= y(0) 3. e t =Ce t, y = =±C 1. 4 e t.
|
|
- Filip Bengtsson
- för 6 år sedan
- Visningar:
Transkript
1 Löningförlg till tentmenkrivning i SF16 Differentilekvtioner I Tidgen den 8 jnuri 1, kl Hjälpmedel: BETA, Mthemtic Hndbook Redovi löningrn på ett ådnt ätt tt beräkningr och reonemng är lätt tt följ Svren kll ge på reell form Del 1 Modul 1 Betrkt differentilekvtionen d dt = För vilk trtvärden = () är gränvärdet lim (t) ändligt? t Betäm därefter den löning om uppfller villkoret () = 4 mt nge de exitenintervll Vi betämmer fört de ttionär löningrn De erhålle då derivtn är lik med noll Vi får: 1 =, = För tt underök gränvärdet tuderr vi derivtn tecken Nu över till det endimenionell fporträttet Gränvärdet lim (t) är ändligt för trtvärden = () t Nu över till den eprbl differentilekvtionen ( Den är även Bernoullk) Kontntlöningrn uppfller ej villkoret Vi omformr differentilekvtionen och prtilbråkuppdelr ( ) d dt = 1, d dt = 1 Integrtion med veende på t ger: ln + ln = t + ln C 1 Lö ut Vi får ln = t + ln C 1, Villkoret () = 4 ger C = 4 4 = 1 4 = 1 4 e t Exitenintervllet är { t :t < ln4} ln4 =±C 1 e t =Ce t, = 1 Ce t SVAR: Gränvärdet lim (t) ändligt för trtvärden = () t Den ökt löningen är = 1 t och de exitenintervllet är t :t < ln4 4 e { } t Modul Betrkt det linjär temet X = AX, där X dt = d och X = x dt Den kvdrtik mtrien A uppfller följnde likheter: A 1 1 = 9 9 och A 11 = 8 44 Betäm temet llmänn löning mt betäm gränvärdet lim X(t) då X() = 4 t
2 Vi betämmer mtrien A : egenvärden och egenvektorer A 1 1 = 9 9 och A 11 = 8 44 kn kriv om A 1 1 = repektive A 11 = 4 11 Härur kn direkt vlä tt A : egenvärden och egenvektorer Vi får = 9, v = och 1 = 4, v = 11 1 Stemet llmänn löning kn kriv X = c 1 e 9t 1 + c e 4t 11 Vi betämmer den löning om uppfller villkoret X() = 4 X() = 4 = c c 11 ger c =, c 1 = Vilket ger X = e 4t 11 = 4 e 4 t Det ökt gränvärdet är lim X(t) = t Det kn även ine genom tt trtpunkten ligger på egenvektorn hörnde till det negtiv egenvärdet 1 SVAR: Stemet llmänn löning är X = c 1 e 9t 1 + c e 4t Det ökt gränvärdet är lim X(t) = 11 t Modul Funktionen f (x) = + x, <x<5 kn utveckl i en coinuerie, en inuerie och en fouriererie Betäm vd repektive erie konvergerr mot för x = 5 Efterom funktionen och de derivt är kontinuerlig ( Det räcker med tckvi kontinuerlig,) på intervllet å konvergerr erien mot medelvärdet i den ktuell punkten För coinuerie kll en jämn funktion betrkt Coinuerien konvergerr mot f (5+ ) + f (5 ) = f ( 5+ ) + f (5 ) = =1 För inuerie kll en udd funktion betrkt Sinuerien konvergerr mot f (5+ ) + f (5 ) = f ( 5+ ) + f (5 ) = 1 +1 = Foiriererien konvergerr mot f (5+ ) + f (5 ) SVAR: Coinuerien konvergerr mot 1 Sinuerien konvergerr mot Foiriererien konvergerr mot 8 = f ( + ) + f (5 ) = + 1 = 8 Del 11 Ange det tört intervll i vilket löningen till = x ( + 1), () = 1 exiterr Är löningen entdig? Är följnde påtåenden nn eller flk b Låt = f (x) vr en löning till differentilekvtionen = + 9 Löningkurvn hr lokl extrempunkter c = x 5 är en löning till begnnelevärdeproblemet = 5 4 5, () = Löningen är entdig Den givn differentilekvtionen är eprbel Den knr reell kontntlöningr Vi omformr ekvtionen: +1 = x Integrtion med veende på x ger rctn = x + C
