{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1
|
|
- Jonathan Nyberg
- för 6 år sedan
- Visningar:
Transkript
1 ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges på reell form Del 1 Modul 1 E fallande föremål med massan m påverkas av yngdkrafen mg och av e lufmosånd Den rearderande krafen är proporionell mo hasigheen v Enlig Newons andra lag är massan gånger acceleraionen lika med de krafer som påverkar föremåle Besäm föremåles hasighe efer lång id ösning: Vi säller upp differenialekvaionen dv = mg kv d Vi besämmer förs den saionära lösningen Den erhålles då derivaan är lika med noll Vi får v = mg k Sudera derivaans ecken och ria upp funkionens uppförande i faslinjen mg/k Efer lång id blir hasigheen lika med mg k SVAR: Föremåles hasighe efer lång id är mg k Modul y 1 (x) = x är en lösning ill differenialekvaionen x y x y + y =, x> Besäm en fundamenalmängd av lösningar sam ange den allmänna lösningen ösning: Vi ansäer y = xz(x), y = x z (x) + z(x), y = x z (x) + z (x) Insäning i differenialekvaionen ger x (x z (x) + z (x)) x(x z (x) + z(x)) + xz(x) = x z (x) + z (x) = Sä u(x) = z (x), u (x) = z (x) x u (x) + u(x) =, d (xu(x)) = dx Inegrera med avseende på x: xu(x) = C 1 och vi får z (x) = C 1 x Inegrera med avseende på x: z(x) = C 1 ln x + C y = xz(x) ger y = x(c 1 ln x + C ) = C 1 x ln x + C x En fundamenalmängd av lösningar besår av linjär oberoende lösningar Anale är lika med differenialekvaionens ordning I vår fall vå En fundamenalmängd är { x ln x, x } Den allmänna lösningen är en linjärkombinaion av de linjär oberoende lösningarna Vi får y = C 1 xln x + C x SVAR: En fundamenalmängd är { x ln x, x } Den allmänna lösningen y = C 1 xln x + C x Modul 3 å F(s) = e s vara en given laplaceransform Besäm orginalfunkionen f () då f () s Besäm även f (3) v { } = F(s)
2 ösning: Vi åerransformerar och får f () = ( )U( ), där U( ) Heavisides segfunkion f (3) = (3 )U(3 ) = 1U(1) = 1 SVAR: Orginalfunkionen f () = ( )U( ) och f (3) = 1 Del 11 Om ingen fisk as upp ur en sjö så varierar mängden fisk, y() [on], i sjön med iden [ år] enlig differenialekvaionen y = y a 1 y b, y >, där a = 4 [ år] och b = 8 [on] Nu börjar man fiska u c [on] fiskar per år, (c är en posiiv konsan) a Ange differenialekvaionen för y som då gäller b Ange de kriiska värde på c som ine får överskridas om de skall finnas någon jämvikslösning > c Då c ligger under dea kriiska värde finns de en sabil jämviksnivå y > för mängden fisk Besäm y som funkion av c ösning: a Den korrigerade differenialekvaionen blir y = y a 1 y b c Med de givna värdena på konsanerna får vi y = y 4 1 y y(8 y) y(8 y) 3c 8 c = c = = f (y) 3 3 b Jämvikslösning erhålles då f (y) = Då är y 8y +3c =, (y 4) = 16 3c = 3(5 c) Reella lösningar och sörre än noll erhålles då c 5 För c > 5 exiserar inga jämvikslösningar Jämvikslösningarna är y = 4 ± 3(5 c) c Vi besämmer den sabila jämvikslösningen y genom a sudera eckne hos f (y ) Jämvikslösningen är sabil om f (y ) < och insabil om f (y ) > 8 y f (y) = = 4 y och insäning av jämvikslösningarna ger (4 c) f (4 + 3(5 c)) = < sabil jämvikslösning 16 3(4 c) f (4 3(5 c)) = > insabil jämvikslösning 16 SVAR: a Den nya differenialekvaionen är y = b De kriiska värde på c är c = 5 c Jämviksnivån y = 4 + 3(5 c) y(8 y) 3 1 Undersök om f 1 (x ) = x och f (x ) = x är orogonala på inervalle (,) Besäm därefer konsanerna c 1 och c så a f 3 (x) = x + c 1 x + c x 3 blir orogonal mo både f 1 och f på samma inervall ösning: Vi undersöker om funkionerna är orogonala genom a förs besämma den inre produken mellan dessa Om den inre produken är lika med noll så är funkionerna orogonala c
3 f 1 (x ), f ( x ) = f 1 ( x )f (x )dx = xx dx = x 3 dx =, y udda funkion och origosymmerisk ineervall Den inre produken är lika med noll och således är funkionerna orogonala Vi skall bilda e orogonal sysem med hjälp av funkionerna f 1, f och f 3 Inre produken mellan f 1 och f 3 lika med noll ger: = f 1 (x),f 3 (x) = f 1 (x)f 3 (x )dx = x(x + c 1 x + c x 3 )dx Inre produken mellan f och f 3 lika med noll ger: = f (x ), f 3 (x ) = f (x )f 3 ( x )dx = x (x + c 1 x + c x 3 )dx = c 5 5 Vi erhåller följande sysem: 5 = c 1 5 f 3 (x) = x 5 1 x 3 c = 5 1 c 1 = är orogonal mo de givna funkionerna SVAR: f 1 (x ) = x och f (x ) = x är orogonala på inervalle (,) c 1 = och c = 5 1 ( +1) e 13 X = är en lösning ill syseme X = AX Besäm en fundamenalmaris ill e syseme sam besäm den lösning som uppfyller villkore X() = 5 ösning: För a besämma en fundamenalmaris ill vår sysem behövs vå linjär oberoende lösningar Vi besämmer förs sysemes maris och därefer dess egenvärden och egenvekorer Skriv sysemes maris enlig följande A = a b c d ( + )e Insäning av den givna lösningen i syseme ger = a b ( +1) e ( + 1)e c d e ( + )e Hyfsning ger = a( + 1)e + be eller + = (a + b) + a ( + 1)e c( + 1) e + de +1 (c + d) + c 1 = a + b a = = a b = 1 Idenifiering ger följande sysem:, 1 = c+ d c = 1 1 = c d = Marisen är A = 1 1 Egenvärdena fås ur ekvaionen = de(a I) = 1 1 = + 1 = ( 1) Vi erhåller e mulipel egenvärde =1 1,
4 1 1 Tillhörande egenvekor fås ur ekvaionen 1 1 K =, K = En ny lösning är X 1 = 1 1 e = e Vi har nu vå linjär oberoende lösningar e Dessa är X 1 = 1 1 e = e ( +1) e och den givna lösningen X e = e En fundamenalmaris är Φ = e ( +1)e, observera a de Φ = e e e Den allmänna lösningen är en linjärkombinaion av de linjär oberoende lösningarna Vi får X = a e ( +1)e + b Besäm de godyckliga konsanerna e e Villkore X() = 5 ger: X() = a b 1 = 5, a b = 3 (3 + 5)e Insäning ger X = (3 + )e SVAR: En fundamenalmaris ill syseme är Φ = e ( +1)e e e (3 + 5)e Den lösning som uppfyller villkore är X = (3 + )e 14 Skriv differenialekvaionen d x d = x x + 1 3y dx som e auonom sysem d Sudera syseme genom a hia alla kriiska punker, besämma deras yp(nod, sadelpunk, spiral, cenrum) och avgöra huruvida de är sabila eller insabila ösning: dx Vi säer y = dx dy och d d = d x d = y varvid följande sysem erhålles: d dy d = x x + 1 3y y Vi sarar med a besämma var angenvekorn är lika med noll Dea ger oss de kriiska(saionära) punkerna Därefer suderar vi de kriiska punkernas karakär genom a undersöka Tayloruvecklingen kring akuell kriisk punk, med andra ord en linjarisering Jacobimarisen blir då e vikig redskap = y Tangenvekorn lika med nollvekorn ger: (x, y) = (,) = x x + 1, 3y y (x,y)=( 1,) Två kriiska punker Jacobimarisen ges av marisen x 9y Insäning av respekive kriisk punk ger:
5 (x, y) = (,) Marisen A = har komplexa egenvärden med posiiv realdel Egenvärdena erhålles ur ekvaionen = = = ( 1 4 ) Dessa är = 1 ± i 15 4 Den kriiska punken (,)är en insabil spiral Desamma gäller även för de icke-linjära syseme (x, y) = ( 1,) Marisen B = har skilda egenvärden och olika ecken Egenvärdena erhålles ur ekvaionen = = 1 1 = ( 1 4 ) Dessa är = 1 ± 17 4 Den kriiska punken ( 1,) är en sadelpunk och därmed insabil Desamma gäller även för de icke-linjära syseme SVAR: De kriiska punkerna är (,) och (-1,) Den kriiska punken (,)är en insabil spiral Den kriiska punken ( 1,) är en sadelpunk och därmed insabil 15 å u(x,) vara emperauren i en smal sav med längden u Vidare gäller a x hu = u, <x<, >, h är en konsan Besäm emperauren u(x,) då begynnelseemperauren är f (x) och savens ändpunker är isolerade ösning: Vi separerar variablerna: u(x, ) = X (x )T( ) Insäning i den pariella differenialekvaionen ger: X (x)t() hx (x )T() = X (x) T () X (x) Dividera med X (x)t() : X (x) = T () T() + h = konsan = X (x) X(x) = Vi erhåller e sysem av linjära okopplade differenialekvaioner: T () ( h)t() = "T-ekvaionen" har lösningen: T() = Ce ( h) För "X-ekvaionen" behandlas re olika fall: >, = och < >, =, R = <, =, R X(x)=A 1 e x +B 1 e x X (x) = A x + B X (x) = A 3 cos x + B 3 sin x u Savens ändpunker är isolerade innebär a x (,) = u (, ) = x Tillsammans med variabelseparaionen ger dea a: X ()T() = X ()T() = Dea skall gälla för alla : X () = X () = >, =, R = <, =, R
6 X (x ) = (A 1 e x B 1 e x ) X (x ) = A X (x ) = ( A 3 sin x + B 3 cos x) Insäning av ändpunkerna ger: >, =, R = <, =, R = X () = (A 1 B 1 ) = X () = A = X () = (B 3 ) = X () = (A 1 e B 1 e ) = X () = A = X () = ( A 3 sin + B 3 cos ) Endas den riviala lösningen X (x) = B B 3 = X (x) = A = n 3 Mosvarande "T-lösningar" blir: >, =, R = <, =, R T() = C e h T() = Ce ( ( n ) h ) Vi har erhålli vå uppsäningar med lösningar = <, =, R u(x,)=b C e h u(x,) = A 3 n C ( 3 e( ) h) injärkombinaioner av lösningar är lösning Den lösning som uppfyller de givna randvillkoren är på formen: u(x,) = a e h + a n e (( n ) + h) n=1 De åersår a besämma koefficienerna Begynnelsevillkore u(x,)=f(x) ger: f (x) = u(x, )= a + a n n =1 Koefficienerna är: a = f (x )dx och a n = x f (x )cosn dx SVAR: Savens emperaur är u(x,) = a e h + a n e (( n ) + h) n=1 a = f (x )dx och a n = x f (x )cosn dx
= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2
Tenamensskrivning i Maemaik IV, SF1636(5B11,5B13). Tisdagen den 1 januari 1, kl 14-19. Hjälpmedel: BETA, Mahemaics Handbook. Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa.
Läs merTentamensskrivning i Matematik IV, 5B1210.
Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges
Läs merDifferentialekvationssystem
3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren
Läs merFöljande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)
TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns
Läs merFöljande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Läs merFöljande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Läs mer= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merFöreläsning 19: Fria svängningar I
1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen
Läs merTENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1
LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)
Läs merLINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
Läs mer= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Läs merSVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merLösningar till Matematisk analys IV,
Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en
Läs mer1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz.
Lösningsförslag till tentamensskrivning i Matematik IV, F636(5B0,5B30). Tisdagen den januari 0, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merTENTAMEN HF1006 och HF1008
TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och
Läs merOm antal anpassningsbara parametrar i Murry Salbys ekvation
1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara
Läs merKTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merKURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))
Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en
Läs merOm exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens
Läs merKTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
Läs mer= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Läs merGenom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000
Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns
Läs merLaborationstillfälle 4 Numerisk lösning av ODE
Laboraionsillfälle 4 Numerisk lösning av ODE Målsäning vid labillfälle 4: Klara av laboraionsuppgif 3. Läs förs een om differensmeoder och gör övningarna. Läs avsnie Högre ordningens differenialekvaioner
Läs mer(4 2) vilket ger t f. dy och X = 1 =
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och
Läs merIV, SF1636(5B1210,5B1230).
Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Läs merSystem med variabel massa
Sysem med variabel massa (YF kap. 8.6) Generella Newon II: ሜF ex = dplj, där p lj = mഥv och ሜF d ex är alla yre krafer som verkar på föremåle. Om kroppens massa ändras genom a vi illför massor dm per idsenhe
Läs merDiskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?
Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-
Läs merdt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.
Lösningsförslag till tentamenssrivning i SF633 Differentialevationer I Måndagen den 5 otober 0, l 0800-300 Hjälpmedel: BETA, Mathematics Handboo Redovisa lösningarna på ett sådant sätt att beräningar och
Läs mer1 Elektromagnetisk induktion
1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.
Läs mer3 Rörelse och krafter 1
3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns
Läs mer1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3
Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant
Läs merEgenvärden och egenvektorer
Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en
Läs mer, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
Läs merOm exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. De flesa av övningarna har, om ine lösningar, så i
Läs mera) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).
TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge
Läs merLiten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)
Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen
Läs mer= 1, fallet x > 0 behandlas pga villkoret. x:x > 1
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och
Läs merTentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Läs merKONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version B Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad (som delas u i salen) Förbjudna
Läs merInformationsteknologi
Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik
Läs merKurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna
Läs merTentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Läs merBiomekanik, 5 poäng Kinetik Härledda lagar
Uöver Newons andra lag, kraflagen, finns också andra samband som kan användas för a lösa olika problem Bland dessa s.k. härledda lagar finns Arbee Energisamband Impuls Rörelsemängdssamband (Impulsmomen
Läs mery(0) = e + C e 1 = 1
KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs
Läs merLösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
Läs merRepetition Kraft & Rörelse Heureka Fysik 1: kap. 4, version 2013
Repeiion Kraf & Rörelse Heureka Fysik 1: kap. 4, 11.1-11 version 013 Rörelse En kropps rörelse kan beskrivas med olika yper av diagram. Sräcka-id-graf (s--graf) I en s--graf kan man uläsa hur lång e föremål
Läs merÚÚ dxdy = ( 4 - x 2 - y 2 È Î
Lösningsförslag till tentamensskrivning i Matematik IV, 5B0 Måndagen den 0 oktober 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Läs merEkvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
Läs merPartiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem
Partiella differentialekvationer och randvärdesroblem. 12.1. Searabla PDE 12.2. Klassiska ekvationer och randvärdesroblem. 12.3. Värmeledningsekvationen. 12.4. Vågekvationen. 12.5. alace ekvation. Variabelsearation.
Läs merDel I. Modul 1. Betrakta differentialekvationen
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För
Läs mer} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),
Tentamensskrivning i Matematik IV, 5B110 Måndagen den 1 oktober 005, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta
Läs merTentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som
Läs mer2 Laboration 2. Positionsmätning
2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni
Läs merInstitutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016
Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:
Läs merm Animering m Bilder m Grafik m Diskret representation -> kontinuerlig m En interpolerande funktion anvšnds fšr att
NŒgra illšmpningar Inerpolaion Modellfunkioner som saisfierar givna punker m Animering l m Bilder l l ršrelser,.ex. i ecknad film fšrger resizing m Grafik m Diskre represenaion -> koninuerlig 2 m Vi kšnner
Läs merFrån kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.
Från kap. 5: Ohm s lag Hög poenial på den sida där srömmen går in Låg poenial på den sida där srömmen går u Man får allid e spänningsfall i srömmens rikning i e mosånd. Från kap. 5: Poenialskillnaden över
Läs merAMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.
Läs merFör startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.
Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Läs mery + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Läs mer8.4 De i kärnan ingående partiklarnas massa är
LÖSIGSFÖRSLAG Fysik: Fysik och Kapiel 8 8 Kärnfysik Aomkärnans sabilie 8. Läa kärnor är sabila om de har samma anal prooner som neuroner. Sörre kärnor kräver fler neuroner än prooner för a sark växelverkan
Läs merInstitutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017
Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:
Läs merTentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Läs meruhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a
Vågekvaionen Vågekvaionen beskriver vågors ubredning vare sig de gäller ljudvågor, elekromagneiska vågor eller vibraioner i en sräng. Lå oss för enkelhes skull änka oss en horisonell uppspänd sräng som
Läs merIntroduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde
Syr och Reglereknik FR: Syr- och reglereknik H Adam Lagerberg Syr- och reglereknik H Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Syr-
Läs merRepetitionsuppgifter
MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den
Läs merTENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )
VERSION A TENTAMEN Daum: mars 7 Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H, 6L, 6A TEN (Maemaisk saisik ) Skrivid: 8:5-:5 Lärare: Armin Halilovic Kurskod 6H, 6L, 6A Hjälpmedel: Miniräknare av vilken yp
Läs merKvalitativ analys av differentialekvationer
Analys 360 En webbaserad analyskurs Grundbok Kvaliaiv analys av differenialekvaioner Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Kvaliaiv analys av differenialekvaioner 1 (10) Inrodukion De
Läs merFöreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion
Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?
Läs merKap a)-d), 4, 7 25, 26, 29, 33, 36, 44, 45, 49, 72, , 5.34, 5.38, 6.28, 8.47, 8.64, 8.94, 9.25, Kap.11ex.14, 11.54
Repeiion inför kursprove Fysik 1 Dea är uppgifer som jag rekommenderar i Övningsboken. Naurligvis kan de skilja lie från person ill person vilka områden du behöver räna på. Men dea är en grund för er alla.
Läs merINSTUDERINGSUPPGIFTER
INSTUERINGSUPPGIFTER essa uppgifer skall hjälpa dig vid inlärningen de skall fungera som e slags diagnosisk prov efer de a du har räkna övningsuppgiferna i PB: (hur bra kan du redan de vi har gå igenom
Läs merIntroduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde
Reglereknik F: Reglereknik V Adam Lagerberg Reglereknik V Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Reglereknik V Adam Lagerberg Reglereknik
Läs merA dt = 5 2 da dt + A 100 =
Tentamensskrivning i Matematik IV, F1636(5B11,5B13) Tisdagen den 13 november 7, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
Läs merDatorlaborationer i matematiska metoder E2, fk, del B (TMA980), ht05
Daorlaboraioner i maemaiska meoder E, fk, del B (TMA98), h5 Laboraionen är ej obligaorisk Den besår av re uppgifer som kan ge en bonuspoäng var vid enamina i maemaiska meoder, fk, del B, 5--6, vår 6 och
Läs mer3. Matematisk modellering
3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes
Läs merLösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl
Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden
Läs merInstitutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2016
Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTAMEN I ÅFASTETSÄA KF OC F MA 81 17 AUGUSTI 16 Tid och plas: 8.3 1.3 i M huse. ärare besöker salen ca 9.3 sam 11.3 jälpmedel: 1. ärobok
Läs merSF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
Läs merDiverse 2(26) Laborationer 4(26)
Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer
Läs merInstitutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z
Läs merAMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,
Läs merMATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS 494 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsäningar som ges här är ine bindande för sudeneamensnämndens bedömning Censorerna besluar om de krierier
Läs merTentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl
Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs
Läs merLaboration 3: Växelström och komponenter
TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens
Läs merSF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
Läs merHur simuleras Differential-Algebraiska Ekvationer?
