Algoritmer och datastrukturer, föreläsning 11
|
|
- Frida Eklund
- för 6 år sedan
- Visningar:
Transkript
1 Aloritmr oh tstrukturr, förläsnin Dnn förläsnin hnlr rfr. En rf hr n män nor (vrtx) oh n män år (). Ett xmpl är: A E F B D G H C Z Dnn rf hr följn män v nor: {A, B, C, D, E, F, G, H, Z Dn hr följn män år: {<A, B>, <B, C>, <C, D>, <C, D>, <D, E>, <E, F>, <G, H>, <H, Z> Osrvr tt årn är rikt! Vi finirr n nos utr som ntl år som år ut från non. En nos inr är ntlt år in till non. En vä från no A till no B är n män nor vi vilk mn kn å från A till B vi år. Osrvr tt mn får r å i pilns riktnin på n å. En ykl är n vä är först oh sist non är smm. En nkl ykl är n ykl är ll nor utom n sist oh n först är olik. I n orikt rf finns t inn riktnin på årn, mn får å åt å hålln. Mn kn s n orikt rf som n rikt rf är t llti finns n å från B till A om t okså finns n från A till B. En rf klls smmnhänn om t finns n vä mlln ll nor. Grfn i fiurn ovn är lltså int smmnhänn. Dn hr två komponntr. Oft finns t nåot vär på årn i n rf. Dt kn till xmpl rprsntr länn v vän mlln två nor llr kostnn för tt å mlln två nor.
2 Rprsnttion v rfr Dn nklst rprsnttionn är tt nvän n mtris. Ant till xmpl tt vi hr följn rf: 4 5 A B 4 C D 3 Dn kn rprsntrs v följn mtris llr tll: A B C D A null 4 null null B 5 null 4 C 3 null null null D null null null En nkl är tt om rfn är stor så lir mtrisn mykt stor. Oft så finns t r år mlln nor som lir när vrnr oh å kommr t oftst tt stå null i tlln. En nnn rprsnttion är närhtslistn. Dn sr ut så här för rfn ovn: A B C D Fyrkntrn länst till vänstr rprsntrr norn. I fyrkntrn finns t som hör hop m non. D mr vlån fyrkntrn rprsntrr årn, här finns okså t som hör ihop m ån. D år som rs upp till vänstr om n no är år som utår från non. Piln som år från vrj å till n no visr till vilkn no som ån år. Rprsnttion i Jv I Jv nvänr mn vnlitvis tr olik klssr för tt rprsntr rfr. In är smm som för trä oh länk listor, tt mn hr n klss för trät llr listn oh n för norn som i sin tur kn innhållr t. Vi nvänr n noklss, n åklss oh n rfklss. En skiss v m följr nn.
3 Vi örjr m noklssn. Dn kn s ut så här: puli lss Vrtx{ //Noklssn puli Vrtx nxtvrtx(){ puli E firste(){ Om till xmpl no A i rfn ovn nropr nxtvrtx så får mn B t. Om D nropr nxtvrtx() så lir rsulttt null ftrsom t int finns nåon näst no. Om no A nropr firste() så får mn ån som är strx till vänstr om n. Båklssn kn h föjn prinipill utsn: puli lss E{ puli E nxte(){ puli Vrtx npoint(){ Om mn nropr nxte() så får mn n å som finns till hör i närhtslistn. Om t int finns nåon så får mn null. Om mn nropr npoint() så får mn r på vilkn no som ån pkr på. Själv rfklssn kn s ut så här: puli lss DiGrph{ puli Vrtx firstvrtx(){ puli voi insrtvrtx(vrtx v){ puli voi insrte(vrtx v, Vrtx w, E ){ Om mn nropr firstvrtx() så får mn n först non i rfn, i närhtsrfn ovn är t no A. Exmpl Ant tt vi vill å inom ll nor i n rf oron v år. Då kn mn ör så här: Vrtx v =.firstvrtx(); whil (!= null){ //Gör nåot m non här v = v.nxte(); Osrvr tt mn int lls följr årn i rfn när mn ör så här. Exmpl Ant tt vi vill sök ll rnnrn till non v. Så här kn mn ör å: E = v.firste(); whil (!= null){ Vrtx w =.npoint(); //Bhnl non