3 Villkoret ger C = rctn1 = π 4 Vi får rctn = x + π 4 Men π < rctn < π Dett ger o följnde olikheter π < x + π 4 < π Omform π 4 = π π 4 < x < π π 4 = π 4 eller Det tört intervllet är x : π < x < π 4 4 π < x < π 4 4 Vi hr tt både f (x, ) = x ( f (x,) +1) och = x är kontinuerlig Då är löningen entdig b Flkt, t derivtn är törre än noll c Flkt, t vi finner två löningr Det är = x 5 och = SVAR: Det tört intervllet är x : b Flkt c Flkt π < x < π Löningen entdig Låt 1 och vr två löningr till differentilekvtionen + 1 (x) + (x) = Hur underöker mn om 1 och är linjärt oberoende? b Vi tt WronkinenW( 1, ) till 1 och tifierr differentilekvtionen dw + 1 (x)w = c Härled Abel formel W = Ce 1 ( x ) Mn underöker WronkinenW( 1, ) = 1 1 Om den är kilt ifrån noll är löningrn linjärt oberoende b Wronkinen W( 1, ) = 1 = Inättning i väntr ledet v ekvtionen ger VL = (x)( ) + 1 (x)( 1 1 ) Vi omformr å tt den givn differentilekvtonen, (x ) + 1 (x) + (x ) =, kn nvänd VL = (x)( ) + 1 (x)( 1 1 ) VL = 1 ( (x) + 1 (x) ) ( (x) (x) 1 ) Vi dderr och ubtrherr 1 (x) VL = 1 ( (x) + 1 (x) + (x) ) ( (x) (x) 1 + (x) 1 ) Men 1 och är två löningr till (x ) + 1 (x) + (x ) = Vi får då VL = 1 = = HL c Differentilekvtionen (x ) dw + 1 (x )W = är linjär ( Även eprbel) Vi betämmer en integrernde fktor Fört omform differentilekvtionen: En integrernde fktor är e Vi erhåller e ( x) ( x) dw + e Multiplicer 1 ( x ) ( x ) dw + (x) 1 (x) W = med e 1 (x) (x) W = vilket kn kriv dw + 1 (x) (x) W =, (x) d We ( x) ( x) =
4 1(x ) Integrer med veende på x : We ( x) = C vilket ger Abel formel W = Ce (x ) SVAR: För, b och c e ovn 1 Definier Heviide tegfunktion U(t ) och betäm därefter de lplcetrnform utgående från lplcetrnformen definition b Betäm lplcetrnformen till funktionen f (t) = U(t )U (b t) där < b c Betäm lplcetrnformen till funktionen g (t) = 1 U(t )U( + t) där > Låt därefter i lplcetrnformen d Betäm ( π ) då = (t π 4 ) och () = () = Heviide tegfunktion U(t ) = 1, t >, t< Lplcetrnformen för en funktion f (t) ge v L f (t) För Heviide tegfunktion får vi { } = U(t )e t dt L U (t ) = 1e t dt = { } = f(t)e t dt e [ t ] = > b Då U(t ) = 1, t > och U(b t) = 1, b>t, t<, b<t 1, <t <b f (t) = U(t )U (b t) =, fö { } = f(t)e t dt L f (t) { } = e följer tt = U(t )U (b t)e t dt = e t dt b = e e b = e c L{ g (t)} = 1 U(t )U( + t)e t dt = 1 e t dt = e e ( + ) L{ g (t)} = e (1 e ) = e (1 (1 + O( ))) = e ( O( )) = e (1 O( )) Här hr vi McLurinutvecklt exponentilfunktionen Låt i L g (t) Då erhålle lim L g (t) { } = e (1 O( )) { } + = e vilket är lplcetrnformen v Dirc deltfunktion d Lplcetrnformer = (t π 4 ) Y() () () + ( Y() ()) + 5Y() = e π 4 ( + + 5) Y ( ) = e π 4 Y() = e π = π 4 e ( + 1) + 4 Då den inver lplcetrnformen v Z() = (t) = U(t π 4 )e ( t π 4 ) in(t π 4 ) ( + 1) + 4 ger z(t) = e t int blir
5 Det ökt funktionvärdet ( π ) blir ( π ) = U (π π 4 )e ( π π 4 ) in( π π 4 )=1e π 4 in π = e π 4 SVAR: Heviide tegfunktion U(t ) = 1, t >, t< b L{ U (t )U(b t) } = e e b { } = L 1 U(t )U ( + t) c L g (t) d ( π ) = e π4 L{ U (t ) } = e = e e ( + ) lim L{ g (t)} = e 14 Klificer med veende på tbilitet de kritik punktern till ett plnt utonomt tem vrnde mot den ickelinjär ndr ordningen differentilekvtion x + (x 1) x + x = för ll reell värden på Skriv den givn differentilekvtionen om ett tem x Inför en n vribel enligt = x Vi erhåller temet: = x = (x 1) x Vi betämmer de kritik punktern De erhålle då tngentvektorn är lik med nollvektorrn Vi erhåller endt en kritik punkt: =, x= dv origo För tt underök tbiliteten linjrierr vi det icke-linjär temet Linjrieringen ker med hjälp v Jcobimtrien(funktionlmtrien) 1 Jcobimtrien blir J(x, ) = x 1 (x 1) I den kritik punkten får vi J(,)= 1 1 = A Betäm mtrien egenvärden Den krkteritik ekvtionen = det(a I) = 1 1 ger följnde +1 = Kvdrtkompletter: ( ) = ( ) 1 = 4 Egenvärden 1, 4 ± 4 Då 4, dv eller erhålle reell egenvärden För är den kritik punkten mptotikt tbil För är den kritik punkten intbil Då < 4 dv < < erhålle komplex egenvärden För = Re < är den kritik punkten mptotikt tbil För = Re > är den kritik punkten intbil För = Re = kn ingen lutt dr från det linjrierde temet Men för = Re x = blir det icke-linjär temet = linjärt (x 1) x x Vi erhåller i dett fll = x 1 x 1 Denn mtri hr egenvärden = ±i Den kritik punkten är en center och därmed tbil 1, SVAR: För är den kritik punkten mptotikt tbil För är den kritik punkten intbil < < För = Re < är den kritik punkten mptotikt tbil
6 För = Re > är den kritik punkten intbil För = Re = är den kritik punkten tbil u 15 Lö Lplce ekvtion x + u = i rektngeln < x <, <<1 med rndvärden u(,) = u(, ) = u(x,)=, u(x,1) =1 Vi löer problemet med vribeleprtionmetoden Sätt: u(x, ) = X (x)y ( ) Inåttning i differentilekvtionen ger: X (x)y ( ) + X (x) Y ( ) = X (x) Divider med X (x)y (): X (x) = Y () = kontnt =, R Y() Den prtiell differentilekvtionen övergår i ett tem v ordinär differentilekvtioner X (x) X(x) = Y ( ) + Y () = För "X-ekvtionen" behndl tre olik fll: >, = och < >, =, R = <, =, R X(x)=A 1 e x +B 1 e x X (x) = A x + B X (x) = A co x + B in x Vribeleprtionen och villkoren u(,) = u(, ) = ger X ()Y() = X( )Y() = Dett kll gäll för ll ktuell Ger tt X ()= X( ) = >, =, R = <, =, R =X()=A 1 +B 1 = X ()=B = X ()=A = X( ) = A 1 e +B 1 e = X( ) = A + B = X( ) = A co + B in Endt den trivil löningen Endt den trivil löningen Dett tem hr icke-trivil löningr då = n, n N X (x) = B in nx Vi erhåller icke-trivil löningr endt då eprtionkontnten =, R X (x) + X (x ) = Stemet är då: Y ( ) Y() = Nu över till "-ekvtionen" Den hr löningen: Y () = Ce n + De n Villkoret u(x,)= och vribeleprtionen ger: X (x)y ()=, vilket kll gäll för ll ktuell x Vi erhåller: Y ()= Dett ger o: = Y ()= C+ D, D = C Y () = C(e n e n ) Superpoitionprincipen ger: u(x, ) = n (e n e n )in nx Det återtår tt betämm n n=1 Det reternde villkoret u(x,1) = 1 ger: 1 = u(x,1) = n (e n e n )in nx Här är n (e n e n ) fourierkoefficientern för den udd funktion om på intervllet (, ) är lik med 1 n =1 [ ] Vi erhåller: n (e n e n ) = 1in nx = conx 1 con =, n n n = 1 co n n(e n e n ) 1 co n u(x, ) = n(e n e n ) (en e n )in nx n=1 1 co n SVAR: Den ökt löningen är: u(x, ) = n(e n e n ) (en e n )in nx n=1
Introduktion till Laplacetransformen
Introduktion till Lplcetrnformen J A S, ht-5 Lplcetrnformen En vnligt förekommnde idé i nlyen (och i mtemtik i tört llmänhet) är tt förök lö ett problem genom tt fört trnformer det till ett nnt (enklre)
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
y > 0, 0 < y <1 y växande, 0 < y < 1
Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1
Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell
19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
TATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
), 0 < x < π. 1 (2k 1) 2. f(θ) 2 dθ, (Bessel s olikhet I).
Mtemtik Chlmer Tentmen i TMA68 Tillämpd mtemtik K/Bt, ; KL 8:3-:3 Telefon: Okr Hmlet: 73-8834. Hjälpmedel: Endt utdeld vänd textlppen) tbell för Lplcetrnformer. Klkyltor ej tillåten. Uppgiftern -4 ger
1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3
Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant
f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.
Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln
Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b
Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:
Inför tentamen i Analys I och II, TNA008
Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2
= 1, fallet x > 0 behandlas pga villkoret. x:x > 1
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1
Matematik Chalmer Tentamen i TMA683/TMA68 Tillämpad matematik K/Bt, 7 4, kl 8:3-:3 Telefon: Maximilian Thaller, 3-77 535 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner,
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) + 3y (t) + 2y(t) = 1, t > 0 y(0) = 1, y (0) = 1
Matematik Calmer Tentamen i TMA68/TMA68 Tillämpad matematik K/Bt, 7 8 7, kl 4:-8: Telefon: Olof Gielon, -77 55 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner, : -7p, 4:
Mat Grundkurs i matematik 1, del II
Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet
AB2.9: Heavisides stegfunktion. Diracs deltafunktion
AB29: Heaviide tegfunktion Dirac deltafunktion Heaviide tegfunktion Heaviide tegfunktion definiera ut a) = { if t < a, if t > a Betrakta via exempel: ft) = 5 in t ft)ut 2) ft 2)ut 2) k[ut ) 2ut 4) + ut
= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
EGENVÄRDEN och EGENVEKTORER
EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.
GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
ω L[cos(ωt)](s) = s 2 +ω 2 L[sin(ωt)](s) =
Matematik Chalmer Tentamen i TMA683/TMA682 Tillämpad matematik K2/Bt2, 28 4 4, kl 4:-8: Telefon: Henrik Imberg, 3-772 5325; Kontaktperon: Mohammad Aadzadeh, 3-772 357 Hjälpmedel: Endat tabell på bakidan
14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz.
Lösningsförslag till tentamensskrivning i Matematik IV, F636(5B0,5B30). Tisdagen den januari 0, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
IV, SF1636(5B1210,5B1230).
Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj
Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Mat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
Tentamen: Lösningsförslag
Tentamen: Löningförlag Fredag 8 juni 8 8:-3: SF74 Flervariabelanaly Inga hjälpmedel är tillåtna Ma: 4 poäng (4 poäng Rita följande mängder i R : (a A {(, y R ma(, y } (b B {(, y R + y 4 4 4y y } (c C {(,
KOORDINATVEKTORER. BASBYTESMATRIS
Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme
dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.
Lösningsförslag till tentamenssrivning i SF633 Differentialevationer I Måndagen den 5 otober 0, l 0800-300 Hjälpmedel: BETA, Mathematics Handboo Redovisa lösningarna på ett sådant sätt att beräningar och
Generaliserade integraler
Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst
Lösningar till tentamen i Transformmetoder okt 2007
Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y
Matris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
Läsanvisningar för MATEMATIK I, ANALYS
Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
1. f är en två gånger deriverbar funktion på intervallet (a, b) och π 1 f är dess linjära interpolant. Visa att π 1 f f L (a,b) (b a) 2 f L (a,b).
Matematik Chalmer Tentamen i TMA68 Tillämpad matematik K/Bt, ; KL 8:3-:3 Telefon: Martin Berglund: 73-883. Hjälpmedel: Endat utdelad vänd textlappen tabell. Kalkylator ej tillåten. Uppgift 7 ger max 8p,
(4 2) vilket ger t f. dy och X = 1 =
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och
Preliminärt lösningsförslag till: Tentamen i Modern Fysik, 5A1247, , kl 14:00-19:00
Preliminärt löningförlg till: Tentmen i Modern Fyik, 5A47, 7-5-6, kl 4:-9: Löningrn är preliminär. Räknefel kn förekomm. Hjälpmedel: A4-idor med egn ntekningr, Bet o fikklkyltor mt intitutionen tbellbld
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
A dt = 5 2 da dt + A 100 =
Tentamensskrivning i Matematik IV, F1636(5B11,5B13) Tisdagen den 13 november 7, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1
ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är
För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.
Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr
Tentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
ÚÚ dxdy = ( 4 - x 2 - y 2 È Î
Lösningsförslag till tentamensskrivning i Matematik IV, 5B0 Måndagen den 0 oktober 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:
Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde
Reglerteknik Ö6. Köp övningshäfte på kårbokhandeln. William Sandqvist
eglerteknik Ö6 öp övninghäfte på kårbokhndeln . Stbilitet Vilk proceer är tbil? y y 6y x x b y 6y 8y x c y y y x 4x d y y y y u 5u e y 7 y y 4y u u f y y y 6y u 7u g h 6 4 . löning, Stbilitet y y 6y x
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:
Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f
SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel
Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter
} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),
Tentamensskrivning i Matematik IV, 5B110 Måndagen den 1 oktober 005, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.
TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys
9 Dubbelintegralens definition
Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)
Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Dagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer
Dgens ämnen Repetition: kvdrtisk former oh ndrgrdskurvor Andrgrdsytor System v differentilekvtioner Rng, signtur oh tekenkrktär Sts 9.1.11. Låt Q: E R, dim E = n vr en kvdrtisk form. Då gäller λ min u
TNA004 Analys II. för ED, KTS, MT. Lektionsuppgifter med kommentarer/lösningstips
TNA004 Anls II för ED, KTS, MT Lektionsuppgifter med kommentrer/lösningstips VT 07 TNA004, Anls II - Lektion Denn lektion hndlr om beräkning v reor och kurvlängd.. Areberäkning Aren melln två funktionskurvor,
TNA004 Analys II. för ED, KTS, MT. Lektionsuppgifter med kommentarer/lösningstips
TNA004 Anlys II för ED, KTS, MT Lektionsuppgifter med kommentrer/lösningstips VT 06 TNA004, Anlys II - Lektion Denn lektion hndlr om beräkning v reor och kurvlängd.. Areberäkning Aren melln två funktionskurvor,
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng
Komplexa tal. j 2 = 1
Komplex tl De komplex tlen nvänds när mn behndlr växelström inom elektroniken. Imginär enheten beteckns i elektroniken med j (i, som nvänds i mtemtiken, är ju upptget v strömmen). Den definiers v j = 1
Sammanfattning av ordinära differentialekvationer
Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer
Tentamen i Eleffektsystem 2C1240 4 poäng
Tentmen i Eleffektytem C40 4 poäng Ondgen 5 december 004 kl 4.00-9.00 (Frågetund: 5.00, 6.00 och 7.30) Hjälpmedel: En hndkriven A4-id, Bet eller Joefon, fickräknre. Endt en uppgift per bld! Teern lämn
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
Diskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
Mat Grundkurs i matematik 1, del III
Mt-1.1510 Grundkurs i mtemtik 1, del III G. Gripenberg TKK 2 december 2010 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del III 2 december 2010 1 / 59 Vribelbyte b F (g(x))g (x) dx = b d F (g(x))
Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa
9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Volym och dubbelintegraler över en rektangel
Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =
Del I. Modul 1. Betrakta differentialekvationen
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För
KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015
KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och
Integralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e