Elementær diskret matematikk, MA0301, våren 2011

Storlek: px
Starta visningen från sidan:

Download "Elementær diskret matematikk, MA0301, våren 2011"

Transkript

1 Lösningsförslag Elmntær iskrt matmatikk, MA00, vårn 0 Oppgav Varj or motsvarar n prmutation av storlk från 9 bokstävrna i TRONDHEIM Alltså är antalt sökta or P(9,) = På liknan sätt får vi att t finns P(8,) såana or som int innhållr bokstavn O Antalt or som innhållr bokstavn O är alltså P(9,) P(8,) = = (9 ) = Oppgav Binomialtormt gr (+x ) = k=0 ( k ) k k x k Kofficintn till x 0 motsvarar k = 0, t vill säga k = Därm är kofficintn till x 0 : ( ) ( ) = 7 = = 9 Oppgav Följan rsonmang visar att argumntt är giltigt: Oppgav Stg Motivation ) q Prmiss ) q Dubblngation: ) ) p q Prmiss ) p Mous Tollns: ), ) ) p r Prmiss 6) r Disjunktiv syllogism: ), ) 7) r q Konjunktion: ),6) 8) (r q) s Prmiss 9) s Mous Ponns: 7),8) Vi bvisar att a n = n + m inuktion övr n Först vrifirar vi basfallt a 0 = = = 0 + Därftr tar vi inuktionsstgt Låt k 0 och antag att a k = k +

2 Enligt rkursionsformln gällr å att a k+ = a k = k + Enligt inuktionsprincipn följr att för alla naturliga tal n Oppgav a) Dfinira f : A B gnom och g : B A gnom = k+ + a n = n + f(a) =, f(b) =, f(c) = g() = a, g() = b, g() = c, g() = c = k+ + Då är g f inntittsfunktionn på A och ärm bijktiv Dssutom är invrsn (g f) också inntittsfunktionn på A, t vill säga b) Dfinira f : A B gnom och g : B A gnom (g f) (a) = a, (g f) (b) = b, (g f) (c) = c f(a) =, f(b) =, f(c) = g() = a, g() = a, g() = b, g() = c Då är f injktiv ftrsom f(a), f(b) och f(c) alla är olika Dssutom är g(b) = {a,b,c}, vilkt gr att g är surjktiv Vi bräknar nu (g f)(a) = a, (g f)(b) = a, (g f)(c) = b, vilkt visar att (g f) int är bijktiv Till xmpl sr vi att (g f)(a) = a = (g f)(b) och alltså är (g f) int injktiv Oppgav 6 Om vi kör Kruskal s algoritm i stg så får vi lgrafn

3 I följan stgn kan vi välja n av kantrna {g,f}, {,f} och n av kantrna {b,c}, {,c} Dt gr = möjliga val vilka rsultrar följan minimala utspännan trä: Oppgav 7 Vi sökr n maskin m inputalfabt och outputalfabt {0,} Dn ska g output som slutar m om och nast om input liggr i {0} {}{0} Vi kallar starttillstånt s 0 Ett xmpl på n såan maskin är,0, s 0 s s M : 0,0,0 0,0 0,0,0 0, s s s 0,0,0 Vi kan kontrollra att M kännr ign {0} {}{0} gnom att vrifira att M bfinnr sig i tillstån s i om och nast om M har läst in n sträng från språkt L i är L 0 = {0}, L = {0} {}, L = {0} {}{0}, L = {0} {0}, L = {0,} \( j L j), L = {0} {}{0} {} x,0