4 =.nxte(); Att å inom rfr Vi sk titt på två sätt tt å inom (trvrsr) rfr nom tt följ årn. I ä flln hövs t n strtno. Dn kn mton firstvrtx() i rfklssn förs oss m. Dn n mton klls jupt först oh n nr rn först. Djupt först Mn nvänr rkursion för tt å inom norn. Mn mkrr nor som sökt när mn hr sökt m, vrj no hr tt oolskt ttriut visit som nväns för tt. Mn kn nst komm till nor som kn nås från strtnon. Dt tyr tt om rfn hr flr komponntr så kommr mn r tt sök ll nor i strtnons komponnt. Mton för tt plrs lämplin i rfklssn. Kon kn s ut så här: puli voi pthfirst(vrtx v){ v.visit = tru; // Gör nåot m non E = v.firste(); whil (!= null){ Vrtx w =.npoint(); if (!w.visit) pthfirst(w); =.nxte(); Brn först Här sökr mn först ll strtnons rnnr, sn rnnrns rnnr t. Okså här nväns tt oolskt ttriut för tt mrkr tt n no är sökt. Kon kn s ut så här: puli voi rthfirst(vrtx v){ v.visit = tru; //Gör nåot m non q.(v); whil (!q.isempty()){ Vrtx x = q.rmov; E = x.firste(); whil (!= null){ Vrtx w = npoint(); if (!w.visit){ w.visit = tru; //Gör nåot m non; q.(w); =.nxte(); q kn vr t x n list i vilkn mn lrr nor vrs rnnr mn sk sök. Mn sökr r nor som kn nås från strtnon.
5 Aloritmr för tt hitt kortst vä från n strtno till ll nr nor i n rf Vi sk titt på tr fll:. All år hr länn. All år hr positiv län, mn kn vr olik 3. Bårn kn h å positiv oh ntiv län All år hr länn Dtt är t nklst fllt är mn okså kn hitt n ffktivst loritmn. Aloritmr sökr si frm nom rfn oh n no i vilkn mn just är klls ktull no. Låt oss nvän följn rf som tt xmpl: f Ant tt strtnon är. Vi örjr m tt sätt ktull no till. Avstånt till är 0 för självt oh oänlihtn för nr norn när loritmn örjr. Vi år inom rfn m rn först ( v s först sökr mn rnnr, sn rnnrns rnnr oh så vir) oh räknr sussivt ättr (kortr) värn för vstånt. Mn kn smmnftt loritmn i rfn i n tll som sr ut så här: Aktull no f inf inf Avstån 0 inf oh inf vä inf inf Nor tt f sök inf 0 inf inf inf f inf 0 inf inf inf 0 inf inf Dn först rn innhållr loritmns strtvärn. I näst r tr vi non oh kollr på :s rnnr, t vill sä oh f. Bä ss hr prliminärt vstån inf till oh vi kn hitt tt ättr vstån nämlin. Vi skrivr vstånt i tlln oh nr unr :orn från vilkn
6 no mn kommr. Eftrsom oh f vr rnnr som vi sökt skrivr vi in m i listn övr nor tt sök. Därftr tr vi f från n listn oh ör f till ktull no. Mn från f lr in år till nåon nnn no, så t lr int till nåon föränrin v vstånn. I näst r så är ktull no oh å hittr vi ättr vstån till oh. Aloritmr fortsättr tills ll vstån är stäm. All vstån är positiv mn kn vr olik lån Dtt fll hnls ffktivt v Dijkstrs loritm som pulirs 959 (mn upptäkts rn 956). Aloritmn kn skrivs så här:. G ll nor tt vstån, 0 för strtnon, oänlihtn för ll nr.. Mrkr ll nor som osökt oh sätt ktull no = strtnon. 3. För ktull no: Bräkn tt prliminärt vstånt från strtnon till ll rnnr om mn år vi n ktull non. Om tt vstån är minr än t vstån som rnnn rn hr så rsätt t ml m t prliminär. 4. När ll rnnr är sökt, mrkr ktull no som sökt. 5. Om ll nor är sökt så är vi färi. Om j sätt n osökt non m minst vstån till ktull no oh å tillk till punkt 3. Vi kn t tt xmpl, nt tt vi hr följn rf: f 6 0 Vi ör n tll för tt smmnftt loritmn (strtno är ): Aktull no Avstån oh vä f 0 inf inf inf inf inf inf inf inf inf inf
