Differentialekvationssystem
|
|
- Maj Abrahamsson
- för 6 år sedan
- Visningar:
Transkript
1 3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren C 3 g sal per lier väska Till behållaren A pumpas med hasigheen 2 lier per minu ren vaen Väskan i behållaren A blandas och 3 lier väska pumpas per minu över ill behållarenb Till behållarenb pumpas också2 lier per minu av en väska som innehållerf() g sal per lier vid idpunken, och av den väl blandade väskan pumpas lier per minu illbaka ill behållarena och 5 lier per minu pumpas ill behållarenc Till behållarenc pumpas lier ren vaen per minu Innehålle i behållarenc blandas och lier väska pumpas ill behållaren B och 5 lier per minu pumpas u också väl Ge e differenialekvaionssyem ur vilke man kan lösa salmängderna i behållarna, (men du behöver ine lösa syseme) Lösning: Lå x() vara salmängden i behållaren A, y() salmängden i behållaren B och z() salmängden i behållaren C vid idpunken Efersom väskemängderna hela iden förblir oförändrade så är salhalerna x()/2, y()/3 och z()/4 (g/l) Differenialekvaionssyeme blir därför x () x() y() 3 y () x() 2 3 y() z() 4 + 2f() med z () y() 3 5 z() 4 5 x() 8, y() 6, z() 2 Dehär differenialekvaionssyseme kan skrivas i formen Y () AY () + F() där A och F() 2f() Beräkna e A med hjälp av Cayley-Hamilons eorem då A 3 Lösning: Vi räknar u egenvärden ill marisen A och efersom den karakerisiska ekvaionen är () ( λ) de(a λi) de λ (3 λ) 2 4λ + 4 så får vi som lösningar, λ 2 ± 4 4 { 2, 2,
2 så a vi har e dubbel egenvärde λ λ 2 2 Med söd av Cayley-Hamilons eorem kan vi besämma e A genom a räkna u koefficienerna c och c 2 så a e A c I + c A Enlig Cayley-Hamilons eorem är λ 2 e dubbel nollsälle ill funkionen e λ (c + c λ) så a vi får ekvaionerna e 2 c + c 2, e 2 c Lösningarna är försås c e 2 och c e 2 2e 2, och därför är e A ( e 2 2e 2) I + e 2 A e 2 I + e 2 3 Lös differenialekvaionen Y () AY (), Y () 2 då A Du kan unyja de fakum a A har egenvärdena λ och λ 2 med egenvekorer X och X 2 och a Y 2 2 är en generaliserad egenvekor för de dubbla egenvärde Lösning: De fakum a Y 2 är en generaliserad egenvekor innebär a (A ( )I)Y 2 X 2 som man lä kan konsaera Vi besämmer lösningen i formen Y () c e λ X + c 2 e λ 2 X 2 + c 3 ( e λ 2 X 2 + e λ 2 Y 2 ) För a konsaera a Y verkligen är en lösning obsreverar vi a Y () c e λ λ X + c 2 e λ 2 λ 2 X 2 + c 3 e λ 2 λ 2 X 2 + c 3 e λ 2 (X 2 + λ 2 Y 2 ), och efersom AX j λ j X j och AY 2 λ 2 Y 2 + X 2 så gäller fakisk Y () AY () För a besämma c, c 2 och c 3 säer vi in och får 2 c + c 2 + c 3 2, och ur dehär ekvaionssyseme kan vi lösa c, c 2 2 och c 3 Lösningen blir allså Y () e 2e 2e e e e 4 Beräkna e A då A Lösning: Förs räknar vi u egenvärdena och vi får () λ de(m λi) de λ λ 2 +,
3 så a λ ±i Enlig Cayley-Hamilons sas har vi e A c I + c A och denna ekvaion gäller också då vi isälle förm säer in egenvärdena, dvs e i c + c i, e i c c i Genom a addera ekvaionerna får vic cos() och genom a a skillnaden får vic sin() Då blir cos() sin() e A cos() + sin() sin() cos() I 5 LåA och B där X X 2 2, I I 2 2 och X AB, BA, e A, e B, e A e B, e B e A och e A+B Vad kan man konsaera Lösning: En enkel räkning visar a A n X n, och efersom e A n n! An så ser vi a e A I e X Vi kan också konsaera med hjälp av indukion a X B n n X n vilke innebär a Efersom så ser vi också a e B n n! Bn I n e A+B n! Xn n n! Xn A + B ] I, 2X I 2 X (e 2X I) e 2X I X (e X I) e X 2π Beräkna 2π Efersom e X e 2X I så har vi e A e B e A+B I så a e A e B e B e A e A+B Men I I X AB X X X 2 ja BA X X X 2 Här har vi allså e exempel på marisera och B sådana a AB BA men e A e B e B e A e A+B
