Tentamen i FUF050 Subatomär Fysik, F3
|
|
- David Fransson
- för 8 år sedan
- Visningar:
Transkript
1 Tentamen i FUF050 Subatomär Fysik, F3 Tid: fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60 poäng, för betyg 5 krävs 80 poäng. Ev. poäng från inlämningar inkluderas. Frågor: Daniel Sääf, tel , Thomas Nilsson, tel En Higgs-boson, vars egenskaper så långt överensstämmer med de som Standardmodellens Higgs-boson förutsägs ha, har under det gångna året hittats vid LHC-kollideraren vid CERN. Bosonen har en vilomassa om ca. 15 GeV/c a. Vilken sönderfallskanal (se även fig. 1) användes initialt för att identifiera Higgs-bosonen? Motivera! (3 p) b. Om man istället för att kollidera protonstrålar med varandra hade valt att skjuta protoner på ett fast strålmål, också detta bestående av protoner, vilken är då den lägsta strålenergi som krävs för kunna skapa denna partikel? (7 p). Redogör för de processer varmed element tyngre än järn bildats. Beskriv varför förloppet inte kan förklaras med endast en process. (10 p) 3. Den radioaktiva isotopen 60 Cu (t 1/ = 3 min) kan produceras i reaktionen 60 Ni(p, n) a. Om protonerna i den inkommande strålen har den kinetiska energin 1 MeV, vilken excitationsenergi har då compoundkärnan? (5 p) b. Tvärsnittet för reaktionen vid den givna energin är 60 mb. Under antagandet att vi har ett strålmål av naturligt nickel med tjockleken 45 mg/cm och en protonstråle om 0,35 µa, beräkna aktiviteten från 60 Cu efter 1 timmas bestrålning. (10 p) 4. Den radioaktiva kärnan 7 Si sönderfaller till sin spegelkärna 7 Al genom β + -sönderfall. Vid mätning av positronernas energifördelning ger en Kurie-plot en ändpunktsenergi på 3,79 MeV. Kärnradien ges av uttrycket R = r 0 A 1/3 och kärnans Coulombenergi ges av Z 3 5 4πɛ 0 R e Uppskatta utgående från detta värdet på kärnradieparametern r 0 (10 p) 5. Färgkvanttal i kvarkmodellen: a. Varför måste färgkvanttalet införas för att förklara existensen av Ω? (5 p) b. Hur har existensen av färgkvanttal kunnat påvisas experimentellt (se fig. )? En kvalitativ förklaring är tillräcklig. (5 p) 1
2 Figur 1: Beräkningar med hjälp av Standardmodellen för produktionstvärsnitt multiplicerat med förgreningsfaktorer för Higgs-bosonens sönderfallskanaler som funktion av dess massa. Figur : Färgkvanttal
3 6. I ett klassiskt experiment visade Chien-Shiung Wu hur β-strålningen från en källa bestående av 60 Co, där kärnspinnen hade upplinjerats, inte emitterades isotropt. β-partiklarna detekterades med stor sannolikhet riktade parallellt med spinnvektorn hos de radioaktiva kärnorna, och med liten sannolikhet anti-parallellt. Visa hur detta indikerar att pariteten inte bevaras i svag växelverkan. (10 p) 7. Alfa-sönderfall kan modelleras genom att anta att alfa-partikeln preformeras inuti kärnan och sedan tunnlar ut genom Coulombbarriären. Figur 3 visar den radiella potentialen. Utgående från att differentiella transmissionskoefficienten dt för tunnling genom en infinitesimal del av potentialen (med tjocklek dr) är dt (r) = exp[ dr m(v C (r) E α )] och att r C = Zα c E α (där finstrukturkonstanten α = 1/137,0360 och α c = e 4πɛ 0 ), visa hur man med rimliga approximationer kan komma fram till Geiger-Nuttalls samband (se fig. 4) : log T 1/ = a + b Z Eα där T 1/ är halveringstid, Z atomnummer, E α alfa-partikelns energi och a respektive b är konstanter. (10 p) (Tips: antag att r C R trots att detta inte framgår av figur, och utnyttja att arccos(x) π för små x.) Figur 3: Skiss av den radiella potentialen för alfa-sönderfall. 3
4 Figur 4: Geiger-Nuttalls samband mellan atomnummer, Q-värde (approximativt alfa-partikelns energi) och halveringstid i alfa-sönderfall 4
5 Lösningsskisser tentamen FUF050 Subatomär Fysik Thomas Nilsson 11 juni a. Den renaste sönderfallskanalen är γγ, de andra innehåller kvarkleptonkombinationer som kan blandas samman med andra processer. b. En naiv uppskattning ger att det sammansatta systemet av protoner måste ha minst den invarianta massan m W = 15GeV/c. Bilda invarianta massan genom W = P b + P t m W c = W = P b + Pt + Pb P t = m pc + P b P t där p b och p t är strål- respektive strålmålsprotonen med P b = [0, 0, p b, E p /c], P t = [0, 0, 0, m p c]. Sätt in detta, vi kan försumma protonernas vilomassa. m W c = m p E p E p = m W c m p Totala energin måste alltså minst motsvara 8.3 TeV. Denna uppskattning är mycket för låg då protonen är en sammansatt partikel och inte alla kvarkar och gluoner deltar i kollisionen, dessutom måste ytterligare partiklar skapas för att bevara baryontal, laddning etc.. Se kurslitteratur och slides, exempel på punkter som bör vara med: s- och r-process, neutronflöde isotoper skyddade från r-process av stabila isotoper produktion av de tyngsta elementen och neutronrika som ej nås i s-process 3. a. Massor från PH direkt eller genom bindningsenergi: M(Z, N) = (Z M( 1 H) + N M n )c B (1) 1
6 Protonen fusionerar med 60 Ni och bildar compoundkärnan 61 Cu som sedan sönderfaller i 60 Cu + n. För compoundkärnan gäller att: där kvadrera : P 61 = P 60 + P 1 () P 1 = [0, 0, p 1, E 1 /c], P 60 = [0, 0, 0, m 60 c] m 61 c = P 61 = ( P 60 + P 1 ) alltså är excitationsenergin: = P 60 + P 1 + P 60 P 1 = m 60c m 1c m 1 E 1 = m 60c m 1c m 60 (T 1 + m 1 c ) E = (m 61 m 61 )c = ( m 60 + m 1 + m 60(T 1 /c + m 1 ) m 61 )c med m 61 = M( 61 Cu) = u, m 60 = M( 60 Ni) = u, m 1 = M( 1 H) = u och T 1 = 1 MeV fås E = 17.8MeV. En icke-relativistisk lösning är givetvis även OK då T 1 << m 1. b. För produktionsraten gäller: R = I N σ där R är produktionshastigheten. För aktiviteten gäller att A = λ N: A = R(1 e λ t ) Med I = / [A/C] = s 1, ρ = g/cm, σ = 0.06b, molmassan M = och andelen a 60 = 0.63 har vi: R = I ρ a 60 σ N A M = [ g cm s cm = s 1 Aktiviteten blir då, med λ = ln()/(3 60), efter en timme: mol g mol ] A = (1 e ln() )s 1 = Bq
7 4. Se räkneövningsanteckningar. 5. Se föreläsningsanteckningar/slides. 6. Se Martin. 7. Se Martin. 3
Tentamen i FUF050 Subatomär Fysik, F3
Tentamen i FUF050 Subatomär Fysik, F3 Tid: 2012-08-30 em Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 4 Lösningar 1. Sök på internet efter information om det senast upptäckta grundämnet. Vilket masstal och ordningsnummer har det och vilka är de angivna egenskaperna? Hur har
Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall
Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även
Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β +=
Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett γ
Lösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N
Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett kvantum
Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall
Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även
Lösningar till problem del I och repetitionsuppgifter R = r 0 A 13
Lösningar till problem del I och repetitionsuppgifter 0 Problem I. 6 0 08 Beräkna kärnradien hos 8 O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R = r 0 A 3 får vi R =. 6 3 = 3. 0 fm, R
Theory Swedish (Sweden)
Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.