7 Dn först rn är utånslät. I näst r upptrr vi vstånn för :s rnnr. No lir sn ktull no för n hr kortst vstån till. Därftr kollr vi om vi kn hitt kortr vstån om vi år irktvän vi t. Mn kn nvän n priorittskö för tt hitt n no v hittills j sökt som hr kortst vä till strtnon. Bålänr får vr å positiv oh ntiv I tt fll kn mn nvän Bllmn-Fors loritm. Dn rtr nom tt sussivt hitt ättr oh ättr vär. En svåriht är tt om t finns yklr är summn v länrn är ntiv så finns t int nåon lösnin. Bllmn-Fors loritm upptäkr ävn tt fll. Låt oss nt tt vi hr följn rf är är strtno: Vi nvänr n tll. Aktull no Avstån Nor tt hnl 0 inf inf inf inf 0 6 inf inf På vrj r kollr vi om t år tt hitt n kortr vä nom tt å från n ktull non till nåon v n ktull nons rnnr. Vrj ån som t lir n föränrin v tt vstån så stoppr vi in n no vrs vstån föränrs i Nor tt hnl om int non rn finns är. Om t finns ntiv yklr så kommr loritmn int tt konvrr.
Föreläsning 11: Grafer, isomorfi, konnektivitet
Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns
v v v v 5 v v v 4 (V,E ) (V,E)
. Grftori Btylsn v ilr som stö oh inspirtion för mtmtisk rsonmng kn knppst övrsktts. Stuirn v nkl ilr hr gtt oss grftorin. Tyvärr, llr lykligtvis, visr t sig snt tt nkl oh nturlig frågställningr om nkl
Nordic Light Roulett. Aluminiumpersienn. Nordic Light Roulett Installation - Manövrering - Rengöring. Aluminiumpersienn
INSTALLATION - MONTERING - RENGÖRING Originlokumntt får int i txt llr utförn änrs utn mgivn v Turnils AB. www.nori-light.om Nori Light SE-441 15 Alingsås, Swn Tl: +46-322 775 00 E-mil: orrurop@turnils.om
Trädstrukturer. Definitioner och terminologi. Informationsteknologi Tom Smedsaas 21 augusti 2016
Iformtiostkoloi Tom Smss uusti 6 Trästrukturr Dfiitior och trmioloi I list hr vrj o xkt ftrföljr (utom sist) och förår (utom först). Om vi tillåtr tt o hr flr ftrföljr rhållr vi trästruktur: c f h i j
Tillståndsmaskiner. Moore-automat. Mealy-automat. William Sandqvist
Tllstånsmsknr Moor-utomt Mly-utomt Wllm Snvst wllm@kth.s ÖH. Bstäm tllstånsrm oh tllstånstll ör skvnskrtsn. Vlkn v mollrn Mly llr Moor pssr n på krtsn? Wllm Snvst wllm@kth.s . Ur krtsshmt kn öljn smn ställs
F8: Logiska komponenter. Introduktion. Koder. Avkodare. Logiska komponenter
Innhåll: - Avkor - Diitl kor - 2-4 vkor - 7-smnts isply - Kor - Multiplxr - Dmultiplxr F8: Loisk komponntr Loisk komponntr Introuktion Dt är növänit tt skp mr komplx ylok än runlän rinrn (n, or, not) som
Making room for tomorrow
Byggnsgui Byggnsgui 2013 Byggnsgui 2013 Innrvägg Allmänt 4-5 Sknor oh rglr 6-7 Montg 8-9 WllClik 10-11 Typr oh gruppr 12-15 Väggnyklr 16-21 Typövrsikt 22-25 Väggruppr C 26-65 Väggruppr C+ 66-93 Väggruppr
Elementær diskret matematikk, MA0301, våren 2011
Lösningsförslag Elmntær iskrt matmatikk, MA00, vårn 0 Oppgav Varj or motsvarar n prmutation av storlk från 9 bokstävrna i TRONDHEIM Alltså är antalt sökta or P(9,) = 9 8 7 6 På liknan sätt får vi att t
Laboration 1a: En Trie-modul
Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr
Mitt barn skulle aldrig klottra!...eller?