Hur simuleras Differenial-Algebraiska Ekvaioner? Jonas Elbornsson December 2, 2000 1 Inledning Dea är en sammanfaning av meoder för simulering av Differenial-Algebraiska Ekvaioner (DAE) för kursen i Modellering
Läs merReglerteknik AK, FRT010
Insiuionen för REGLERTEKNIK, FRT Tenamen 5 mars 27 kl 8 3 Poängberäkning och beygssäning Lösningar och svar ill alla uppgifer skall vara klar moiverade. Tenamen omfaar oal 25 poäng. Poängberäkningen finns
Läs mer= y(0) 3. e t =Ce t, y = =±C 1. 4 e t.
Löningförlg till tentmenkrivning i SF16 Differentilekvtioner I Tidgen den 8 jnuri 1, kl 14-19 Hjälpmedel: BETA, Mthemtic Hndbook Redovi löningrn på ett ådnt ätt tt beräkningr och reonemng är lätt tt följ
Läs merES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags...
Prakisk info, fors. ös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor som Kens
Läs merFREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30
Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:
Läs merLaboration D158. Sekvenskretsar. Namn: Datum: Kurs:
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Lars Wållberg/Håkan Joëlson 2001-02-28 v 3.1 ELEKTRONIK Digialeknik Laboraion D158 Sekvenskresar Namn: Daum: Eposadr: Kurs: Sudieprogram: Innehåll
Läs merLösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus
Läs merInstitutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Läs merTentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.
Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen
Läs merSDOF Enfrihetsgradssystemet
SDOF Enfrihesgradssyseme De enkla massa-fjäder-syseme, eller sdof-syseme (single degree of freedom, enfrihesgradssyem) är e grundläggande begrepp inom akusik och mekanik. Med god försåelse för dea har
Läs merFÖRELÄSNING 13: Tidsdiskreta system. Kausalitet. Stabilitet. Egenskaper hos ett linjärt, tidsinvariant system (LTI)
p. FÖRELÄSNING 3: Tidsdiskrea sysem. Kausalie. Sabilie. Linjära idsinvariana sysem (LTI-sysem) Differenial- och differens-ekvaioner Räkna på idskoninuerlig LTI-sysem med Fourierr. (kursiv) Räkna på idsdiskre
Läs merAnm 3: Var noga med att läsa och studera kurslitteraturen.
TNA- Maemaisk grundkurs Repeiionsuppgifer (inklusive förslag ill planeringsförslag sam faci) -- Sien Nilsson Kurshemsida: hp://websaff.in.liu.se/~sini/tna.hm Hänvisningar FN = Forsling Nemark: Anals i
Läs merINSTUDERINGSUPPGIFTER
INSTUERINGSUPPGIFTER essa ppgifer skall hjälpa dig vid inlärningen de skall fngera som e slags diagnosisk prov: (hr bra) kan d redan de vi har gå igenom den gångna veckan? Försök förs a lösa ppgiferna
Läs mer+, C = e4. y = 3 4 e4 e -2 x +
ösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I för V, 5B Fredagen den augusti 3, kl -9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att beräkningar
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
Läs mer