarkar och leptoner Leptoner ν e e Laddning massa leptontal ingen < 3 ev/c 2 L e = + 1-1 511 kev/c 2 L e = + 1 upp ner Kvarkar
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight
Arkitekturell systemförvaltning
Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Del 1 Teoridel utan hjälpmedel
inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 3 juni 2010 kl
Tntamn i FEM för ingnjörstillämpningar (SE) dn juni kl. 8-. Rsultat kommr att finnas tillgängligt snast dn juni. Klagomål på rättningn skall vara framförda snast n månad ftr. OBS! Tntand är skldig att
DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Inledande modern fysik Del 2 Kompendium: Relativitetsteori och partikelfysik
Inldand modrn fysik Dl 2 Kompndium: Rlativittstori och partiklfysik Marcus Brg oktobr 218 Dt här kompndit plus utdlat matrial ur Schutz utgör kurslittratur för kursmomntt Dl 2. Innhåll 1 Förkunskapr och
ANALYS AV DITT BETEENDE - DIREKTIV
Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Tentamen i FUF050 Subatomär Fysik, F3
Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60
Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
Margarin ur miljö- och klimatsynpunkt.
Margarin ur miljö- och klimatsynpunkt. Dt är skillnad på och smör. Ävn när dt gällr miljön. Till barn i förskola och skola rkommndrar Livsmdlsvrkt och lätt för smör och smörblandad produktr. En ny analys
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
Att utforska mikrokosmos
309 Att utforska mikrokosmos Hur lundafysiker mätte en ny spridningseffekt, var med och bestämde familjeantalet av leptoner och kvarkar och deltog i jakten på Higgs partikel. Vad vi vet och vill veta Idag
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Revisionsrapport 2010. Hylte kommun. Granskning av samhällsbyggnadsnämndens och tillsynsnämndens styrning och ledning. Iréne Dahl, Ernst & Young
Rvisionsrapport 2010 Hylt kommun Granskning av samhällsbyggnadsnämndns och tillsynsnämndns styrning och ldning Irén Dahl, Ernst & Young Augusti 2010 Hylt kommun Rvisorrna Innhållsförtckning SAMMANFATTNING...
Föreläsning 12 Partikelfysik: Del 1
Föreläsning 12 Partikelfysik: Del 1 Vad är de grndläggande delarna av material? Hr växelverkar de med varandra? Partikelkolliderare Kvarkar Gloner Vi är nästan i sltet av historien Med den här krsen har
Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner
Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...
Tentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk
Ekosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
Per Sandström och Mats Wedin
Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786
Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag
A Distributions ktör på DISTRIBUTIONSFÖRARE 1(5) Arbtsplatsförlagd dl av tstmodul, validring llr utbildning När du dokumntrar dn arbtsplatsförlagda dln i ndanstånd chcklista gör då ävn bdömning inom säkrhts-,
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Rörelsemängd och energi
Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )
TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2018
Mkanik och maritima vtnskapr, Chalmrs tkniska högskola ENAMEN I FINI ELEMENMEOD MHA 9 AUGUSI 8 id och plats: 4 8 i M hust Hjälpmdl: ypgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (77) 55. Bsökr sal ca.
EKOTRANSPORT 2030. Vägen till en fossiloberoende fordonsflotta. #eko2030
FOTO: CHINAFACE #ko2030 mmmnn m m o k o ä k l V Vä ssnn oom n n r r f ttiillll kkoonf hållbaarraa ns ffrraam mtid tt occhh rröörrlliigghh rtrr ort trtraannssppo EKOTRANSPORT 2030 Vägn till n fossilobrond
Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik
en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2014-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra
5~ Atomer, joner och kemiska reaktioner
146 Atomr, jonr och kmiska raktionr 5~---------------------------- --Ifl nhå 11 1 sid. 148 I atomns inr sid. 152 Priodiska systmt Mtallr Jonr -- sid. 156 sid. 162 Syror och basr 2 sid. 166 Saltr sid. 170
Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002
ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
9. Beskriv principen för en Na(I)-scintillationsdetektor (skiss och text). (5p) Svar: Se figur 8.6 och avsnitt 8.5 i läroboken.
Lösningar till tntamn i kärnkmi ak dn 15 dcmbr 21 (korrigrad 21-12-19) Dl A 1 Bskriv hur nrgitillförsln till lktrodrna i n Alvarz acclrator skr? (3p) Svar: Alvarz accllratorn är n linjär accllrator md
2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund
och materiens minsta beståndsdelar Teoretisk Partikelfysik Lunds Universitet NMT-dagar i Lund 2018-03-14 Översikt 1 och krafter 2 ska partiklar och krafter 3 på jakt efter nya partiklar 4 och krafter materiens
4.1 Förskjutning Töjning
Övning Stark/Svag Form, Fackvrk Rickard Shn 3--5 FEM för Ingnjörstillämpningar, SE5 rshn@kth.s 4. Förskjutning öjning a) Sökt: Visa att töjningn i lmntt är. du ösning: I grundkursn fick man lära sig att.
Tentamen i Linjär algebra 2010 05 21, 8 13.
LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända
SAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod...