Mitt brn skull ldrig klottr!...llr? trtgi! ls n n tu n g n r h y Täb g och in sn ly b, g in n k c y m ts Gnom u i lyckts v r h l ri t m t g li å rt klott unn. m m o k i t r tt lo k sk in m Hjälp oss tt
The Next Generation platform Snabbguide
Sngui Vi hr skpt nn sngui för tt u på tt nklt sätt kn knt ig m mång v vår vrktyg oh funktionr i vår plttform. Lär ig vr u hittr prouktr tt hnl, nyhtr, grfr, plr olik Orrtypr, övrvk in positionr, liv-hjälp
1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter
Armin Hlilovic: EXTRA ÖVNINGAR plcrnormr APACETRANSFORMER plcrnormr nvän bl nn ör lö irnilkvionr DE och ym v DE m konn koicinr lö någr ypr v ingrlkvionr bämm bili ho linjär ym Diniion å vr inir ör plcrnormn
Vill veta kvaliteten hos våra vattenföringsdata?
Vll vt kvlttn hos vår vttnförngsdt? Bnt Görnsson, G Bo Toms Lndlus, FoU //9 Bkgrund - gnomförd v n stud för tt tst någr xmpl på noggrnnhtskrv på Bo:s Q-dt En v Bo:s huvuduppgftr är tt t frm kvlttskontrollrd
Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.
1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi
Installatörens referenshandbok
Instlltörns rfrnshnok Dikin Althrm - lågtmprtur Split + ERHQ011-014-016BA ERLQ011-014-016CA EHVH/X11+16S18CB EHVH/X11+16S26CB Instlltörns rfrnshnok Dikin Althrm - lågtmprtur Split Svnsk Innhåll Innhåll
Kaffe 5 kr Bulle 5 kr Kaffe och bulle 8 kr
Exmpl Som knt gällr tt sts Exmpl Följnd skylt finns på tt cfé Pythgors sts Arn Södrqvist, KH-Syd 3 + 4 = 5 Likhtn kn tolks som n mnifsttion v Pythgors Kff 5 kr Bull 5 kr Kff och ull 8 kr Likhtn 5+ 5= 8
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.
1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",
H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.
H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen
Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y
Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE
VATEK Multifix kopplingar för alla rörtyper
Vtk_logo_cmyk-2012.pf 1 2011-11-25 13.09 VATEK Multifix kopplingr för ll rörtypr VATEK MULTIFIX ÄR EN SERIE rgfst rörkopplingr för ll typr v rör till å vttn och gslningr. Kopplingrn introucrs i Svrig v
Kmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk
f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.
Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Innehåll. Om gasfjädrar 1. Modeller (1 dan = 1 kgf = 2.25 lbf) Cylinder. Initialkraft dan. diameter mm < 250 < 500 250 < F INIT < 750 500 < F INIT
DO NOT OPEN - HIGH PREURE. FIING PREURE MAX 150 BAR. PROTECT AGAINT DAMAGE. TRÖMHOMEN AB, Box 216, E-573 23 T rnås, wdn T l. +46 140 571 00, T lx +46 140 571 99 DO NOT OPEN FIING PRE PROTECT AGA TRÖMHOMEN
Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll
Morgrns synpunktr på skttsystmt, skttfuskt oh Skttvrkts kontroll Rsultt från n riksomfttn unrsökning vårn Rpport :1 1 1 2 2 Föror Skttvrkt gör rglunt mätningr v morgrns oh förtgns syn på skttsystmt, skttfuskt,
Företagens synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll
Förtgns synpunktr på skttsystmt, skttfuskt oh Skttvrkts kontroll Rsultt från n riksomfttn unrsökning vårn Rpport :3 1 2 Föror Skttvrkt gör rglunt mätningr v morgrns oh förtgns syn på skttsystmt, skttfuskt,
Vilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 6 Sply-trä. rioritetsköer oh hepr. TDDC91,TDDE22,725G97: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 19 septemer 2017 Mgnus Nielsen, IDA, Linköpings universitet 6.1 Innehåll
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
16.3. Projektion och Spegling
6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.