4 Oppgav 8 Vi bräknar grarna av alla nor: G : G : G : G : Eftrsom antalt nor av gra är olika i alla fall utom för G och G så är n na möjlightn att G och G är isomorfa Att G är isomorf G visar vi gnom att hitta n isomorfism f från G till G : x f f(x) u v t y s x Oppgav 9 a) Rlationn R är n lvis orning Rflxsiv: Låt f F Då gällr att f(x) f(x) för alla x Z Alltså gällr frf Transitiv: Låt f,g,h F så att frg och grh Då gällr att f(x) g(x) h(x) för alla x Z Alltså gällr att f(x) h(x) för alla x Z och ärm är frh Antisymmtrisk: Låt f,g F så att frg och grf Då gällr att f(x) g(x) f(x) för alla x Z Alltså gällr att f(x) = g(x) för alla x Z och ärm är f = g b) Rlationn S är int n lvis orning Mr prcist gällr att S varkn är transitiv llr antisymmtrisk Dfinira f,g,h F gnom f(x) =, h(x) = 0 för alla x Z och { x 0, g(x) = 0 x > 0 Då är f(0) = = g(0) och g() = 0 0 = h() Alltså är fsg och gsh Mn f(x) = > 0 = h(x) gällr för alla x Z Alltså är f int rlatra till h och ärm är S int transitiv Dssutom gällr att g(0) = = f(0) vilkt gr gsf Eftrsom f g så är S int antisymmtrisk

5 Oppgav 0 När Dijkstra s algoritm kör så bsöks norna i följan orning: a, b,,, f, c Unr tin tilllas ssa tikttr: (,f) (,a) (6,b) (0, ) (,a) (,a) (,b) f (,b) (,) Därm är a b f c n kortast vägn från a till c

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2 Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)

Läs mer

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12 KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (

Läs mer

Föreläsning 11: Grafer, isomorfi, konnektivitet

Föreläsning 11: Grafer, isomorfi, konnektivitet Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till

Läs mer

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr

Läs mer

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1 Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,

Läs mer

Arkitekturell systemförvaltning

Arkitekturell systemförvaltning Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm

Läs mer

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:

Läs mer

där a och b är koefficienter som är större än noll. Här betecknar i t

där a och b är koefficienter som är större än noll. Här betecknar i t REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt

Läs mer

Algoritmer och datastrukturer, föreläsning 11

Algoritmer och datastrukturer, föreläsning 11 Aloritmr oh tstrukturr, förläsnin Dnn förläsnin hnlr rfr. En rf hr n män nor (vrtx) oh n män år (). Ett xmpl är: A E F B D G H C Z Dnn rf hr följn män v nor: {A, B, C, D, E, F, G, H, Z Dn hr följn män

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

247 Hemsjukvårdsinsats för boende i annan kommun

247 Hemsjukvårdsinsats för boende i annan kommun PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr

Läs mer

v v v v 5 v v v 4 (V,E ) (V,E)

v v v v 5 v v v 4 (V,E ) (V,E) . Grftori Btylsn v ilr som stö oh inspirtion för mtmtisk rsonmng kn knppst övrsktts. Stuirn v nkl ilr hr gtt oss grftorin. Tyvärr, llr lykligtvis, visr t sig snt tt nkl oh nturlig frågställningr om nkl

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga

Läs mer

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen: Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans

Läs mer

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4. TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar

Läs mer

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00 Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.

Läs mer

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning

Läs mer

24 poäng. betyget Fx. framgår av. av papperet. varje blad.

24 poäng. betyget Fx. framgår av. av papperet. varje blad. Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00 TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg

Läs mer

Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen

Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads

Läs mer

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2 Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,

Läs mer

Räkneövning i Termodynamik och statistisk fysik

Räkneövning i Termodynamik och statistisk fysik Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...

Läs mer

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917 BRANDUTREDNINGSPROTOKOLL Datum: 20121130 Vår rfrns: Grt Andrsson Dnr: 2013-000138 Er rfrns: MSB Uppdragsgivar: Uppdrag: Undrsökningn utförd: Bilagor: Landskrona Räddningstjänst Brandorsak, brandförlopp

Läs mer

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1). Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns

Läs mer

Sommarpraktik - Grundskola 2017

Sommarpraktik - Grundskola 2017 Sommarpraktik Grundskola 2017 1. Födlsår 1996 1997 1998 1999 2000 2001 2002 2003 2. Inom vilkt praktikområd har du praktisrat? 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Förskola/fritidshm Fritid/kultur