4 6 Lå Y () vara en lösning ill differenialekvaionen Y () AY () + F() där A är en n n-maris med egenvärden λ j så a Re(λ j ) µ <, j,,n och F är en koninuerlig funkion så a lim F() F Visa a lim Y () Y där Y är lösningen ill ekvaionen AY + F Du kan ana a e A c( + k )e µ Lösning: Ana förs a F Efersom µ < gäller också e A C η e η, där < η < µ och C η är någon konsan Lösningen ill differenialekavionen kan skrivas i formen och vi får Y () e A Y () + Y () e A Y () + e A( s) F(s) ds, e A( s) F(s) ds C η e η Y () +C η e η( s) F(s) ds Om F är koninuerlig och lim F() så finns de en konsan c F så a F() c F för all Därför får vi Y () C η e η Y () + C η 2 e η( s) c F ds + C η 2 C η e η Y () + C ηc F e η( s) max 2 s F(s) ds η e η C η 2 + η max F(s) 2 s Efersom lim F() så gäller också lim max 2 s F(s) och vi ser a lim Y () efersom η > Om F löser vi Y ur ekvaionen AY + F (vilke är möjlig efersom A är invererbar vilke i sin ur är en följd av a inge egenvärde är Om vi nu låerz() Y () Y ser vi a Z uppfyller ekvaionen Z () AZ() + F() F Efersom lim (F() F ) kan vi illämpa de resula vi bevisa ovan och vi får lim Z() vilke är vad vi skulle visa Sabilie 7 Lå y() vara lösningen ill differenialekvaionen y (y 2 + y)(y 2 2y + ), y() a Har ekvaionen en asympoisk sabil jämvikslösning? Skissera olika lösningar Lösning: Funkionens f(x) (x 2 + x)(x 2 2x + ) graf ser ungefär u på följande sä: Av dea ser vi a f(x) > då x <, < x < ja x >, så a för de -inervall där y() <, < y() < och y() > så äry sräng växande På mosvarande sä är f(x) < då < x < så a i sådana inervall där < y() < så är funkioneny sräng avagande Av dea kan vi dra slusasen a lim y() ifall y() < eller ifall < y() <, och lim y() ifall y() >, för i de falle kommer de a finnas en punk så a
5 lim y() +, dvs lösningen exiserar ine för alla Av dea kan vi dra slusasen a endas är en asympoisk sabil jämvikslösning Lösningarna ser ungefär u på följande sä: Besäm jämvikspunkerna ill differenialekvaionssyseme y () y () y 2 () + 2y ()y 2 (), y 2 () y () y 2 () Vilka av dessa är asympoisk sabila? Lösning: För jämvikspunkerna gäller y y 2 + 2y y 2, y y 2, av vilke följer a y y 2 så a 2y + 2y 2 och y y 2 eller y y 2 Jämvikspunkerna är allså och ] ] y y Vi definierar F(Y ) 2 + 2y y 2 y då Y Då blir derivaan av funkionen y y 2 y 2 F F (Y ) I punken får vi derivaan ] ( + 2y2 ) ( + 2y ) () F Vi beräknar denhär marisens egenvärden: () λ de ( λ) λ 2 +, av vilke följer a λ ± i och efersom den reella delen är negaiv så är jämvikslösningen asympoisk sabil ] Funkionen F har i punken derivaan ] () F ]
6 Vi räknar u denhär marisens egenvärden: () λ de λ λ 2 2, av vilke följer a λ ± 2 och efersom de ena egenvärde är posiiv så är jämvikslösningen ] ine asympoisk sabil 9 Anag a F : R n R n är koninuerlig, F(Y ), F är deriverbar i Y och derivaans F (Y ) egenvärden har alla negaiv reell del Visa a Y är asympoisk sabil jämvikspunk för differenialekvaionssyseme Y () F(Y ()) Lösning: Anag a Y (I anna fall gör man e variabelbye Z() Y () Y ) Lå A F () och G(Y ) F(Y ) AY så af(y ) AY +G(Y ) Differenialekvaionssyseme kan nu skrivas som Y () AY () + G(Y ()),, och lösningen är då Y () e A Y () + e A( s) G(y(s)) ds Efersom A:s egenvärden har negaiv reell del finns de e al µ > och en konsan c < så a e A ce µ, (Om A har flerdubbla egenvärden kan man bli vungen a välja µ så a µ > Re (λ j ) för alla j men om alla egenvärden är enkla kan man välja µ max{re (λ(j))}) Efersom A är deriverbar finns de e al δ > så a Om nu Y () δ då, T] så får vi Y δ G(Y ) µ Y 2c Y () ce µ Y () + Lå nu z vara lösningen ill ekvaionen z() e µ z() + µ 2 vilke är ekvivalen med a ce µ( s) G(y(s)) ds e µ c Y () + µ 2 e µ( s) Y (s) ds, e µ( s) z(s) ds,, z () µz() + m u 2z() µ 2 z(), T] Av dea följer a z() e µ 2 z() Om vi nu väljer z() δ och om Y () är sådan a c Y () < δ så finns de e al T > så a Y () z() då T Nu får vi Y (T) e µt c Y () + µ 2 T e µ(t s) Y (s) ds < e µt + µ 2 T e µ(t s) z(s) ds z(t),
7 och dea innebär, efersom z() och Y () är koninuerliga, a de finns e al T > T så a Y () z() då T Av dea kan vi dra slusasen a Y () z() för alla och vi ser a är en asympoisk sabil jämvikspunk
{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1
ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är
TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1
LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)
Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000
Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns
Lösningar till Matematisk analys IV,
Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en
Kvalitativ analys av differentialekvationer
Analys 360 En webbaserad analyskurs Grundbok Kvaliaiv analys av differenialekvaioner Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Kvaliaiv analys av differenialekvaioner 1 (10) Inrodukion De
Tentamensskrivning i Matematik IV, 5B1210.
Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2
Tenamensskrivning i Maemaik IV, SF1636(5B11,5B13). Tisdagen den 1 januari 1, kl 14-19. Hjälpmedel: BETA, Mahemaics Handbook. Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa.
KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))
Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en
Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna
Egenvärden och egenvektorer
Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en
Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)
TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns
Om exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens
MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS 494 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsäningar som ges här är ine bindande för sudeneamensnämndens bedömning Censorerna besluar om de krierier
Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som
Hur simuleras Differential-Algebraiska Ekvationer?
Hur simuleras Differenial-Algebraiska Ekvaioner? Jonas Elbornsson December 2, 2000 1 Inledning Dea är en sammanfaning av meoder för simulering av Differenial-Algebraiska Ekvaioner (DAE) för kursen i Modellering
Reglerteknik AK, FRT010
Insiuionen för REGLERTEKNIK, FRT Tenamen 5 mars 27 kl 8 3 Poängberäkning och beygssäning Lösningar och svar ill alla uppgifer skall vara klar moiverade. Tenamen omfaar oal 25 poäng. Poängberäkningen finns
Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version B Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad (som delas u i salen) Förbjudna
Repetitionsuppgifter
MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den
Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)
Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen
TENTAMEN HF1006 och HF1008
TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
1 Elektromagnetisk induktion
1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.
Om exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. De flesa av övningarna har, om ine lösningar, så i
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 00-08-8 Lokaler: TER Ansvarig lärare: Klas Nordberg besöker lokalen kl. 5.00 och 7.00 el 8634 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sax
Föreläsning 19: Fria svängningar I
1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen
System med variabel massa
Sysem med variabel massa (YF kap. 8.6) Generella Newon II: ሜF ex = dplj, där p lj = mഥv och ሜF d ex är alla yre krafer som verkar på föremåle. Om kroppens massa ändras genom a vi illför massor dm per idsenhe
Om de trigonometriska funktionerna
Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi
Funktionen som inte är en funktion
Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen
VII. Om de trigonometriska funktionerna
Analys 360 En webbaserad analyskurs Grundbok VII. Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com VII. Om de rigonomeriska funkionerna (3) Inrodukion I de här kapile
Lite grundläggande läkemedelskinetik
Lie grundläggande läkemedelskineik Maemaisk Modellering med Saisiska Tillämpningar (FMAF25) Anders Källén Inrodukion Farmakokineik eller mer svensk läkemedelskineik är en vikig disiplin vid uveklande av
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
5. Tillståndsåterkoppling
5. Tillsåndsåerkoppling 5. Tillsåndsåerkoppling E linjär idskoninuerlig resp. idsdiskre (.ex. sampla) sysem kan som bekan beskrivas med en illsåndsmodell av formen x () = Ax() + Bu() y() = Cx() + Du()
5. Tillståndsåterkoppling
5. Tillsåndsåerkoppling 5. Tillsåndsåerkoppling E linjär idskoninuerlig resp. idsdiskre (.ex. sampla) sysem kan som bekan beskrivas med en illsåndsmodell av formen x () Ax() Bu() y() Cx() Du() resp. Här
Om antal anpassningsbara parametrar i Murry Salbys ekvation
1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara
Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?
Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-
Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:
Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och
uhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a
Vågekvaionen Vågekvaionen beskriver vågors ubredning vare sig de gäller ljudvågor, elekromagneiska vågor eller vibraioner i en sräng. Lå oss för enkelhes skull änka oss en horisonell uppspänd sräng som
Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden
Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera
9. Diskreta fouriertransformen (DFT)
Arbesmaerial 6, Signaler&Sysem I, 2003/E.. 9. Diskrea ourierransormen (DF) 9.1 eriodicie pulsåg Av 6.3(i), arb.mar.4, sid 50, ramgick a ourierransormen (F) av en unkion är e pulsåg X[k]δ( k/) med pulsavsånd
a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).
TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge
INSTUDERINGSUPPGIFTER
INSTUERINGSUPPGIFTER essa uppgifer skall hjälpa dig vid inlärningen de skall fungera som e slags diagnosisk prov efer de a du har räkna övningsuppgiferna i PB: (hur bra kan du redan de vi har gå igenom
Laplacetransformen. Från F till L. Den odiskutabla populäriteten hos Fourierintegralen. f HtL - w t t, w œ R (1)
Från F ill L Laplaceransformen Den odiskuabla populärieen hos Fourierinegralen f HL - w, w œ R () har a göra med a den ger informaion om vilka frekvenser w som ingår i signalen f, och med vilken syrka.
FÖRELÄSNING 13: Tidsdiskreta system. Kausalitet. Stabilitet. Egenskaper hos ett linjärt, tidsinvariant system (LTI)
p. FÖRELÄSNING 3: Tidsdiskrea sysem. Kausalie. Sabilie. Linjära idsinvariana sysem (LTI-sysem) Differenial- och differens-ekvaioner Räkna på idskoninuerlig LTI-sysem med Fourierr. (kursiv) Räkna på idsdiskre
Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.
Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen
Datorlaborationer i matematiska metoder E2, fk, del B (TMA980), ht05
Daorlaboraioner i maemaiska meoder E, fk, del B (TMA98), h5 Laboraionen är ej obligaorisk Den besår av re uppgifer som kan ge en bonuspoäng var vid enamina i maemaiska meoder, fk, del B, 5--6, vår 6 och
Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion
Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?
TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000
TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.
Laborationstillfälle 4 Numerisk lösning av ODE
Laboraionsillfälle 4 Numerisk lösning av ODE Målsäning vid labillfälle 4: Klara av laboraionsuppgif 3. Läs förs een om differensmeoder och gör övningarna. Läs avsnie Högre ordningens differenialekvaioner
1 Diagonalisering av matriser
1 Diagonalisering av matriser Kan alla matriser diagonaliseras? Nej, det kan de inte. Exempel: ẋ 1 = x 1 + 2x 2, Integrerande faktor: e t x 2 = x 2 x 2 (t) = c 2 e t och ẋ 1 x 1 = 2c 2 e t. e t x 1 e t
Tillämpningar av komplex analys på spektralteori
Tillämpningar av komple analys på spektralteori Anders Källén, baserat på föreläsningar hösten 1979 av Lars Hörmander MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet härleds
System, Insignal & Utsignal
1 Sysem, Insignal & Usignal Insignal x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem, al. en algorim, som för olika insignaler
System, Insignal & Utsignal
Kap 1 Signaler och Sysem x Sysem y = H{x} 1 Sysem, Insignal & Usignal Insignal x() x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem,
3 Rörelse och krafter 1
3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns
m Animering m Bilder m Grafik m Diskret representation -> kontinuerlig m En interpolerande funktion anvšnds fšr att
NŒgra illšmpningar Inerpolaion Modellfunkioner som saisfierar givna punker m Animering l m Bilder l l ršrelser,.ex. i ecknad film fšrger resizing m Grafik m Diskre represenaion -> koninuerlig 2 m Vi kšnner
8.4 De i kärnan ingående partiklarnas massa är
LÖSIGSFÖRSLAG Fysik: Fysik och Kapiel 8 8 Kärnfysik Aomkärnans sabilie 8. Läa kärnor är sabila om de har samma anal prooner som neuroner. Sörre kärnor kräver fler neuroner än prooner för a sark växelverkan
Biomekanik, 5 poäng Kinetik Härledda lagar
Uöver Newons andra lag, kraflagen, finns också andra samband som kan användas för a lösa olika problem Bland dessa s.k. härledda lagar finns Arbee Energisamband Impuls Rörelsemängdssamband (Impulsmomen
5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER
5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 207-04-9 Lokaler: G33, G35, TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.00 och 7.30 el 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Anm 3: Var noga med att läsa och studera kurslitteraturen.
TNA- Maemaisk grundkurs Repeiionsuppgifer (inklusive förslag ill planeringsförslag sam faci) -- Sien Nilsson Kurshemsida: hp://websaff.in.liu.se/~sini/tna.hm Hänvisningar FN = Forsling Nemark: Anals i
Egenvärden och egenvektorer
Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av
shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik.
Kap 10: sid. 1 Blanchard kapiel 10 Penninmänd, inflaion och ssselsänin Effeker av penninpoliik. Tre relaioner: Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och medellån sik Tar hänsn
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017
Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:
INSTUDERINGSUPPGIFTER
INSTUERINGSUPPGIFTER essa ppgifer skall hjälpa dig vid inlärningen de skall fngera som e slags diagnosisk prov: (hr bra) kan d redan de vi har gå igenom den gångna veckan? Försök förs a lösa ppgiferna
Kolla baksidan på konvolut för checklista Föreläsning 6
0/1/014 10:17 Prakisk info, fors. Lös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd) TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor
TSBB31 Medicinska bilder Föreläsning 1
TSBB3 Medicinska bilder Föreläsnin Inormaion hp://www.cvl.isy.liu.se/educaion/underraduae/sbb3 Repeiion (och lie ny?) av D Fourierransorm Vikia sinaler (unkioner) Tolknin Teorem Eenskaper Linjär sysem
TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )
VERSION A TENTAMEN Daum: mars 7 Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H, 6L, 6A TEN (Maemaisk saisik ) Skrivid: 8:5-:5 Lärare: Armin Halilovic Kurskod 6H, 6L, 6A Hjälpmedel: Miniräknare av vilken yp
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB14 Tid: 29-6-3 kl. 8-12 Lokal: R41 och U15 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och 1.45 el 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Demodulering av digitalt modulerade signaler
Kompleeringsmaeriel ill TSEI67 Telekommunikaion Demodulering av digial modulerade signaler Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping Februari 27 No: Denna uppsas
ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags...
Prakisk info, fors. ös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor som Kens
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
Skattning av respirationshastighet (R) och syreöverföring (K LA ) i en aktivslamprocess Projektförslag
Beng Carlsson I ins, Avd f sysemeknik Uppsala universie Empirisk modellering, 009 Skaning av respiraionshasighe R och syreöverföring LA i en akivslamprocess rojekförslag Foo: Björn Halvarsson . Inledning
Regelstyrd penningpolitik i realtid
Naionalekonomiska Insiuionen Regelsyrd penningpoliik i realid En konrafakisk simulering med realidsdaa Magiseruppsas 4 juni 2008 Handledare: Klas Freger Förfaare: Marin Henriksson Handledare: Jesper Hansson
Lösningsforslag till tentamen i SF1624 den 22/ e x e y e z = 5e x 10e z = 5(1, 0, 2). 1 1 a a + 2 2a 4
Institutionen för matematik, KTH Serguei Shimorin Lösningsforslag till tentamen i SF64 den /0 007 Eftersom planet går genom punkten (,, 0, det har ekvation a(x + b(y + + cz = 0, där a, b, c är koefficienter
2 Laboration 2. Positionsmätning
2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni
Lösningar till tentamen i Kärnkemi ak den 21 april 2001
Lösningar ill enamen i Kärnkemi ak den 21 april 2001 Konsaner och definiioner som gäller hela enan: ev 160217733 10 19 joule kev 1000 ev ev 1000 kev Gy A 60221367 10 23 mole 1 Bq sec 1 Bq 10 6 Bq joule
( ) är lika med ändringen av rörelse-
LÖSNINGAR TILL PROBLEM I KAPITEL 9 LP 9. Impulslagen skris allmän Fd p() p( ) β och ualas: är lika med ändringen a rörelse- krafens impuls under idsineralle, mängden under samma idsinerall. y I dea problem
1. Geometriskt om grafer
Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016
Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:
SDOF Enfrihetsgradssystemet
SDOF Enfrihesgradssyseme De enkla massa-fjäder-syseme, eller sdof-syseme (single degree of freedom, enfrihesgradssyem) är e grundläggande begrepp inom akusik och mekanik. Med god försåelse för dea har
Dagens ämnen. Kvadratiska former. Andragradskurvor. Matrisform Diagonalisering av kvadratiska former Max/min Teckenkaraktär
Dagens ämnen Kvadratiska former Matrisform Diagonalisering av kvadratiska former Max/min Teckenkaraktär Andragradskurvor De olika kurvtyperna Rita graferna i rätt bas Kvadratiska former a 1 x 1 + a x +
Rörelse. Hastighet. 166 Rörelse Författarna och Zenit AB
Rörelse Hur kan en acceleraion ara negai? Vad innebär de a en rörelse är likformig? Kan å händelser ara samidiga, men ändå ine? Vilken acceleraion får en fri fallande kropp? Vad menas med likformig accelererad
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
Egenvärden och egenvektorer. Linjär Algebra F15. Pelle
Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor
Livförsäkringsmatematik II
Livförsäkringsmaemaik II Hanering av översko Beng von Bahr Richard Blom 2004 1(22) Innehållsföreckning 1. Hur och var översko uppsår i en livporfölj...3 1.1. Resularäkningen...3 Ekonomisk resula i allmänhe...3
D-UPPSATS. Prisutvecklingen av järnmalm 1970-2000
D-UPPSATS 2006:126 Prisuvecklingen av järnmalm 1970-2000 En jämförelse av Hoellingmodellen och den fakiska uvecklingen Timo Ryhänen Luleå ekniska universie D-uppsas Naionalekonomi Insiuionen för Indusriell
Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet
1 File = SweTrans_RuMarch09Lohmander_090316 ETT ORD KORRIGERAT 090316_2035 (7 sidor inklusive figur) Sraegiska möjligheer för skogssekorn i Ryssland med fokus på ekonomisk opimering, energi och uhållighe
Mat Grundkurs i matematik 3-II
Mat-11532 Grundkurs i matematik 3-II G Gripenberg Aalto-universitetet 2 december 21 G Gripenberg (Aalto-universitetet) Mat-11532 Grundkurs i matematik 3-II 2 december 21 1 / 39 1 Ekvationssytem och matrisräkning
Mat Grundkurs i matematik 3-II
Mat-53 Grundkurs i matematik 3-II G Gripenberg Aalto-universitetet december Ekvationssytem och matrisräkning 3 Gauss metod, LU-uppdelning 3 Egenvärden 4 Projektioner 9 Principalkomponenter Differentialekvationssystem
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.
Egnahemsposten i konsumentprisindex. KPI-utredningens förslag. Specialstudie Nr 2, maj 2002
Egnahemsposen i konsumenprisindex En granskning av KPI-uredningens förslag Specialsudie Nr 2, maj 22 Ugiven av Konjunkurinsiue Sockholm 22 Konjunkurinsiue (KI) gör analyser och prognoser över den svenska
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 9 6, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
Kylvätska, tappa ur och fylla på
Kyväska, appa ur och fya på Nödvändiga speciaverkyg, konro- och mäinsrumen sam hjäpmede Adaper för ryckprovare för kysysem -V.A.G 1274/8- Rör för ryckprovare för kysysem -V.A.G 1274/10- Uppsamingskär för
Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden.
Optimering, exempel Exempel 1 (optimering över kompakt mängd) Bestäm största och minsta värdet till funktionen f(x,y) = x 4 + y 4 + 4x 2 + 16 i cirkelskivan {x 2 + y 2 4}. Lösning: Cirkelskivan är kompakt
5 VÄaxelkurser, in ation och räantor vid exibla priser {e ekter pºa lºang sikt
5 VÄaxelkurser, in aion och räanor vid exibla priser {e eker pºa lºang sik Som vi idigare noera anar vi a den reala väaxelkursen pºa lºang sik Äar oberoende av penningmäangden och väaxelkursen beror dºa