Rvisionsrapport 2010 Malmö stad Granskning av policy och riktlinjr samt intrn kontroll mot mutor tc. Jakob Smith och Josabth Alfsdottr dcmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1. INLEDNING...
Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Lust och risk. ett spel om sexuell hälsa och riskbeteenden
Lust och risk tt spl om sxull hälsa och riskbtndn 2 / 11 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad pdagogikn
Lösningar till tentamen i Kärnkemi ak den 18 december 2000
Lösningar till tntamn i Kärnkmi ak dn 8 dcmbr 2000 Dl A Vilkn nrgi har d fotonr som utsänds vid annihilation av n positron? (2p) Svar: 5 kv 2 Hur förändras oftast jonladdningn när jonr md hög nrgi passrar
Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten
Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2
HSB ENERGIAVTAL EXEMPLET VÄRMLAND PER WIKSTRAND, HSB VÄRMLAND PRESENTATION HSB-BÅTEN 2015
HSB ENERGIAVTAL EXEMPLET VÄRMLAND PER WIKSTRAND, HSB VÄRMLAND PRESENTATION HSB-BÅTEN 2015 PRISUTVECKLING PÅ FÖRBRUKNINGSMEDIA 1996-NU HSB ENERGIAVTAL Full kontroll på r förbrukning och ra utgiftr för förbrukningsmdia.
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
Phenomenology, Theoretical interpretation Heavy Scalar octet. m s 1.45 GeV Glueballs spectra
Outline 1 Scalar Mesons Phenomenology, Theoretical interpretation Heavy Scalar octet. m s 1.45 GeV Glueballs spectra Light Scalar octet. m s < 1 GeV 1 B MM, M = P, S, V, A, B PS, results B 3P Carlos Ramirez
HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER
Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand
Christophe Clément (Stockholms Universitet)
Svenska Lärare på CERN Christophe Clément (Stockholms Universitet) Översikt 1. Varför bygger vi LHC & ATLAS experimentet? 2. Hur funkar ATLAS experimentet? 3. Material Varför bygger vi LHC & ATLAS experimentet?
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2016
Institutionn för tillämpad mkanik, Calmrs ENAMEN I FINI EEMENMEOD MHA 9 APRI 6 id oc plats: 4 8, Eklandagatan 86 Hjälpmdl: Ordböckr, likon oc typgodkänd räknar. ösningar ärar: Ptr Möllr, tl (77 55. Bsökr
Enkätsvar Sommarpraktik - Grundskola 2016
Enkätsvar Sommarpraktik - Grundskola 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr och 5
Atomkärnans struktur
Föreläsning 18 tomkärnans struktur Rutherford, Geiger och Marsden påvisade ~1911 i spridningsexperiment att atomen hade sin positiva laddning och massa koncentrerad till en kärna. I vissa fall kunde α-partiklarna
(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum:
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Växa i trafikn Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Växa
Föreläsningsserien k&p
Föreläsningsserien k&p 1. "Begrepp bevarandelagar, relativistiska beräkningar" 1-3,1-4,1-5,2-2 2. "Modeller av atomkärnan" 11-1, 11-2, 11-6 3. "Radioaktivitet, alfa-, beta-, gammasönderfall" 11-3, 11-4
Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
Linköpings Universitet IFM Kemi Formelsamling för Fysikalisk kemi Termodynamik, Spektroskopi & Kinetik. 2 van der Waals gasekvation
Lnköngs Unvrstt IFM Km 8-1-17 Formlsamlng ör Fyskalsk km rmodynamk, Sktrosko & Kntk Gasr. a n + ( nb) n R van dr Waals gaskvaton Z n R Komrssblttsaktor r nd r rducrad, c krtsk varabl Rducrad varablr c
Att förena gravitation och elektromagnetism i en (klassisk) teori. Kaluza [1919], Klein [1922]: Allmän
M-teori Strängteori Supersträngteori Einsteins Dröm Att förena gravitation och elektromagnetism i en (klassisk) teori Kaluza [1919], Klein [1922]: Allmän relativitetsteori i en extra dimension kanske ger
re (potensform eller exponentialform)
Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r
Ansgars fritidshem. Vi försöker vara. Västerås bästa fritidshem
Ansgars fritidshm Vi försökr vara Västrås bästa fritidshm r da g ä fr Varj xmllis, n ly dt ara alltifrå r an v grönsak k t d till i h t smoo m d dip. Välkommn till Ansgars fritidshm! Ansgars fritidshm
Partikelfysik, astrofysik och kosmologi.
Partikelfysik, astrofysik och kosmologi. Universms minsta bestånselar Växelverkningar Några nya bevarae kvanttal Haroner, färglaning Big Bang: - Mikrovågsbakgrn - Universm expanerar - Kärninnehåll Framtia
i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.
TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:
Revisionsrapport 2010. Hylte kommun. Granskning av upphandlingar
Rvisionsrapport 2010 Hylt kommun Granskning av upphandlingar Jakob Smith fbruari 2011 Innhållsförtckning SAMMANFATTNING... 3 1 UPPDRAGET... 4 1.1 Bakgrund och syft... 4 1.2 Mtod och avgränsning... 4 2
Matematisk statistik
Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna
Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning