Om exponentialfunktioner och logaritmer
|
|
- Rebecka Alexandra Magnusson
- för 6 år sedan
- Visningar:
Transkript
1 Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. De flesa av övningarna har, om ine lösningar, så i varje fall anvisningar ill hur uppgifen kan lösas. Ha dock ine för bråom a ia på lösningarna de är ine så man lär sig. Du måse förs noga fundera u vad de du ine försår. Glöm ine a hela iden reflekera kring vad du lär dig. Saker som är svåra a förså kräver ibland a man änker under en längre period. Ibland måse man bara lära sig hur man gör, för a förså lie senare (när hjärnan få mer a arbea med). Till dessa övningar behövs ofa en miniräknare eller mosvarande för a besämma de sluliga svare. Eponenialfunkionen och dess egenskaper Övning Skissera i samma figur in följande grafer = e, = e +, = e, = e +. Övning Ria i samma figur u de vå graferna = e, = e. Efersom vi ve vad eponenialfunkionens derivaa är, kan vi också derivera urck som innehåller den. Övning 3 Derivera följande funkioner: a) ( + 3)e, b) e / c) e. d) e / De vikigase i kapile är kanske eponenialfunkionens egenskaper (illsammans med logarimfunkionens, men de är samma, fas värom). Övning 4 Konrollera a du själv kan härleda eponenialfunkionens vå grundläggande egenskaper: e + = e e, (e ) = e uan a ia i een. Var dlig med hur man använder a en differenialekvaion har en endig lösning. Nu iar vi närmare på derivaan, som ju är e gränsvärde. Övning 5 Beräkna 0 e 3. I följande övningar behöver man vea a ekvaionen e = löses av = ln och kunna hia denna funkion på en miniräknare (eller mosvarande). De är de grundläggande sambande mellan eponenialfunkionen och den naurliga logarimen. Övning 6 I en viss bakeriekulur ändras anale bakerier med en hasighe som är proporionell mo anale bakerier. Anag a anale bakerier vid en viss idpunk är celler, och vå immar senare har kuluren vui ill 0 8 celler. Besäm anale bakerier som en funkion av iden. Övning 7 För e viss radioakiv ämne är sönderfallshasigheen 0% per sekund. Hur lång id ar de ills hälfen av ämne åersår? De är också bra a en gång för alla lära sig Maclaurinuvecklingen för e. För dea, gör följande övning. Övning 8 Visa a e Den naurliga logarimen Följande övning är oerhör vikig. om. Övning 9 Förklara logarimlagarna uifrån mosvarande lagar för eponenialfunkionen. För a bekana sig med logarimfunkionens graf är följande övning lämplig. Övning 0 Skissera i samma koordinassem följande grafer: = ln, = ln( + ), = ln, = ln( ), = ln Var speciell noggrann med definiionsområde för funkionerna. Här är en övning på räknelagarna. Övning Förenkla urcken a) ln( + ) ln + ln, b) ln(e ) ln(/) ln( ), c) e ln() ln(/ ) + ln(e ). +. Övning En person vill säa in en så sor summa pengar i en bank, a han efer 0 år kan lfa kronor. Anag a bankens årsräna hela iden är 8% (räna på räna), hur sor ska de insaa kapiale vara? Vi får också e sandardgränsvärde i origo för logarimen. För a se vad dea sfar på, gör följande övning. Övning 3 Beräkna i ur och ordning gränsvärdena ln( + ) ln( + 3) a). b) 0 0 Några illämpningar av logarimen De vikiga i dea avsni är a kunna besvara följande fråga. Övning 4 Ria följande samband så a de framsår som räa linjer: a) =, b) =, c) = 5.5, d) = 4/, e) = / f ) =, g) = 0.33, h) = /. Du ska allså välja alarna lämplig. Ange i varje fall ekvaionen för linjen. Läs igenom eemple om decibelmäning och gör sedan följande övning Övning 5 Beräkna ljudnivån L då ljudinensieen I är a) 0 6 W/m (normal samalson på meers avsånd)
2 b) W/m (högsa illåna ljudinensie för moorckel med clindervolm sörre än 500 cc, på 7.5 meers avsånd) c) 0.03 W/m (vanlig ljudnivå på diskoek) Övning Beräkna följande gränsvärden a) ( + ) b) ( + ) Svar och anvisningar Övning Graferna är riade nedan. För a idenifiera dem noera a e + = ee > e och a = + e är en parallellförskjuning av = e vå seg uppå. De är allså den enda kurva som ine går mo noll då. Vad väer snabbas? Övning 7 Beräkna följande gränsvärden (även oegenliga) a) e + 6, b) + (.5) + ln + e + 0 Övning 8 Skissera grafen ill funkionen f () = e / i sora drag Lösningen av några differenialekvaioner Följande övning svarar mo Eempel i huvudeen. Den är vikig a komma ihåg! Övning 9 Under 75 år släppe Fefas Rubber Compan i Massachuses, USA, koninuerlig u 5 on av lösningsmedle oluen per år. Under e år avdunsade ungefär 0% av den mängd oluen som fanns i marken. Hur sor mängd förorening fanns i marken då usläppen upphörde? En i övningar ofa använd varian på dea finns i näsa övning. Övning 0 Man har eperimenell verifiera a en varm kropp, som befinner sig i e kallare medium, svalnar med en hasighe som är proporionell mo emperaurskillnaden (Newons avklningslag). a) Ange en differenialekvaion för kroppens emperaur som beskriver en sådan avklningsprocess, om de omgivande medie har konsan emperaur. Ange därefer en differenialekvaion för emperaurskillnaden mellan medie och kroppen. Vilken variabel är läas a analser: kroppens emperaur eller skillnaden mellan kropp och medium? b) En kropp kls i nollgradig vaen. Om emperauren på 0 minuer sjunker från 5 C ill 0 C, hur lång id ar de då ill a den sjunki ill 5 C? c) En ngräddad kanelbulle (00 C) har efer en minu i rumsemperaur (0 C) svalna ill 5 C. Efer hur lång id kan bullen äas (35 C)? Nedansående övning är e eempel på kol-4-meoden. Skriv en ordenlig lösning som börjar med a plocka u de vikigase från eempel 3 i een. Övning Mäningar från radioakivieen av räkol från Lascaugroan i Frankrike gav år sönderfall/år/g medan levande maeria gav 6.68 sönderfall/år/g. För hur länge sedan gjordes gromålningarna i denna groa? Övning I e vildmarksreserva inplaneras en viss hjorar. I början, när djuranale är lie, är den relaiva illvähasigheen 0.5 per år. Reservae kan emellerid hålla högs 800 hjorar, varför den relaiva illvähasigheen minskar då anale hjorar ökar ill denna nivå. Efer e anal år uppäcks reservae av en vargflock som bosäer sig där och dödar och äer upp 75 djur per år. Nu har en plöslig sjukdomsepidemi decimera anale hjorar ill 50 djur. Hur lång id ar de ill vargarna nu einerar hjorbesånde från vildmarksreservae? Övning Båda funkionerna är jämna, dvs f ( ) = f (). De beder a vi kan ria upp hur den ser u ill höger om -aeln, och sedan spegla den kurvan i jus -alen. Den blå kurvan (som är överall) är = e, den röda (som är överall) är = e. Noera a ingen av funkionerna är deriverbar i origo! Övning 3 Lå D beeckna derivaa. a) Enlig produkregeln har vi a derivaan är D( + 3)e + ( + 3)D(e ) = e ( + + ). b) Enlig formeln för derivaion av en kvo har vi a derivaan är D(e e D() = e ( + ) c) Enlig kedjeregeln har vi a derivaan är e D( ) = ( )e d) Här kombinerar vi produkregeln och kedjeregeln: D( )e / + e / D( /) = e / ( + ( ) = e / ( + 3/ + 4). Övning 4 De här måse du gå igenom genom a sudera huvudeen. Dessa formler är nckeln ill a förså eponenialfunkionen!
3 Övning 5 De du ska se är a gränsvärde är desamma som derivaan av f () = e 3 i = 0: så svare är 3. f f () f (0) e (0) = = 3, Övning 6 Om () är anale bakerier vid iden och om vi sarar klockan då vi har celler, så gäller a () = k(), (0) = Här är k okän, men kan besämmas av villkore i uppgifen om vi löser differenialekvaionen. Vi ve a lösningen är och de åersående villkore är a () = e k () = e k = 0 8 e k = 5 e k = 5. Här kan vi urcka k i logarimer, men behöver ine göra de. Vi har nämligen a den allmänna lösningen är () = (e k ) = Övning 7 Ekvaionen för () som är anale aomer som ine sönderfalli vid iden är () = 0.() vars lösning är () = (0)e 0.. Den idpunk vid vilken hälfen har sönderfalli ges då av ekvaionen (0) = (0)e 0. e /5 = = 5 ln(). Övning 8 Vänserlede är e p 4 (), där p 4 () är Maclaurinpolnome av ordning 4 ill eponenialfunkionen. Vi ve a e = p 4 () + e ξ 5 5!, där ξ ligger mellan 0 och. Från dea får vi a e p 4 () = e ξ 5 5 = eξ 0 0. Då vi kräver a måse ξ och allså e ξ e < 3. Soppar vi in den uppskaningen får vi resulae: 4 4 Övning Vi kan förs noera a i alla fall krävs a > 0 efersom mins en erm kräver dea. a) ln( + /) ln + ln = ln(( + /)) = ln( + ). b) ln(e ) ln(/) ln( ) = ln(e ) + ln ) = ln( e ) = ln(e ) =. c) e ln() ln(/ ) + ln e = + ln + = 3 + ln. Anmärkning Var använde vi a > 0? Jo, uan de villkore har vi a Av samma skäl som a =! ln = ln. Övning Om de insaa kapiale är K är konosällningen efer 0 år Ke = Ke 0.8, så vi ska lösa ekvaionen Ke 0.8 = 0 5. De följer a K = 0 5 e 0.8 = kr. Övning 3 Dea handlar om derivaan av logarim-funkionen a) Dea är derivaan i = av ln, allså är gränsvärde. Alernaiv är gränsvärde derivaan i = 0 av funkionen ln( + ). Dea är ofare e bäre sä a änka på urcke. b) Dea är derivaan i = 0 av ln( + 3). Svare är allså 3. Övning 4 Vi får följande samband i de olika fallen: a) ln = (ln ). Ria i e linlog-diagram (linjär skala på -aeln, logarimisk på -aeln). b) ln = ln. Ria i e loglog-diagram. c) ln = (ln.5) + ln 5. Ria i e linlog-diagram. d) ln = ln 4 ln. Ria i e loglog-diagram. e p 4 () = 5 40 då. e) ln = (ln ). Ria i e linlog-diagram. f) ln = ln. Ria i e loglog-diagram. Övning 9 Dea är förklara i een. Den vikiga observaionen är a e = z = ln z. Om vi därför skriver z = e, w = e så gäller a zw = e e = e + p g a eponenialfunkionens egenskaper. Men dea beder precis a + = ln(zw). Å andra sidan är = ln z och = ln w, så vad vi har är allså ln(zw) = ln z + ln w. Den andra räkneregeln visas på mosvarande sä. Övning 0 Definiionsområdena är (från vänser ill höger) (0, ), (, ), (0, ), (, 0), (, ). Vidare gäller a försa och redje är spegelbild av varandra i -alen, liksom andra och feme (därför a ln + = ln( + ). g) ln = (ln 0.33). Ria i e linlog-diagram. Noera a linjen är avagande, efersom ln 0.33 < 0. h) ln = ln ln. Ria i e loglog-diagram. Övning 5 a) 60 db, b) 86 db, c) 05 db Övning Vi ve a e = ( + ). Dea ger a) ( + ) = ( ( + )) e då. Här har vi använ a om f () A då och g är en koninuerlig funkion, så gäller a g( f ()) g(a) då. A så är falle berakar vi som självklar, även om de kräver e bevis ifrån en ordenlig definiion av gränsvärden. b) När gäller även a =. Vi kan därför ba variabel som nedan ( + ) = ( + )/ = ( ( + ) ) / = e.
4 Övning 7 Vi använder här diverse inuiiv självklara påsåenden om gränsvärden. Självklara om vi förs skriver om urcken. a) Från huvudeen ve vi a av de ermer som ingår väer snabbas mo oändligheen. Vi dividerar därför både äljare och nämnare med : När är sor kommer här alla ermer som beror av a gå mo noll, så gränsvärde blir =. b) Här har vi vå eponenialfunkioner: e och (.5). Efersom e >.5 >, så är de e som väer snabbas. Vi dividerar därför med den och får + (.5 e ) + ln e = e då. Näsa uppgif är väldig lik Eempel 5 i huvudeen (och kan härledas ur de, uan några räkningar om man vill). Övning 8 Sä f () = e /. De försa vi ser är a den ine är definierad i = 0. Vi har a och (sä = /) e 0 e / = + = 0 0 e / = e = efersom e väer forare mo oändligheen än. Vad gäller sneda asmpoer har vi a a) i gäller a e k = / =, m = (e / e ) = = (e ) (0) =, 0 + b) i gäller a m = k = e / =, (e / ) = e = (e ) (0) =. 0 Vi ser allså a vi har asmpoen = i båda oändligheerna. Åersår a finna evenuella saionära punker. Vi har f () = e / + e / = e / ( + )/, så vi har endas en saionär punk, nämligen då =. Vi får följande eckenabell Dea ber oss följande figur : 0 f () : + 0 ej + f () : e de f Övning 9 Lå () vara mängden (mä i on) förorening i marken vid iden, räkna från när fabriken ogs i bruk. Då ger massbalans a så länge fabriken är i gång har vi differenialekvaionen () = 5 0.(), (0) = 0. För a lösa den säer vi z() = 5 ()/0. Då gäller a z () = ()/0 = z()/0, z(0) = 5 (0)/0 = 5. De beder a z() = 5e /0 5 ()/0 = 5e /0 () = 50( e /0 ). Vi får därför svare on. (75) = 50( e 7.5 ) 49.9 Övning 0 Lå T() vara kroppens emperaur och T m omgivningens emperaur. a) Lagen innebär a de finns e k > 0 sådan a T () = k(t() T m ). Om vi säer D() = T() T m så gäller a D () = T (), och allså a D () = kd(). Den andra av dessa ekvaioner kan vi lösningen på: vilken i sin ur ger oss T(). D() = D(0)e k, b) I dea eempel är T m = 0, så T() = D(). Differenialekvaionen är T () = kt() T() = T(0)e k. Villkoren i uppgifen är a T(0) = 5 och T(0) = 0, där de senare besämmer k: 0 = T(0) = 5e 0k e 0k = 5 4 k = 0 ln 5 4. Den allmänna lösningen på ekvaionen är T() = 5e k, med dea k. Ti vill då hia de då T() = 5: 5 = 5e k e k = 5 3 = k ln 5 3 = 0 ln(5/3) ln(5/4), vilke är approimaiv 3 minuer. De ar allså erligare 3 minuer.
5 c) Lå T() vara bullens emperaur i Celsius. Då är T(0) = 00 och T () = k(t() 0) T() = e k. Vi besämmer k av a e k = 5 e k = 3 80 k = ln Tiden vi söker är lösningen på e k = 35, allså minuer. = k ln 80 5 = ln(80/5) ln(80/3) 8 Övning Ekvaionen för radioakiv kol är N = p λn, λ = , p = 6.68λ så länge räde lever. Därefer blir ekvaionen N = λn med sarvärde N(0) = p/λ = Vi ska därför hia de som är sådan a 0.97 = 6.68e λ = 6.68 ln λ år. De var så länge sedan gromålningarna gjordes. Övning Om vi räknar djuren i hundraal är ekvaionen = 0.5( /8) 0.75 = ( )( 6). För a lösa den börjar vi med a säa z =, vilke ger oss ekvaionen z = z (z 4). Därefer säer vi w = /z (du kan naurligvis säa w = /( ) direk om du vill, men vi väljer a göra de i så små seg som möjlig). De ger oss (konrollera!) ekvaionen w = ( 4w), som vi löser genom a säa u = ( 4w)/. Då gäller a (konrollera!) u = u/4 och allså u() = Ce /4. Ur de får vi () = + z() = + w() = + 4 u() = 6 3u() u(). Dea beder a () = 6 Ce /4 Ce /4 för en konsan C (som är gånger sörre än förra C). Sarvillkore är (0) =.5, så C besäms av a 6 C C = 3 C = 9. Från de följer a () = 0 precis då 6 8e /4 = 0 = 4 ln 3.9 år.
Om exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)
TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
Kvalitativ analys av differentialekvationer
Analys 360 En webbaserad analyskurs Grundbok Kvaliaiv analys av differenialekvaioner Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Kvaliaiv analys av differenialekvaioner 1 (10) Inrodukion De
Om antal anpassningsbara parametrar i Murry Salbys ekvation
1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara
TENTAMEN HF1006 och HF1008
TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och
{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1
ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är
Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000
Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns
Laborationstillfälle 4 Numerisk lösning av ODE
Laboraionsillfälle 4 Numerisk lösning av ODE Målsäning vid labillfälle 4: Klara av laboraionsuppgif 3. Läs förs een om differensmeoder och gör övningarna. Läs avsnie Högre ordningens differenialekvaioner
Differentialekvationssystem
3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren
3 Rörelse och krafter 1
3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns
Anm 3: Var noga med att läsa och studera kurslitteraturen.
TNA- Maemaisk grundkurs Repeiionsuppgifer (inklusive förslag ill planeringsförslag sam faci) -- Sien Nilsson Kurshemsida: hp://websaff.in.liu.se/~sini/tna.hm Hänvisningar FN = Forsling Nemark: Anals i
TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1
LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)
Om de trigonometriska funktionerna
Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi
MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS 494 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsäningar som ges här är ine bindande för sudeneamensnämndens bedömning Censorerna besluar om de krierier
= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2
Tenamensskrivning i Maemaik IV, SF1636(5B11,5B13). Tisdagen den 1 januari 1, kl 14-19. Hjälpmedel: BETA, Mahemaics Handbook. Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa.
KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))
Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en
Föreläsning 19: Fria svängningar I
1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen
KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version B Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad (som delas u i salen) Förbjudna
Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna
Tentamensskrivning i Matematik IV, 5B1210.
Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges
Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som
Biomekanik, 5 poäng Kinetik Härledda lagar
Uöver Newons andra lag, kraflagen, finns också andra samband som kan användas för a lösa olika problem Bland dessa s.k. härledda lagar finns Arbee Energisamband Impuls Rörelsemängdssamband (Impulsmomen
Demodulering av digitalt modulerade signaler
Kompleeringsmaeriel ill TSEI67 Telekommunikaion Demodulering av digial modulerade signaler Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping Februari 27 No: Denna uppsas
2 Laboration 2. Positionsmätning
2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni
VII. Om de trigonometriska funktionerna
Analys 360 En webbaserad analyskurs Grundbok VII. Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com VII. Om de rigonomeriska funkionerna (3) Inrodukion I de här kapile
Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?
Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-
Repetitionsuppgifter
MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den
Lite grundläggande läkemedelskinetik
Lie grundläggande läkemedelskineik Maemaisk Modellering med Saisiska Tillämpningar (FMAF25) Anders Källén Inrodukion Farmakokineik eller mer svensk läkemedelskineik är en vikig disiplin vid uveklande av
Laboration 3: Växelström och komponenter
TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens
Laboration D158. Sekvenskretsar. Namn: Datum: Kurs:
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Lars Wållberg/Håkan Joëlson 2001-02-28 v 3.1 ELEKTRONIK Digialeknik Laboraion D158 Sekvenskresar Namn: Daum: Eposadr: Kurs: Sudieprogram: Innehåll
Lösningar till Matematisk analys IV,
Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en
FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén
FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av
Reglerteknik AK, FRT010
Insiuionen för REGLERTEKNIK, FRT Tenamen 5 mars 27 kl 8 3 Poängberäkning och beygssäning Lösningar och svar ill alla uppgifer skall vara klar moiverade. Tenamen omfaar oal 25 poäng. Poängberäkningen finns
Lektion 4 Lagerstyrning (LS) Rev 20130205 NM
ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller
5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER
5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv
Repetition Kraft & Rörelse Heureka Fysik 1: kap. 4, version 2013
Repeiion Kraf & Rörelse Heureka Fysik 1: kap. 4, 11.1-11 version 013 Rörelse En kropps rörelse kan beskrivas med olika yper av diagram. Sräcka-id-graf (s--graf) I en s--graf kan man uläsa hur lång e föremål
Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:
Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och
FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30
Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:
INSTUDERINGSUPPGIFTER
INSTUERINGSUPPGIFTER essa uppgifer skall hjälpa dig vid inlärningen de skall fungera som e slags diagnosisk prov efer de a du har räkna övningsuppgiferna i PB: (hur bra kan du redan de vi har gå igenom
Modeller och projektioner för dödlighetsintensitet
Modeller och projekioner för dödlighesinensie en anpassning ill svensk populaionsdaa 1970- Jörgen Olsén juli 005 Presenerad inför ubildningsuskoe inom Svenska Akuarieföreningen den 1 sepember 005 Modeller
1 Elektromagnetisk induktion
1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.
1. Geometriskt om grafer
Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den
Funktionen som inte är en funktion
Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen
Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden
Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera
DIGITALTEKNIK. Laboration D171. Grindar och vippor
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Håkan Joëlson 2006-01-19 v 1.3 DIGITALTEKNIK Laboraion D171 Grindar och vippor Innehåll Uppgif 1...Grundläggande logiska grindar Uppgif 2...NAND-grindens
a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).
TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge
shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik.
Kap 10: sid. 1 Blanchard kapiel 10 Penninmänd, inflaion och ssselsänin Effeker av penninpoliik. Tre relaioner: Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och medellån sik Tar hänsn
Tunga lyft och lite skäll för den som fixar felen
Tunga lyf och lie skäll för den som fixar felen De fixar soppe i avloppe, de rasiga gångjärne, den läckande vämaskinen. De blir uskällda, igenkända, välkomnade. A jobba hemma hos människor har sina särskilda
Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2
Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer
Skattning av respirationshastighet (R) och syreöverföring (K LA ) i en aktivslamprocess Projektförslag
Beng Carlsson I ins, Avd f sysemeknik Uppsala universie Empirisk modellering, 009 Skaning av respiraionshasighe R och syreöverföring LA i en akivslamprocess rojekförslag Foo: Björn Halvarsson . Inledning
Lösningar till tentamen i Kärnkemi ak den 21 april 2001
Lösningar ill enamen i Kärnkemi ak den 21 april 2001 Konsaner och definiioner som gäller hela enan: ev 160217733 10 19 joule kev 1000 ev ev 1000 kev Gy A 60221367 10 23 mole 1 Bq sec 1 Bq 10 6 Bq joule
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET?
KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? En undersökning av hur väl kolpulver framkallar åldrade fingeravryck avsaa på en ickeporös ya. E specialarbee uför under kriminaleknisk grundubildning vid
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,
BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator
Tryckoberoende elekronisk flödesregulaor Beskrivning är en komple produk som besår av e ryckoberoende A-spjäll med mäenhe som är ansluen ill en elekronisk flödesregulaor innehållande en dynamisk differensryckgivare.
Skillnaden mellan KPI och KPIX
Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas
System med variabel massa
Sysem med variabel massa (YF kap. 8.6) Generella Newon II: ሜF ex = dplj, där p lj = mഥv och ሜF d ex är alla yre krafer som verkar på föremåle. Om kroppens massa ändras genom a vi illför massor dm per idsenhe
Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.
STOCKHOLMS UNIVERSITET Naionalekonomiska insiuionen Mas Persson Tenamen på grundkursen EC1201: Makroeori med illämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. Tenamen besår av io frågor
n Ekonomiska kommentarer
n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017
Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:
TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )
VERSION A TENTAMEN Daum: mars 7 Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H, 6L, 6A TEN (Maemaisk saisik ) Skrivid: 8:5-:5 Lärare: Armin Halilovic Kurskod 6H, 6L, 6A Hjälpmedel: Miniräknare av vilken yp
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.
Livförsäkringsmatematik II
Livförsäkringsmaemaik II iskrea kommuaionsfunkioner Erik Alm, Hannover Re Sockholm 2013 iskre eknik Premier och annuieer bealas diskre ödligheen definieras ofas i en diskre abell (Undanag: de Nordiska
Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)
Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen
Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.
Från kap. 5: Ohm s lag Hög poenial på den sida där srömmen går in Låg poenial på den sida där srömmen går u Man får allid e spänningsfall i srömmens rikning i e mosånd. Från kap. 5: Poenialskillnaden över
Informationsteknologi
Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik
Bandpassfilter inte så tydligt, skriv istället:
Allmänna synpunker Ni ar med för mycke maerial. Man måse ofa sovra för a få en kompak fokuserad och läsbar rappor Var ydligare med a beskriva den meod ni använ Härledngar onödig dealjerade För lie beskrivande
uhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a
Vågekvaionen Vågekvaionen beskriver vågors ubredning vare sig de gäller ljudvågor, elekromagneiska vågor eller vibraioner i en sräng. Lå oss för enkelhes skull änka oss en horisonell uppspänd sräng som
Laplacetransformen. Från F till L. Den odiskutabla populäriteten hos Fourierintegralen. f HtL - w t t, w œ R (1)
Från F ill L Laplaceransformen Den odiskuabla populärieen hos Fourierinegralen f HL - w, w œ R () har a göra med a den ger informaion om vilka frekvenser w som ingår i signalen f, och med vilken syrka.
ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags...
Prakisk info, fors. ös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor som Kens
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 9. Analys av Tidsserier (LLL kap 18) Tidsserie data
Finansiell Saisik (GN, 7,5 hp,, HT 008) Föreläsning 9 Analys av Tidsserier (LLL kap 8) Deparmen of Saisics (Gebrenegus Ghilagaber, PhD, Associae Professor) Financial Saisics (Basic-level course, 7,5 ECTS,
Diverse 2(26) Laborationer 4(26)
Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer
Egenvärden och egenvektorer
Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en
Realtidsuppdaterad fristation
Realidsuppdaerad frisaion Korrelaionsanalys Juni Milan Horemuz Kungliga Tekniska högskolan, Insiuion för Samhällsplanering och miljö Avdelningen för Geodesi och geoinformaik Teknikringen 7, SE 44 Sockholm
Truckar och trafik farligt för förare
De händer en del i rafiken. För några år sedan körde en av Peer Swärdhs arbeskamraer av vägen. Pressade ider, ruckar och unga fordon. På åkerie finns många risker. Arbesgivaren är ansvarig för arbesmiljön,
Ordinära differentialekvationer,
Ordinära dierenialekvaioner ODE:er sean@i.uu.se I is a ruism ha nohing is permanen excep change. - George F. Simmons ODE:er är modeller som beskriver örändring oa i iden Modellen är beskriven i orm av
Kap a)-d), 4, 7 25, 26, 29, 33, 36, 44, 45, 49, 72, , 5.34, 5.38, 6.28, 8.47, 8.64, 8.94, 9.25, Kap.11ex.14, 11.54
Repeiion inför kursprove Fysik 1 Dea är uppgifer som jag rekommenderar i Övningsboken. Naurligvis kan de skilja lie från person ill person vilka områden du behöver räna på. Men dea är en grund för er alla.
Pensionsåldern och individens konsumtion och sparande
Pensionsåldern och individens konsumion och sparande Om hur en höjning av pensionsåldern kan ändra konsumionen och sparande. Maria Nilsson Magiseruppsas Naionalekonomiska insiuionen Handledare: Ponus Hansson
Mät upp- och urladdning av kondensatorer
elab011a Namn Daum Handledarens sign. Laboraion Mä upp- och urladdning av kondensaorer Varför denna laboraion? Oscilloskope är e vikig insrumen för a sudera kurvformer. Avsiken med den här laboraionen
3. Matematisk modellering
3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes
Glada barnröster kan bli för höga
Glada barnröser kan bli för höga På Silverbäckens förskola är ambiionerna höga. Här vill man mycke, och kanske är de jus därför de blir sressig ibland. De säger Therese Wesin, barnsköare och skyddsombud.
Laboration 2. Minsta kvadratproblem
Laboraion Tillämpade Numeriska Meoder Minsa kvadraproblem Farid Bonawiede Michael Lion fabo@kh.se lion@kh.se 5 februari 5 Inledning När man har skapa en maemaisk modell som beskriver e viss fenomen vill
Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!
Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen
TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9
ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:
Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster
Tjänseprisindex för deekiv- och bevakningsjänser; säkerhesjänser Branschbeskrivning för SNI-grupp 74.60 TPI- rappor nr 17 Camilla Andersson/Kamala Krishnan Tjänseprisindex, Prisprogramme, Ekonomisk saisik,
III. Analys av rationella funktioner
Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu
8.4 De i kärnan ingående partiklarnas massa är
LÖSIGSFÖRSLAG Fysik: Fysik och Kapiel 8 8 Kärnfysik Aomkärnans sabilie 8. Läa kärnor är sabila om de har samma anal prooner som neuroner. Sörre kärnor kräver fler neuroner än prooner för a sark växelverkan
Hur simuleras Differential-Algebraiska Ekvationer?
Hur simuleras Differenial-Algebraiska Ekvaioner? Jonas Elbornsson December 2, 2000 1 Inledning Dea är en sammanfaning av meoder för simulering av Differenial-Algebraiska Ekvaioner (DAE) för kursen i Modellering
INSTUDERINGSUPPGIFTER
INSTUERINGSUPPGIFTER essa ppgifer skall hjälpa dig vid inlärningen de skall fngera som e slags diagnosisk prov: (hr bra) kan d redan de vi har gå igenom den gångna veckan? Försök förs a lösa ppgiferna
Föreläsning 8. Kap 7,1 7,2
Föreläsning 8 Kap 7,1 7,2 1 Kap 7: Klassisk komponenuppdelning: Denna meod fungerar bra om idsserien uppvisar e saisk mönser. De är fyra komponener i modellen: Muliplikaiv modell: Addiiv modell: där y
Tjänsteprisindex för varulagring och magasinering
Tjänseprisindex för varulagring och magasinering Branschbeskrivning för SNI-grupp 63.12 TPI-rappor nr 14 Kaarina Båh Chrisian Schoulz Tjänseprisindex, Prisprogramme, Ekonomisk saisik, SCB November 2005
Många risker när bilen mals till plåt
Många risker när bilen mals ill plå Lasbilar kommer med ujäna bilar och anna skro. En griplasare lyfer upp de på e rullband och all glider in i en kvarn. Där mals meallen ill småbiar. De är ung och farlig.
Vad är den naturliga räntan?
penning- och valuapoliik 20:2 Vad är den naurliga ränan? Henrik Lundvall och Andreas Wesermark Förfaarna är verksamma vid avdelningen för penningpoliik, Sveriges riksbank. Vilken realräna bör en cenralbank
Skuldkrisen. Världsbanken och IMF. Världsbanken IMF. Ställ alltid krav! Föreläsning KAU Bo Sjö. En ekonomisk grund för skuldanalys
Skuldkrisen Föreläsning KAU Bo Sjö Världsbanken och IMF Grund i planeringen efer 2:a världskrige Världsbanken Ger (hårda) lån ill sora infrasrukurprojek i uvecklingsländer. Hisorisk se, lyckas bra, lånen
ByggeboNytt. Kenth. i hyresgästernas tjänst. Getingplåga Arbetsförmedlingen på plats i Alvarsberg. Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn
ByggeboNy Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn Geingplåga Arbesförmedlingen på plas i Alvarsberg Kenh i hyresgäsernas jäns Sark posiiv rend Den posiiva renden håller i sig. Under sommaren har
Damm och buller när avfall blir el
Damm och buller när avfall blir el Här blir avfall värme och el, rä och flis eldas i sora pannor. De är rör med ånga, hjullasare och långradare, damm och buller. En miljö som både kan ge skador och sjukdomar