V Ä G E N T I L L V A T T E N w w w. a v a n t i s y s t e m. s e
VÄGEN TILL VATTEN v n i y m Vn vi in kn J ordn vnillgångr är norm, mn Grundvn är n dl v vn räknr mn bor nö, i och lvn blir vig krlopp d br 3% kvr för vår vnförörjning När yvn rängr nd i mrkn rn d och blir
Hvor tilfreds er du med din togrejse?
Hvor tlrs r u m n tors? V r ov or n ælp tl t svr tt spørskm. Dn svr skl ælp os tl t skr n o kvltt totrkkn på Kystnn o ovr Ørsun. Spørskmrn nsmls mrr tot. På orån tk o ortst o rs! Inormtonsrkn k l m n o
Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.
Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.
En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n
g E o E E o g o Ambssörr/profilr Jököpigs Sör IF Rlf Eström Björ Norqvist Mukl IFK Uvll IK Ovol HK Coutry Flkbrgs FF Örgryt IS Värmo IK Brg Skoftbys IF GK Kroppskultur Dgrfors IF Gfl IF Äglholms FF Ljugskil
14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Volym och dubbelintegraler över en rektangel
Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Induktion LCB 2000/2001
Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n
F5: Vektorer (Appendix B) och Vektormodulation (Kap PE 2)
F5: korr Appnd B oh kormodlon Kp PE g välrkr - Norml nl n nrlldrn g välrkr -S-p g välrkr -PWM Modlon v omvndlr - + R L C d + d Fgr.8: Dn ndrök omvndlrn yrd lkrkr nln ll nä Fgr.9: Bärvågmodlon md nformg
Byt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
ACO VVS. industribrunn. EG Industribrunn
CO VVS inustrirunn EG 170 270 Inustrirunn CO Stinlss Systmövrsikt skrivning nvänningsområn Egnskpr Tr stnrprogrm m runnr, gllr, silkorgr, vttnlås smt tillhör ör olik lstningskrv oh golvtypr som normlt
Innan du kan använda maskinen ska du läsa den här Snabbguiden så att maskinen ställs in och installeras på rätt sätt.
Sngui Strt här MFC-6890CDW Innn u kn nvän mskinn sk u läs n här Snguin så tt mskinn ställs in oh instllrs på rätt sätt. VARNING Tlr om hur u sk gör för tt förhinr prsonskor. Anslut INTE USB-kln ännu (om
ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Månadsrapport maj 2014. Individ- och familjeomsorg
Måndsrpport mj Individ- och fmiljeomsorg Innehållsförteckning 1 Ekonomi och verksmhet... 3 1.1 Resultt per verksmhet... 3 1.2 Investeringsuppföljning... 3 1.3 Volymer, sttistik och kostndsnyckeltl... 4
Lödda värmeväxlare, XB
Lödd värmeväxlre, XB Beskrivning/nvändning XB är en lödd plttvärmeväxlre utveckld för nvändning i fjärrvärmesystem t ex, luftkonditionering, värme, tppvrmvtten. XB lödd plttvärmeväxlre tillverks med fler
Kan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)
TENTAMEN 7 e 8, HF oh HF8 Moment: TEN Lnjär lger, hp, skrftlg tentmen Kurser: Lnjär lger oh nlys HF oh Anlys oh lnjär lger, HF8, Klsser: TIELA, TIMEL, TIDAA T: 8-, Plts: Cmpus Flemngserg Lärre: Mr Shmoun
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET
UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket
TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor
ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs
Nautisk matematik, LNC022, Lösningar
Nutisk mtemtik, LN022, 2012-05-21 Lösningr 1. () För vilken eller vilk vinklr v melln 0 oh 180 är sin v = 0, 25? Räknren ger oss v 14, 5, då finns okså lösningen 180 14, 5 = 165, 5 i det givn intervllet.