Läs mer

Tryckkärl (ej eldberörda) Unfired pressure vessels

Tryckkärl (ej eldberörda) Unfired pressure vessels SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt: Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga

Läs mer

Tentamen i Kemisk termodynamik kl 8-13

Tentamen i Kemisk termodynamik kl 8-13 Tntamn i misk trmdynamik 20040-23 kl 83 Hjälpmdl: Räkndsa, BETA ch Frmlsamling för kursrna i kmi vid TH. Endast n uppgift pr blad! Skriv namn ch prsnnummr på varj blad! Alla använda kvatinr sm int finns

Läs mer

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

Tentamen 2008_03_10. Tentamen Del 1

Tentamen 2008_03_10. Tentamen Del 1 Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z

Läs mer

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:

Läs mer

ICEBREAKERS. Version 1.0 Layout: Kristin Rådesjö Per Wetterstrand

ICEBREAKERS. Version 1.0 Layout: Kristin Rådesjö Per Wetterstrand Icbrakrs 2 / 10 Götborgs Rgionn och GR Utbildning GR är n samarbtsorganisation för 13 kommunr i Västsvrig tillsammans har mdlmskommunrna 900 000 invånar. Förbundts uppgift är att vrka för samarbt övr kommungränsrna

Läs mer

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant

Läs mer

KOMPATIBILITET! Den här mottagaren fungerar med alla självlärande Nexa-sändare inklusive Nexa Gateway.!

KOMPATIBILITET! Den här mottagaren fungerar med alla självlärande Nexa-sändare inklusive Nexa Gateway.! Manual EJLR-1000 Läs avsnittt Viktig information innan du installrar dn här produktn Dt kan vara farligt att int följa säkrhtsanvisningarna. Flaktig installation innbär dssutom att produktns vntulla garanti

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för istanskursen Matematik A - analyselen vi Uppsala universitet höstterminen 2006. 1. Derivata I grunläggane analys

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid: Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,

Läs mer

Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom

Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom Epipoärgomtri dn fundamntaa matrisn Låt vara n punkt i kamracntrum rsp Låt Punktn bägg kamracntrum pipoarpant ti bägg avbidningarna ti vara dss avbidning i två bidr gnom samt d -dimnsiona motsvarightrna

Läs mer

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning. TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:

Läs mer

Mitt barn skulle aldrig klottra!...eller?

Mitt barn skulle aldrig klottra!...eller? Mitt brn skull ldrig klottr!...llr? trtgi! ls n n tu n g n r h y Täb g och in sn ly b, g in n k c y m ts Gnom u i lyckts v r h l ri t m t g li å rt klott unn. m m o k i t r tt lo k sk in m Hjälp oss tt

Läs mer

re (potensform eller exponentialform)

re (potensform eller exponentialform) Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r

Läs mer

Lösningar till utvalda uppgifter i kapitel 3

Lösningar till utvalda uppgifter i kapitel 3 Lösningar till utvalda uppgifter i kapitel 3 3.37 (a) Att ` ' är reexiv, antisymmetrisk och transitiv följer direkt av att `den vanliga' är det på N och Z. (b) Följden m n = ( n, n) där n = 0, 1, 2,...

Läs mer

1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter

1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter Armin Hlilovic: EXTRA ÖVNINGAR plcrnormr APACETRANSFORMER plcrnormr nvän bl nn ör lö irnilkvionr DE och ym v DE m konn koicinr lö någr ypr v ingrlkvionr bämm bili ho linjär ym Diniion å vr inir ör plcrnormn

Läs mer

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska

Läs mer

Laboration 1a: En Trie-modul

Laboration 1a: En Trie-modul Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr

Läs mer

Programutvärdering av psykologprogrammen VT15

Programutvärdering av psykologprogrammen VT15 Programutvärring av psykologprogrammn VT Antal ltagar i nkätn: Antal rhållna nkätsvar: 6 Jag har sturat vid följan program Antal svar på frågan: 6 ( Psykologprogrammt 6,9 ( Psykologprogrammt md inriktning

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära

Läs mer

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2018

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2018 Mkanik och maritima vtnskapr, Chalmrs tkniska högskola ENAMEN I FINI ELEMENMEOD MHA 9 AUGUSI 8 id och plats: 4 8 i M hust Hjälpmdl: ypgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (77) 55. Bsökr sal ca.

Läs mer

Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner

Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...

Läs mer

Ekosteg. En simulering om energi och klimat

Ekosteg. En simulering om energi och klimat Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr

Läs mer

TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04

TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04 TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...

Läs mer

Nordic Light Roulett. Aluminiumpersienn. Nordic Light Roulett Installation - Manövrering - Rengöring. Aluminiumpersienn

Nordic Light Roulett. Aluminiumpersienn. Nordic Light Roulett Installation - Manövrering - Rengöring. Aluminiumpersienn INSTALLATION - MONTERING - RENGÖRING Originlokumntt får int i txt llr utförn änrs utn mgivn v Turnils AB. www.nori-light.om Nori Light SE-441 15 Alingsås, Swn Tl: +46-322 775 00 E-mil: orrurop@turnils.om

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

Tanken och handlingen. ett spel om sexuell hälsa och ordassociationer

Tanken och handlingen. ett spel om sexuell hälsa och ordassociationer Tankn och handlingn tt spl om sxull hälsa och ordassociationr 2 / 13 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad

Läs mer

Ett sekel av samarbete

Ett sekel av samarbete johanns jansson / nordn. org Första nordiska mött för hushållsvtar hölls i Sorø i Danmark år 1909, dt sista i finländska Åbo år 2009. Ett skl av samarbt Ett skl. Så läng sdan är dt danskan Magdalna Lauridsn

Läs mer

STJÄRNEXTRA. Följ med på studiebesök till Regionalsjukhuset Bagarmossen. Missa inte föredaget med Cecilia Müller

STJÄRNEXTRA. Följ med på studiebesök till Regionalsjukhuset Bagarmossen. Missa inte föredaget med Cecilia Müller STJÄRNEXTRA Svnska Blå Stjärnan - Stockholms Förbunds Mdlmstidning SEPTEMBER nr 3/2014 Följ md på studibsök till Rgionalsjukhust Bagarmossn av g n i n k r ä t förs m o g a t pn r a k s d Rpo r a krisb

Läs mer

Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO. Bengt Sebring Februari 2004 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2003

Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO. Bengt Sebring Februari 2004 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2003 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO Bngt Sbring Fbruari 2004 Sida: 1 Kommunrvisionn Innhållsförtckning Sammanfattning... 3 1. Inldning... 4 1.1 Uppdrag... 4 1.2 Avgränsning... 4 1.3

Läs mer

Ostra konununhuset, rum B 1 08, kl ANSLAG/BEVIS Protokollet är justerat. Information har skett genom anslag

Ostra konununhuset, rum B 1 08, kl ANSLAG/BEVIS Protokollet är justerat. Information har skett genom anslag SAMMANTRADSPROTOKOLL Intgrationsrådt l (1) Plats ochtid Ostra konununhust, rum B 1 8, kl.17. 19. Bslutand Radovan Javurk,(L) ordförand Övriga närvarand Sabina Månsson Hultgrn, vic ordförand Lovisa Gntz

Läs mer

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning Stark/Svag Form, Fackvrk Rickard Shn 3--5 FEM för Ingnjörstillämpningar, SE5 rshn@kth.s 4. Förskjutning öjning a) Sökt: Visa att töjningn i lmntt är. du ösning: I grundkursn fick man lära sig att.

Läs mer

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( ) 6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så

Läs mer

KLIMATSMARTA LUNCHER MED PANERAD FISK

KLIMATSMARTA LUNCHER MED PANERAD FISK KLIMATSMARTA LUNCHER MED PANERAD FISK Krispig panad och mjuk saftig fisk, dt är n "prfct match" och tt riktigt gott sätt att äta mr fisk. Vi har tt brtt sortimnt md myckt att välja mllan - olika sortrs

Läs mer

Föreläsning 10 Kärnfysiken: del 2

Föreläsning 10 Kärnfysiken: del 2 Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt

Läs mer

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06 FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har

Läs mer

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,

Läs mer

BRa mat. helt enkelt INSPIRERANDE OCH HÄLSOSAMMA RÄTTER MED PANERAD FISK.

BRa mat. helt enkelt INSPIRERANDE OCH HÄLSOSAMMA RÄTTER MED PANERAD FISK. BRa mat hlt nklt INSPIRERANDE OCH HÄLSOSAMMA RÄTTER MED PANERAD FISK. En Riktigt bra måltid! Vi har tt brtt sortimnt md myckt att välja mllan olika sortrs fisk, storlkar och typr av panad. Vildfångad fisk

Läs mer

Arvika 2019_243 Stömne Bertil Persson Betongteknik AB DECIBEL - Huvudresultat Beräkning: VKV SWE99TM VKV typ Ljuddata

Arvika 2019_243 Stömne Bertil Persson Betongteknik AB DECIBEL - Huvudresultat Beräkning: VKV SWE99TM VKV typ Ljuddata SVENSKA BESTÄMMELSER FÖR EXTERNT BULLER FRÅN LANDBASERADE VINDKRAFTVERK 2019-03-02 07:25 / 1 Beräkningen är baserad på den av Statens Naturvårdsverk rekommenderad metod "Ljud från landbaserade vindkraftverk",

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2

Läs mer

Per Sandström och Mats Wedin

Per Sandström och Mats Wedin Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786

Läs mer

ANALYS AV DITT BETEENDE - DIREKTIV

ANALYS AV DITT BETEENDE - DIREKTIV Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).

Läs mer

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt

Läs mer

Bra mat Helt enkelt INSPIRERANDE OCH HÄLSOSAMMA RÄTTER MED PANERAD FISK.

Bra mat Helt enkelt INSPIRERANDE OCH HÄLSOSAMMA RÄTTER MED PANERAD FISK. Bra mat Hlt nklt INSPIRERANDE OCH HÄLSOSAMMA RÄTTER MED PANERAD FISK. En Riktigt bra måltid! Vi har tt brtt sortimnt md myckt att välja mllan olika sortrs fisk, storlkar och typr av panad. Vildfångad fisk

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av upphandlingar

Revisionsrapport 2010. Hylte kommun. Granskning av upphandlingar Rvisionsrapport 2010 Hylt kommun Granskning av upphandlingar Jakob Smith fbruari 2011 Innhållsförtckning SAMMANFATTNING... 3 1 UPPDRAGET... 4 1.1 Bakgrund och syft... 4 1.2 Mtod och avgränsning... 4 2

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand

Läs mer

Margarin ur miljö- och klimatsynpunkt.

Margarin ur miljö- och klimatsynpunkt. Margarin ur miljö- och klimatsynpunkt. Dt är skillnad på och smör. Ävn när dt gällr miljön. Till barn i förskola och skola rkommndrar Livsmdlsvrkt och lätt för smör och smörblandad produktr. En ny analys

Läs mer

Diskret matematik: Övningstentamen 1

Diskret matematik: Övningstentamen 1 Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som

Läs mer

Från avdelning till barngrupp fokus på barns utveckling och lärande

Från avdelning till barngrupp fokus på barns utveckling och lärande Från avdlning till barngrupp fokus på barns utvckling och lärand Institutionn för pdagogik, kommunikation och lärand Pia Williams Skolriksdag 2017 Institutionn för pdagogik, kommunikation och lärand www.gu.s

Läs mer

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }.

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }. Armi Halilovic: EXTRA ÖVNINGAR TALFÖLJDER Dfiitio a: E talföljd är rll (llr koml) fuktio vars dfiitiosmägd är mägd av aturliga tal {0,,,,4, } Eml f ( ) = +, = 0,,,, är talföljd + Ma brukar utvidga dfiitio

Läs mer

INTRODUKTION. Akut? RING: 031-51 20 12

INTRODUKTION. Akut? RING: 031-51 20 12 INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och

Läs mer

www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid

www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid www.librhrmods.s Kurskatalog 2008 Libr Hrmods för n lysand framtid 1898 n a d s lärand t l b i x s fl d o m r H Libr Välkommn till Libr Hrmods! hos oss når du dina mål Från och md januari 2008 bdrivr Libr

Läs mer

Modul 2 Mål och Sammanfattning

Modul 2 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Moul 2 Mål och Sammanfattning Derivata. 1. MÅL FÖR MODUL 2 Förstå och använa erivatans efinition Förstå och använa erivata

Läs mer

SAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod...

SAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod... Rvisionsrapport 2010 Malmö stad Granskning av policy och riktlinjr samt intrn kontroll mot mutor tc. Jakob Smith och Josabth Alfsdottr dcmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1. INLEDNING...

Läs mer

DIN RESTAURANGGROSSIST

DIN RESTAURANGGROSSIST DIN RESTAURANGGROSSIST snabbgross.s mn på om Varmt välk a s s ä m Jul br m c 3 1 n MÄSSA: KANONPRISER PÅ JULARTIKLAR DEN 13/12 31 Vispgrä 40% 1 litr Arla Ko Or. pris 41, 209 Grava lax Hlsia. Skiva. Ca

Läs mer

15. Ordinära differentialekvationer

15. Ordinära differentialekvationer 153 15. Orinära ifferentialekvationer 15.1. Inlening Differentialekvationer är en gren inom matematiken som beskriver en värl vi lever i bäst. Såana ekvationer kan beskriva matematiska moeller för många

Läs mer

Hem24 Annonsblad. media sweden. webb reklam. T e k n i s k a s p e c. - A n n o n s f o r m a t e n & P r i s e r

Hem24 Annonsblad. media sweden. webb reklam. T e k n i s k a s p e c. - A n n o n s f o r m a t e n & P r i s e r Hm24 Annonsblad T k n i s k a s p c. A n n o n s f o r m a t n & P r i s r w rw wbb rklam mdia swdn h m24 ALLT FÖR DITT HUS & HEM MODULPRISLISTA. MODULFORMAT FÖR ANNONSYTA Halvsida V A2 Hlsida A1 125 x

Läs mer

Matematik för språkteknologer

Matematik för språkteknologer 1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos

Läs mer

Kaffe 5 kr Bulle 5 kr Kaffe och bulle 8 kr

Kaffe 5 kr Bulle 5 kr Kaffe och bulle 8 kr Exmpl Som knt gällr tt sts Exmpl Följnd skylt finns på tt cfé Pythgors sts Arn Södrqvist, KH-Syd 3 + 4 = 5 Likhtn kn tolks som n mnifsttion v Pythgors Kff 5 kr Bull 5 kr Kff och ull 8 kr Likhtn 5+ 5= 8

Läs mer

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk

Läs mer

Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar

Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D

Läs mer

Enkätsvar Sommarpraktik Gymnasiet 2016

Enkätsvar Sommarpraktik Gymnasiet 2016 Enkätsvar Sommarpraktik Gymnasit 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr int och 5

Läs mer

BRF SOMMARBRISEN STALLBACKEN, MÖLNDAL. Flytta in i nytt boende i en ny stadsdel. Se din nya lägenhet

BRF SOMMARBRISEN STALLBACKEN, MÖLNDAL. Flytta in i nytt boende i en ny stadsdel. Se din nya lägenhet BR SOMMARBRISE ABACE, MÖDA lytta in i nytt bond i n ny stadsdl S din nya lägnht Dtaljrna som gör skillnad Vad splar bddn på n list för roll? Vi är övrtygad om att dt är hlt avgörand, hlhtn bstår av dtaljrna

Läs mer