Studiematerial till kärnfysik del II. Jan Pallon 2012
Frågor att diskutera Kapitel 4, The force between nucleons 1. Ange egenskaperna för den starka kraften (växelverkan) mellan nukleoner. 2. Deuterium är en mycket speciell nuklid när det gäller bindningsenergi
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Fredagen den 21/12 2012 kl. 14.00-18.00 i TER2 och TER3 Tentamen består av 2 A4-blad (inklusive
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 5 Lösningar 1. Massorna för de nedan uppräknade A = isobarerna är 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 63,935812u 63,927968u 63,929766u 63,929146u 63,936827u Tabell 1: Tabellen
Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi
Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten
Higgsbosonens existens
Higgsbosonens existens Ludvig Hällman, Hanna Lilja, Martin Lindberg (9204293899) (9201120160) (9003110377) SH1012 8 maj 2013 Innehåll 1 Sammanfattning 2 2 Standardmodellen 2 2.1 Kraftförmedlarna.........................
Lösningar till problem del I och repetitionsuppgifter R r 0 A 13
Lösningar till problem del I och repetitionsuppgifter 03 Problem I. 6 0 08 Beräkna kärnradien hos 8O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R r 0 A 3 får vi R. 6 3 3. 0 fm, R. 0 /
Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund
och materiens minsta beståndsdelar Teoretisk Partikelfysik Lunds Universitet NMT-dagar i Lund 2018-03-14 Översikt 1 och krafter 2 ska partiklar och krafter 3 på jakt efter nya partiklar 4 och krafter materiens
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
SUBATOMÄR FYSIK F3, 2004
LÄSHANDLEDNING SUBATOMÄR FYSIK F3, 2004 Kursbok: Introductory Nuclear Physics, K. S. Krane, J. Wiley & Sons, New York Nedan sammanfattas de delar av Kranes bok som ingår i kursen. Varje enskilt avsnitt
Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik
en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2011-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 29/8 2013 kl. 14.00-18.00 i TER2 Tentamen består av 2 A4-blad (inklusive detta)
Krävs för att kunna förklara varför W och Z bosoner har massor.
Higgs Mekanismen Krävs för att kunna förklara varför W och Z bosoner har massor. Ett av huvudmålen med LHC. Teorin förutsäger att W och Z bosoner är masslösa om inte Higgs partikeln introduceras. Vi observerar
Lösningar till tentamen i kärnkemi ak
Lösningar till tentamen i kärnkemi ak 1999.117 Del A 1. Det finns radioaktiva sönderfall som leder till utsändning av monoenergetisk joniserande strålning? Vad är detta för strålslag? (2p) Svar: Alfastrålning
Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik
en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2014-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 28/8 2014 kl. 14.00-18.00 i T1 och S25 Tentamen består av 2 A4-blad (inklusive
Atomkärnans struktur
Föreläsning 18 tomkärnans struktur Rutherford, Geiger och Marsden påvisade ~1911 i spridningsexperiment att atomen hade sin positiva laddning och massa koncentrerad till en kärna. I vissa fall kunde α-partiklarna
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Måndagen den 19/12 2011 kl. 14.00-18.00 i KÅRA, T1, T2 och U1 Tentamen består av 2 A4-blad (inklusive
LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, 2010-10-09
LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09 Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Röntgenstrålning och Atomkärnans struktur
Röntgenstrålning och tomkärnans struktur Röntgenstrålning och dess spridning mot kristaller tomkärnans struktur - Egenskaper. Isotoper. - Bindningsenergi - Kärnmodeller - Radioaktivitet, radioaktiva sönderfall.
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,
Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?
Föreläsningsserien k&p
Föreläsningsserien k&p 1. "Begrepp bevarandelagar, relativistiska beräkningar" 1-3,1-4,1-5,2-2 2. "Modeller av atomkärnan" 11-1, 11-2, 11-6 3. "Radioaktivitet, alfa-, beta-, gammasönderfall" 11-3, 11-4
Mer om E = mc 2. Version 0.4
1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om
Hur mycket betyder Higgspartikeln? MASSOR!
Hur mycket betyder Higgspartikeln? MASSOR! 1 Introduktion = Ni kanske har hört nyheten i somras att mina kollegor i CERN hade hittat Higgspartikeln. (Försnacket till nobellpriset) = Vad är Higgspartikeln
Lösningar till tentamen i kärnkemi ak
Lösningar till tentamen i kärnkemi ak 1999.118 Del A 1. Det finns radioaktiva sönderfall som leder till utsändning av monoenergetisk joniserande strålning? Vad är detta för strålslag? (2p) Svar: Alfastrålning
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 13. Kärnfysik Föreläsning 13. Kärnfysik 2
Föreläsning 13 Kärnfysik 2 Sönderfallslagen Låt oss börja med ett tankeexperiment (som man med visst tålamod också kan utföra rent praktiskt). Säg att man kastar en tärning en gång. Innan man kastat tärningen
Christian Hansen CERN BE-ABP
Christian Hansen CERN BE-ABP LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision 1952
LEKTION 27. Delkurs 4 PROCESSER I ATOMKÄRNAN MATERIENS INNERSTA STRUKTUR
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 27 Delkurs 4 PROCESSER I ATOMKÄRNAN MATERIENS
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)
Att utforska mikrokosmos
309 Att utforska mikrokosmos Hur lundafysiker mätte en ny spridningseffekt, var med och bestämde familjeantalet av leptoner och kvarkar och deltog i jakten på Higgs partikel. Vad vi vet och vill veta Idag
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Föreläsning 09 Kärnfysiken: del 1
Föreläsning 09 Kärnfysiken: del 1 Storleken och strukturen av kärnan Bindningsenergi Den starka kärnkraften Strukturen av en kärna Kärnan upptäcktes av Rutherford, Geiger och Marsden år 1909 (föreläsning
Instuderingsfrågor Atomfysik
Instuderingsfrågor Atomfysik 1. a) Skriv namn och laddning på tre elementarpartiklar. b) Vilka elementarpartiklar finns i atomkärnan? 2. a) Hur många elektroner kan en atom högst ha i skalet närmast kärnan?
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Lördagen den 25/8 2012 kl. 14.00-18.00 i TER4 och TERD Tentamen består av 2 A4-blad (inklusive
Miljöfysik. Föreläsning 5. Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion
Miljöfysik Föreläsning 5 Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion Energikällor Kärnkraftverk i världen Fråga Ange tre fördelar och tre nackdelar
Partikeläventyret. Bernhard Meirose
Partikeläventyret Bernhard Meirose Vad är Partikelfysik? Wikipedia: "Partikelfysik eller elementarpartikelfysik är den gren inom fysiken som studerar elementarpartiklar, materiens minsta beståndsdelar,
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner
Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5
Tentamen i fysik B2 för tekniskt basår/termin VT 2014
Tentamen i fysik B för tekniskt basår/termin VT 04 04-0-4 En sinusformad växelspänning u har amplituden,5 V. Det tar 50 μs från det att u har värdet 0,0 V till dess att u har antagit värdet,5 V. Vilken
Föreläsning 2 Modeller av atomkärnan
Föreläsning 2 Modeller av atomkärnan Atomkärnan MP 11-1 Protonens och neutronens egenskaper Atomkärnors storlek och form MP 11-2, 4-2 Kärnmodeller 11-6 Vad gör denna ovanlig? Se även http://www.lbl.gov/abc
LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad,
LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09 Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner
TILLÄMPAD ATOMFYSIK Övningstenta 3
TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Rörelsemängd och energi
Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )
BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/
Från atomkärnor till neutronstjärnor Christoph Bargholtz
Z N Från atomkärnor till neutronstjärnor Christoph Bargholtz 2006-06-29 1 C + O 2 CO 2 + värme? E = mc 2 (mc 2 ) före > (mc 2 ) efter m = m efter -m före Exempel: förbränning av kol m m = 10 10 (-0.0000000001
Preliminärt lösningsförslag till Tentamen i Modern Fysik,
Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs
Standardmodellen. Figur: HANDS-ON-CERN
Standardmodellen Den modell som sammanfattar all teoretisk kunskap om partikelfysik i dag kallas standardmodellen. Standardmodellen förutspådde redan på 1960-talet allt det som man i dag har lyckats bevisa
Upptäckten av Higgspartikeln
Upptäckten av Higgspartikeln 1. Introduktion 2. Partikelfysik 3. Higgspartikeln 4. CERN och LHC 5. Upptäckten 6. Framtiden 1 Introduktion De senaste åren har ni säkert hört talas om den så kallade Higgspartikeln
Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt
Neutronaktivering. Laboration i 2FY808 - Tillämpad kvantmekanik
Neutronaktivering Laboration i 2FY808 - Tillämpad kvantmekanik Datum för genomförande: 2012-03-30 Medlaborant: Jöns Leandersson Handledare: Pieter Kuiper 1 av 9 Inledning I laborationen används en neutronkälla
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Onsdagen den 27/3 2013 kl. 08.00-12.00 i T1 och T2 Tentamen består av 2 A4-blad (inklusive detta)
Kärnfysik och radioaktivitet. Kapitel 41-42
Kärnfysik och radioaktivitet Kapitel 41-42 Tentförberedelser (ANMÄL ER!) Maximipoäng i tenten är 25 p. Tenten består av 5 uppgifter, varje uppgift ger max 5 p. Uppgifterna baserar sig på bokens kapitel,
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 6 januari 017 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG KVALTÄVLINGEN 017 1. Enligt diagrammet är accelerationen 9,8 m/s när hissen står still eller rör sig med
Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar
Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar 1. Den ryska fysikern P.A. Čerenkov upptäckte att om en partikel rör sig snabbare än ljuset i ett medium, ger den ifrån sig ljus. Denna effekt
Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 12. Kärnfysik 1 2014. Kärnfysik 1
Kärnfysik 1 Atomens och atomkärnans uppbyggnad Tidigare har atomen beskrivits som bestående av en positiv kärna kring vilken det i den neutrala atomen befinner sig lika många elektroner som det finns positiva
Kvantbrunnar -Kvantiserade energier och tillstånd
Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)
Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att
Kvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
1. 2. a. b. c a. b. c. d a. b. c. d a. b. c.
1. Lina sitter och läser en artikel om utgrävningarna i Motala ström. I artikeln står det att arkeologerna funnit bruksföremål som är 7 år gamla. De har daterat föremålen med hjälp av kol-14-metoden. Förklara
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska
Räkneuppgifter, subatomär fysik
Räkneuppgifter, subatomär fysik Upptäckten av Ω -partikeln på Brookhaven National Laboratory, New York den 11:e februari 1964. Denna upptäckt blev den sista pusselbiten i bekräftandet av Murray Gell-Manns
Tentamen i Materia, 7,5 hp, CBGAM0
Fakulteten för teknik- och naturvetenskap Tentamen i Materia, 7,5 hp, CBGAM0 Tid Måndag den 9 januari 2012 08 15 13 15 Lärare Gunilla Carlsson tele: 1194, rum: 9D406 0709541566 Krister Svensson tele: 1226,
Introduktion till partikelfysik. CERN Kerstin Jon-And Stockholms universitet
Introduktion till partikelfysik CERN 2008-10-27 Kerstin Jon-And Stockholms universitet elektron (-1) 1897 Thomson (Nobelpris 1906) 1911 Rutherford (Nobelpris kemi 1908!) proton +1 1919 Rutherford neutron
Varifrån kommer grundämnena på jorden och i universum? Tom Lönnroth Institutionen för fysik, Åbo Akademi, Finland
Varifrån kommer grundämnena på jorden och i universum? Tom Lönnroth Institutionen för fysik, Åbo Akademi, Finland Finlandssvenska fysikdagarna 2009 m/s Silja Symphony, November 13-15 Sammandrag Begynnelsen:
Forelasning 13, Fysik B for D2. December 8, dar R 0 = 1:2fm. ( 1 fm = m) Vi har alltsa. ar konstant (R 3 = R 3 0A). 46.
Forelasning 13, Fysik B for D2 Thomas Nilsson December 8, 1997 Subatomar fysik kallas allt som beror strukturer mindre an atomer, alltsa med en mer traditionell uppdelning, karn- och partikelfysik. 46
ɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04
Tabell 1: Några utvalda naturkonstanter: Namn Symbol Värde Enhet Ljushastighet c 2,998.10 8 m/s Elementarladdning e 1,602.10 19 C Plancks konstant h 6,626.10 34 Js h 1,055.10 34 Js Finstrukturkonstanten
Föreläsning 3 Heisenbergs osäkerhetsprincip
Föreläsning 3 Heisenbergs osäkeretsprincip Materialet motsvarar Kap.1,.,.5 and.6 i Feynman Lectures Vol III + Uncertainty in te Classroom - Teacing Quantum Pysics K.E.Joansson and D.Milstead, Pysics Education
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 16 8: 1: Tentamen består av två
Experimentell fysik. Janne Wallenius. Reaktorfysik KTH
Experimentell fysik Janne Wallenius Reaktorfysik KTH Återkoppling från förra mötet: Många tyckte att det var spännade att lära sig något om 1. Osäkerhetsrelationen 2. Att antipartiklar finns och kan färdas
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 13 Kärnfysik 2 den 4 maj Föreläsning 13.
Föreläsning 13 Sönderfallslagen Låt oss börja med ett tankeexperiment (som man med visst tålamod också kan utföra rent praktiskt). Säg att man kastar en tärning en gång. Innan man kastat tärningen kan
Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige
Laboration 36: Kärnfysik Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se 8 Maj, 2001 Stockholm, Sverige Assistent: Roberto Liotta Modern fysik (kurskod
Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12!
1) Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! Om vi tar den tredje kol atomen, så är protonerna 6,
Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 26.
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 26 Delkurs 4 KÄRNSTRUKTUR I detta häfte ingår
Föreläsning 11 Kärnfysiken: del 3
Föreläsning Kärnfysiken: del 3 Kärnreaktioner Fission Kärnreaktor Fusion U=-e /4πε 0 r Coulombpotential Energinivåer i atomer Fotonemission när en elektron/atom/molekyl undergår en övergång Kvantfysiken
Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0
LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift
Svar och anvisningar
170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse
3.7 γ strålning. Absorptionslagen
3.7 γ strålning γ strålningen är elektromagnetisk strålning. Liksom α partiklarnas energier är strålningen kvantiserad; strålningen kan ha endast bestämda energier. Detta beror på att γ strålningen utsänds
8.4 De i kärnan ingående partiklarnas massa är
LÖSIGSFÖRSLAG Fysik: Fysik och Kapiel 8 8 Kärnfysik Aomkärnans sabilie 8. Läa kärnor är sabila om de har samma anal prooner som neuroner. Sörre kärnor kräver fler neuroner än prooner för a sark växelverkan
Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1
Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Ger oss elektrisk ström. Ger oss ljus. Ger oss röntgen och medicinsk strålning. Ger oss radioaktivitet. av: Sofie Nilsson 2 Strålning
Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):
Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa
Föreläsning 12 Partikelfysik: Del 1
Föreläsning 12 Partikelfysik: Del 1 Vad är de grndläggande delarna av material? Hr växelverkar de med varandra? Partikelkolliderare Kvarkar Gloner Vi är nästan i sltet av historien Med den här krsen har
Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.
Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina