Sammanfattning av ALA-B 2007
|
|
- Maj-Britt Sundström
- för 7 år sedan
- Visningar:
Transkript
1 Crl-Mgnus Trä t7 Smmnttning v L- 7. Ordinär dirntilkvtionr (ODE). Först ordningns homogn ODE.... ndr ordningns homogn ODE.... Inhomogn kvtionr.... Sprl vrilr 5. Intgrrnd ktor 6. En ltrntiv örskjutningsrgl. Volmräkningr md intgrlr.. Mtodn md cirkulär skivor... Mtodn md clindrisk skl.. C. Lit om imginär tl... Någr dinitionr.. Polär orm.. d Moivrs orml.. Eulrs orml. D. llmänt gällnd intgrring..5. Polnomdivision och prtilråksuppdlning (PU) 5. Vrilsustitution...6. Invrs sustitution..6. Prtilintgrring Gnrlisrd intgrlr...7 E. Lit om linjär lgr...9. Linjär kvtionssstm och utökd koicintmtrisr.9. Trppstgsorm och rducrd trppstgsorm..9. Linjärkomintion och kort örklring till Spn()... Ekvtionn. 5. Undrrum 6. Mtrismultipliktion Linjär trnsormtion Invrsn till mtrisr 9. Dtrminntr.... Mtriskvtionr.
2 Crl-Mgnus Trä t7. Ordinär dirntilkvtionr (ODE). Först ordningns homogn ODE Dirntilkvtionn hr dn llmänn lösningn godtcklig konstnt C, där C är n. ndr ordningns homogn ODE Dirntilkvtionn hr dn krktristisk kvtionn r r md röttrn r och r. Dn llmänn lösningn till dirntilkvtionn är:» r r C C om röttrn är rll och olik r r C C r» om röttrn är rll och lik r r r» C cos C sin om röttrn är ick-rll ( r i, ).. Inhomogn kvtionr Dirntilkvtionrn och klls inhomogn om. D löss lämplign i tr stg:. Först stäms på något sätt n prtikulärlösning p till dn givn, inhomogn kvtionn. Ot kn mn stämm n prtikulärlösning som är v smm slg som högrldt. Förskjutningsrgln kn nvänds här.. Därtr stämmr mn dn llmänn lösningn h till motsvrnd homogn kvtion (rhålls om sätts lik md ).. Dn llmänn lösningn till dn givn, inhomogn kvtionn är: h p. Sprl vrilr Mtodn md sprl vrilr kn nvänds på dirntilkvtionr v tpn g. Empl: Dirntilkvtionn d,, kn skrivs d. Formll lösning: d d C C
3 Crl-Mgnus Trä t7 5. Intgrrnd ktor g hr dn intgrrnd ktorn G, där G är n primitiv unktion till g. Empl: Lös dirntilkvtionn gnom tt nvänd n intgrrnd ktor. Intgrrnd ktor är (notr tt är n primitiv unktion till ) Multiplicr hl uttrckt md : C d d (Dividr åd sidor md ) C Svr: llmänn lösningn är C 6. En ltrntiv örskjutningsrgl Empl: räkn n prtikulärlösning ör Sätt: p p p 6 Sätt vidr: Dtt gr tt prtikulärlösningn är p
4 Crl-Mgnus Trä t7. Volmräkningr md intgrlr. Mtodn md cirkulär skivor» Vid rottion kring -ln gällr: V V d Skriv om kvtionn så du hr uttrckt i trmr v (och s till tt gränsrn gällr ör och int ör ). Sn är dt r tt intgrr på som vnligt (st md vsnd på och int ).» Vid rottion kring -ln gällr: V V d T din givn unktion i kvdrt, intgrr md vsnd på och multiplicr svrt md.. Mtodn md clindrisk skl Om du till mpl sk rotr tt områd kring -ln mn hr svårt tt skriv om din unktion så tt uttrcks i trmr v så kn du nvänd dnn mtod. Vid rottion kring -ln gällr: V V d Du tr lltså din unktion gångr, intgrrr md vsnd på och multiplicrr svrt md.
5 Crl-Mgnus Trä t7 5 C. Lit om imginär tl. Någr dinitionr Ett komplt tl kn skrivs på ormn i, där och är rll tl och Om z i så gällr:» är rldln v z R z» är imginärdln v z Im z» i är dn imginär nhtn i» z är solutloppt v z» z är konjugtt till z z i z i.. Polär orm z i r cos v r sin r cos v isin v v i Ett komplt tl z i kn lltså skrivs z r cos v isin v, där r är solutloppt v z och v är rgumntt v z (vinkln mlln z och dn rll tllinjn). Vi sägr då tt z är skrivt i polär orm. rgumntt v z skrivs rg z. Vid multipliktion i polär orm multiplicrs solutloppn och rgumntn ddrs. Vid division i polär orm dividrs solutloppn och rgumntn sutrhrs.. d Moivrs orml cos v i sin v n cos nv i sin nv, där n är tt nturligt tl.. Eulrs orml Om och är rll tl gällr: i cos isin z i i cos isin Empl: i cos i sin i i i cos isin cos i Empl: i n in är n kompkt orm v d Moivrs orml. sin 7,,i
6 Crl-Mgnus Trä t7 6 D. llmänt gällnd intgrring. Polnomdivision och prtilråksuppdlning (PU) Empl: Om vi sk intgrr tt krångligt uttrck som vill vi gärn örnkl dt örst. Dtt kn vi gör gnom tt örst dl upp nämnrn i ktorr gnom polnomdivision och sdn dl upp uttrckt md hjälp v prtilråksuppdlning. För tt hitt vår örst ktor hövr vi inn n rot till nämnrn, lltså. Vi sr tt n rot är, och n ktor är då ( ). Dn ndr ktorn ås vi polnomdivision: Vi hr lltså: Nu sk vi prtilråksuppdl. kn skrivs på ormn C C. Vi sk inn, och C. C C C Vi hr: C C Dtt lösr vi md n utökd koicintmtris: ~ C C C ~ 9 Vi hr då:
7 Crl-Mgnus Trä t7 7 kn örnkls ttrligr md PU gnom tt ktorisr nämnrn till.. Vrilsustitution Om vi hr n intgrl på ormn dn till u du. Empl: räkn intgrln I v dv v sin cos d dv sin v cos 7 d 8 g g d kn vi örnkl dn gnom tt omvndl 8 rnhtr. Invrs sustitution Ilnd lir räkningrn nklr om mn gnomör n invrs sustitution, lltså så tt intgrln Empl: räkn volmn: V d d omvndls till g u g u du. sin t 6 sin d t cos t dt sin t cos t 6 cos t dt cos t 6 6 dt volmsnhtr
8 Crl-Mgnus Trä t7 8. Prtilintgrring Ett smnd som ilnd gör räkningrn nklr är U dv UV VdU Empl: räkn intgrln Vi prtilintgrrr: ln d I ln d U du U ln d V dv V U d V VdU ln ln 9 rnhtr d 5. Gnrlisrd intgrlr Om är kontinurlig på intrvllt, dinirr vi dn gnrlisrd intgrln v på, som tt gränsvärd v vnlig intgrlr: d R lim R d Likdnt om är kontinurlig på d R lim R d, : Om gränsvärdt istrr sägr vi tt intgrln är konvrgnt, om dt int istrr sägr vi tt dn är divrgnt (och divrgrr ntingn mot llr ). Om är kontinurlig på d c lim, hr vi: c d
9 Crl-Mgnus Trä t7 9 Om är kontinurlig på d c lim c, hr vi: d Krut här är lltså tt s om intgrln konvrgrr och i så ll till vilkt gränsvärd. Till lim mpl är rctn trsom tn då rctngns md grn ör tngns., jämör grn till
10 Crl-Mgnus Trä t7 E. Lit om linjär lgr. Linjär kvtionssstm och utökd koicintmtrisr Ett linjärt kvtionssstm v tpn hr ntingn n, ingn llr oändligt mång lösningr. Sstmt kn löss gnom tt mn omvndlr dt till n utökd koicintmtris och rducrr mtrisn md Gusslimintion så vi lätt år rm vd, och är. I dtt ll: ~ Sstmt hd int ht någr lösningr om dn rducrd mtrisn hd vrit på ormn: Dt hd ht oändligt mång lösningr om dt hd vrit på ormn: Dss lösningr hd ht ormn: t där t är n ri vril, t. Trppstgsorm och rducrd trppstgsorm En mtris på trppstgsorm hr ormn: # # # # Där # kn vr vilkt nollskilt tl som hlst. # klls pivotlmnt och kolumnn där dn står klls pivotkolumn. En mtris på rdrducrd trppstgsorm hr ormn: Dvs. vrj pivotlmnt hr rducrts till n tt och ll tl ovnör tt pivotlmnt är noll.
11 Crl-Mgnus Trä t7. Linjärkomintion och kort örklring till Spn() Om vktorn kn ås gnom sklärmultipliktion och vktorddition v vktorrn och så är n linjärkomintion v och. lltså istrr dt sklärr (tl) och sådn tt: Därmd hr också kvtionn n lösning ör Låt u och v vr vktorr i skild rån nollvktorn. I så ll är Spn v n linj gnom origo uppspänd v v och Spn u, v är tt pln gnom origo uppspänt v u och v.. Ekvtionn Lösningr till kvtionn ås gnom tt rdrducr dn utökd mtrisn till trppstgsorm där mn lätt sr värdt på,... ~ Ud, n : llr gnom tt multiplicr md invrsn till : Om lösningrn hd ht ormn: t där t är n ri vril, t Så hd vktorrn i vrit linjärt rond (trsom svrt till kvtionn ror på n ri vril t). Om ll kolonnr i iställt hd vrit pivotkolonnr hd kolonnrn i sgts vr linjärt orond. 5. Undrrum Ett undrrum till n är n mängd H i n som hr dss gnskpr:, H innhållr nollvktorn, För ll vktorr u och v i H gällr tt summn u + v liggr i H c, För vrj vktor u i H och vrj sklär c gällr tt vktorn c u liggr i H En s ör tt undrrum H till n är vrj linjärt orond mängd i H som spännr upp H. Dimnsionn ör tt undrrum H, dim H, är lik md ntlt svktorr i n s ör H. Kolonnrummt ör n mtris är mängdn Col v ll linjärkomintionr v kolonnrn i. Pivotkolumnrn i ildr n s till kolonnrummt v. Nollrummt ör n mtris är mängdn Nul v ll lösningr till dn homogn kvtionn. Rngn ör n mtris, rng, är lik md dimnsionn v kolonnrummt till. Så om mtrisn hr n kolumnr så hr vi tt: rng dim Nul n
12 Crl-Mgnus Trä t7 Empl: stäm n s ör nollrummt och kolonnrummt ör Vi gör dtt gnom tt:. Lös kvtionn. stämm ll pivotkolonnr Mtod: stäm (rducrd) trppstgsorm ör : ~ 7 t är ri vril t 7t 7 t, t Svr: En s ör En s ör dim dim Nul Col 7 7 Nul är { } Col är {,, } rng #kolonnr D tr örst kolonnrn i är pivotkolonnr t 6. Mtrismultipliktion Vid multipliktion v mtrisr måst ntlt kolonnr i dn örst mtrisn vr lik md ntlt rdr i dn ndr mtrisn. Om vi hr n mtris v storlk m n och n mtris v storlk n p så kn vi multiplicr dm i ordningn m n n p. Dn n mtrisn kommr h storlkn m p. Vi kn dock int multiplicr dm i ordningn trsom dn örst mtrisn då kommr h p stckn kolonnr mdn dn ndr kommr h m stckn rdr.
13 Crl-Mgnus Trä t7 Empl: Linjär trnsormtion Om T är n linjär trnormtion som omvndlr vktorr n m så gällr tt: T u v T u T v där u och v är vktorr i n smt ör sklärn c: T cu ct u Då inns dt n mtris ( m n ) sådn tt: T ör ll i n. T utör lltså och klls stndrdmtrisn ör T och T... t..: T n, där nhtsvk tor längd n 8. Invrsn till mtrisr En kvdrtisk mtris (v storlk n n) som är rdkvivlnt md idntittsmtrisn I v smm storlk hr n invrs sådn tt: I I» För mtrisr störr än ås invrsn gnom smndt: I ~ I» För n -mtris gällr: c d d c d c dt d c» Osrvr tt kn löss gnom 9. Dtrminntr Dtrminntn ör n mtris tckns dt och skrivs: dt c d c d För n -mtris gällr: dt d c om är smm mtris som ovn. För n -mtris kn dtrminntn räkns md Srrus rgl (s ok/ntckningr).
14 Crl-Mgnus Trä t7 För störr mtrisr ås dtrminntn vi tt mn rdrducrd mtrisn till trppstgsorm, och dtrminntn är lik md produktn v lmntn i digonln. När mn rdrducrr måst mn dock t hänsn till dss räknrglr:, Om n multipl v n rd i ddrs till n nnn rd så mtrisn ås, så är dt dt., Om två rdr i tr plts ör tt ild, så är dt dt c, Om n rd i multiplicrs md k ör tt å, gällr tt dt k dt. Mtriskvtionr Empl: Vi hr X=+X där vi sk räkn dn okänd mtrisn X. X X X X I X I X I I X I Sn är dt r tt räkn på. X C Sn är dt r tt räkn på. I Empl: Vi hr X=+CX där vi sk räkn dn okänd mtrisn X. X CX X CX C X
Kaffe 5 kr Bulle 5 kr Kaffe och bulle 8 kr
Exmpl Som knt gällr tt sts Exmpl Följnd skylt finns på tt cfé Pythgors sts Arn Södrqvist, KH-Syd 3 + 4 = 5 Likhtn kn tolks som n mnifsttion v Pythgors Kff 5 kr Bull 5 kr Kff och ull 8 kr Likhtn 5+ 5= 8
Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y
Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
Föreläsning 11: Grafer, isomorfi, konnektivitet
Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns
14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
Laboration 1a: En Trie-modul
Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER
Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand
EGENVÄRDEN och EGENVEKTORER
EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär
============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def
Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt
Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor
ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Analys o 3D Linjär algebra. Lektion 16.. p.1/53
Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen
f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.
Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt
Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden
Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om
L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr
Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,
Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Algoritmer och datastrukturer, föreläsning 11
Aloritmr oh tstrukturr, förläsnin Dnn förläsnin hnlr rfr. En rf hr n män nor (vrtx) oh n män år (). Ett xmpl är: A E F B D G H C Z Dnn rf hr följn män v nor: {A, B, C, D, E, F, G, H, Z Dn hr följn män
Byt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Dagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer
Dgens ämnen Repetition: kvdrtisk former oh ndrgrdskurvor Andrgrdsytor System v differentilekvtioner Rng, signtur oh tekenkrktär Sts 9.1.11. Låt Q: E R, dim E = n vr en kvdrtisk form. Då gäller λ min u
M A T E M A T I K. som förberedelse för LTH-studier. Kort förberedande kurs för teknologer i vardande. Rolf Pettersson och Roland Thapper
M A T E M A T I K som förrdls för LTH-studir Kort förrdnd kurs för tknologr i vrdnd v Rolf Pttrsson och Rolnd Thr smmnställt v Brt Sjögrn i nådns år 06 ALLMÄN RÄKNEFÄRDIGHET En förutsättning för tt kunn
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED
Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr
Vill veta kvaliteten hos våra vattenföringsdata?
Vll vt kvlttn hos vår vttnförngsdt? Bnt Görnsson, G Bo Toms Lndlus, FoU //9 Bkgrund - gnomförd v n stud för tt tst någr xmpl på noggrnnhtskrv på Bo:s Q-dt En v Bo:s huvuduppgftr är tt t frm kvlttskontrollrd
Matris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.
GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
y > 0, 0 < y <1 y växande, 0 < y < 1
Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter
Armin Hlilovic: EXTRA ÖVNINGAR plcrnormr APACETRANSFORMER plcrnormr nvän bl nn ör lö irnilkvionr DE och ym v DE m konn koicinr lö någr ypr v ingrlkvionr bämm bili ho linjär ym Diniion å vr inir ör plcrnormn
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b
Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:
F5: Vektorer (Appendix B) och Vektormodulation (Kap PE 2)
F5: korr Appnd B oh kormodlon Kp PE g välrkr - Norml nl n nrlldrn g välrkr -S-p g välrkr -PWM Modlon v omvndlr - + R L C d + d Fgr.8: Dn ndrök omvndlrn yrd lkrkr nln ll nä Fgr.9: Bärvågmodlon md nformg
Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1
Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell
Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl
Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
v v v v 5 v v v 4 (V,E ) (V,E)
. Grftori Btylsn v ilr som stö oh inspirtion för mtmtisk rsonmng kn knppst övrsktts. Stuirn v nkl ilr hr gtt oss grftorin. Tyvärr, llr lykligtvis, visr t sig snt tt nkl oh nturlig frågställningr om nkl
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED
Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr
Rationella uttryck. Förlängning och förkortning
Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing
Exponentiella förändringar
Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt
Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
Mitt barn skulle aldrig klottra!...eller?
Mitt brn skull ldrig klottr!...llr? trtgi! ls n n tu n g n r h y Täb g och in sn ly b, g in n k c y m ts Gnom u i lyckts v r h l ri t m t g li å rt klott unn. m m o k i t r tt lo k sk in m Hjälp oss tt
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
TATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
Lösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr
Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
Institutionen för teknisk mekanik, Chalmers tekniska högskola TENTAMEN I FINIT ELEMENTMETOD (M3) MHA MARS 2002
Institutionn för tknisk mknik, Chlmrs tknisk högskol TNTAMN I FINIT LMNTMTOD (M3) MHA 0 4 MARS 00 Tid och plts: 8 45 45 i M hust Hjälpmdl: Ordöckr, lxikon och typgodkänd räknr. Lärr: Ptr Möllr, tl (77)
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
Headset för det Mobila kontoret
Hdst för dt Mobil kontort Dt t r o t n o k mobil Plntronics strtd 1962 och hr sdn dss nbrt inriktt sig på tt utvckl br kommuniktionshdst. Idg är Plntronics världsldnd på hdst och hr tt brtt utbud v hdst
Mängder i R n. Funktioner från R n till R p
Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)
9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp
rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som
Vilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
10. Tillämpningar av integraler
90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re
16.3. Projektion och Spegling
6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.
Matematiska uppgifter
Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Avsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter
Avsnitt Determinnter Vd är en determinnt? Snbbformler för små determinnter Kofktorutveckling Minorer Utveckling längs en rd Utveckling längs en kolumn Rd- och kolumnopertioner Rdopertioner Kolumnopertioner
Vektorer. Avsnitt 1. Ange lägesvektorerna för de två väteatomerna på formen: r = x ˆx + y ˆx
Avsnitt 1 Vektorer 1.1 Skissen nedn visr molekylgeometrin för H 2 O, där syretomen befinner sig i origo och vätetomern lägger symmetriskt kring x-xeln. Bindningslängden är = 96 pm och bindningsvinkeln
Tentamen i ETE115 Ellära och elektronik, 4/1 2017
Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn
re (potensform eller exponentialform)
Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r
LÖSNINGAR TILL PROBLEM I KAPITEL 2
LÖNINGR TILL RLEM I KITEL L. Kftn h stolkn. Dss iktning ltivt koodintln ä också känd och givn v vinkln. Kftns - komponnt ä då sin, mdn - komponntn ä cos. Vi kn skiv kftn på vktofom: + sin cos ll komponntfom
= y(0) 3. e t =Ce t, y = =±C 1. 4 e t.
Löningförlg till tentmenkrivning i SF16 Differentilekvtioner I Tidgen den 8 jnuri 1, kl 14-19 Hjälpmedel: BETA, Mthemtic Hndbook Redovi löningrn på ett ådnt ätt tt beräkningr och reonemng är lätt tt följ