Exponentiella förändringar
Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt
Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Samling av bevis som krävs på tentan MVE465, 2018
Smling v bevis som krävs på tentn MVE5, 8 Meelväresstsen för integrler. Det är Theorem, på si. i Ams. Lecture, si. -8 Om f är en kontinuerlig funktion på intervllet [; b], så nns et en punkt c [; b] sån
Datastrukturer och algoritmer
Innhåll örläning oh 9 Priorikör rfr oh grflgorimr Kommr forä in på nä förläning Kpil.5- oh 7 i kurokn Priorikö Spifikion v priorikö Moll: Pinrn på n kumogning, mn kommr in i n vi iorning mn hnl uifrån
OTHELLO. En minut att lära... En livstid att bemästra. Brian Rose
OTHELLO En minut tt lär... En livsti tt mästr Brin Ros 00 Brin Ros, övrstt v List Björk, korrktur v Pi Mlmrn. Utivn v Mtusz Sosnowski 0 ör Svnsk Otlloörut (SOF) Otllo o En minut tt lär... En livsti tt
Gör slag i saken! Frank Bach
Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn
Jag vill inte vara ensam
Jg ill ine r ensm Krl-Gunnr Sensson G =132 f l m n o u s s s z f l l u z mp n s s n s s n s s n s s s s n s s n s s mps s n s s n s s n s s n s s n s s n ff s s s s s s s s s s s s mp s s s s s s s s s
INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp
rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som
MEDIA PRO. Introduktion BYGG DIN EGEN PC
BYGG DIN EGEN PC MEDIA PRO Introduktion Dett är Kjell & Compnys snguide till hur Dtorpketet MEDIA PRO monters. Att ygg en dtor är idg myket enkelt oh kräver ingen tidigre erfrenhet. Det ehövs ing djupgående
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Ulefos Multifi x Rörkopplingar för alla rörtyper
Ulfos Multifi x Rörkopplingr för ll rörtypr ULEFOS MULTIFIX är n sri rgfst rörkopplingr för ll typr v rör. För gs välj pckning v NBR. Kopplingrn introucrs i Svrig v Ulfos i slutt v 90-tlt och hr sn ss
Materiens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
T-konsult. Undersökningsrapport. Villagatan 15. Vind svag nordvästlig, luftfuktighet 81%, temp 2,3 grader
Unersökningsrpport Villgtn 15 Vin svg norvästlig, luftfuktighet 81%, temp 2,3 grer Dtum: 2011-12-19 Beställre: Sven Svensson Kmeropertör: Tom Gisserg Aress Telefon E-post Hemsi Spikrn 152 070 338 47 70
ξ = reaktionsomsättning eller reaktionsmängd, enhet mol.
Kemisk jämvikt. Kp. 6.1 4. Spontn kemisk retion: r G < 0, p konst, T konst. Jämvikt där G hr minimum i syst. Kinetiken (hög ktiveringsenergi) kn hindr. 6.1 Minimet i Gibbs fri energi. (p konst, T konst.)
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
På en landsväg. % Œ. œ œ. j œ # # œ œ j œ. œ J. œ œ œ œ œ. œ œ œ. œ œ# œ œ # œ œ œ œ. œ œ œ œ. œ œ j. œ œ œ j œ Œ ? # # œ œ. œ J. œ œ. œ œ. œ œ.
Sälvklrt g sunger från herlgt köpt noter S ul På lndsväg % 1 På lnds väg n mot kväl l n ly ser ö ver Hpply sngng 1 På lnds väg n mot st n 2 St kväl l 3 Stnn ly ser n kommer ö ver stl t Trd: Puerto Rco
A LT B A R Y TO N. enkelt
A LT SOPRAN sahlt nklt B A R Y TO N Innhåll: Amn - låt rns lja råda 2 Du ljuvast n Gud har männs kär Gud ll oss väl 6 Halluja 7 Hlg 8 följr dg Gud 9 Julat Do 10 Kom, öppna dn dörr 11 r 12 Må dn väg gå
Dagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer
Dgens ämnen Repetition: kvdrtisk former oh ndrgrdskurvor Andrgrdsytor System v differentilekvtioner Rng, signtur oh tekenkrktär Sts 9.1.11. Låt Q: E R, dim E = n vr en kvdrtisk form. Då gäller λ min u
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)
Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir
Matris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
Sammanfattning av ALA-B 2007
Crl-Mgnus Trä t7 Smmnttning v L- 7. Ordinär dirntilkvtionr (ODE). Först ordningns homogn ODE.... ndr ordningns homogn ODE.... Inhomogn kvtionr.... Sprl vrilr 5. Intgrrnd ktor 6. En ltrntiv örskjutningsrgl.
KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER
rmi Hlilovi: EXR ÖVNINGR v Ivers mtriser KVDRISK MRISER, DIGONLMRISER, MRISENS SPÅR, RINGULÄR MRISER, ENHESMRISER, INVERS MRISER KVDRISK MRISER Defiitio E mtris me rer oh oloer, lls vrtis typ Defiitio
FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST
STNSUNSVÄN Ø Ø : Ø OSTÄR S TRO RK ST 3 RK 3 ST RK ST SUMM 7 ST 663 ILPLTSR +. +.3 R 6 ST -3 /. +.7 MRK Lr 5 ST SUMM ST.5 + IV. > VI SO P 3 677 b 3 3 UN SL TRO +.5 + 3.5 + 6. VÄ PL NN g V S +7 +3. +.6.5
ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Sångerna är lämpliga att framföra vid bröllop, speciella fester och romantiska tillfällen för Kärlekens skull... GE 11176
FÖROR So en sträng å gtrren och so tonern dn vs..., så börjr texten Ulrk Neuns underbr Kärleksvls. Vd kn vr ljuvlgre än gtrrens sröd och nnerlg ton so tllsns ed sången kn sk sådn stänng och rontsk tosfär.
Opp, Amaryllis (Fredmans sång nr 31)
Opp, marylls (Fredmans sång nr 1) Text musk: Carl Mchael Bellman rr: Eva Toller 05 Tenor 1 1Opp, Tag - ma - ryl - ls, vak - na mn ll -! äd - ret stl -, d re - var dra-gen; bör - jar -gen, Tenor 2 Basso
är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.
Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer
Sfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Produktdatablad Januar 2016
Pmium Sufc P565-5701, P565-5705 & P565-5707 Poukttbl Jnu 2016 INTERNATIONELLT MASTERDOKUMENT, ENDAST FÖR PROFESSIONELLT BRUK H5680 Poukt Sp Sufc P565-5801, P565-5805 & P565-5807 Bkivning P565-5801 Sp Sufc
1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Noder (hörn) och bågar (kanter)
Grfer Jokim Nivre Uppsl universitet Institutionen för lingvistik oh filologi Översikt Grunegrepp: Noer (hörn) oh ågr (knter) Grfteoretisk egrepp: Stigr oh ykler Delgrfer oh smmnhängne grfer Rikte oh orikte
Arkitekturell systemförvaltning
Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm
24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om
L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
CHECKLISTA FÖR PERSONALRUM
CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-
Vila vid denna källa (epistel nr 82)
Text oh musk: Carl Mhael Bellm Arr: Eva Toller 2004 opno Alto 1 1V - 2 Hm - 4 5 6 s -, kl - _ vår oh får ll - hngs - frs - så E - du ka ols mtt Alto 2 1V - 2 Hm - 4 5 6 tgt mel, f, n, lg s - kl -, vår
1.1 Sfäriska koordinater
Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..
Appendix. De plana triangelsatserna. D c
ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr: