Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016
|
|
- Anita Abrahamsson
- för 8 år sedan
- Visningar:
Transkript
1 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära: Hans undh, Grundläggande hållfasheslära, Sockholm, Handbok och formelsamling i hållfasheslära, KTH, eller udrag ur denna; vid Ins. for illämpad mekanik uarbead formelsamling. 3. ublicerade maemaiska, fysiska och ekniska formelsamlingar. Medagna böcker får innehålla normala marginalaneckningar, men inga lösningar ill problemuppgifer. ösa aneckningar i övrig är ine illåna. Vid veksamma fall: konaka skrivningsvaken innan hjälpmedle används. 4. Typgodkänd miniräknare. ärare: eer Möller, el (77) 505 ösningar: Anslås vid ingången ill insiuionens lokaler 7/4. Se även kurshemsidan. oängbedömning: Varje uppgif kan ge maximal 5 poäng. Maxpoäng på enan är 5. eygsgränser: 0 4p ger beyg 3; 5 9p ger beyg 4; för beyg 5 krävs mins 0p. Yerligare poäng ges för varje korrek lös inlämningsuppgif under kursens gång (lp 4 05) dock krävs ovillkorligen mins 7 poäng på enamen. För a få poäng på en uppgif måse lösningen vara läslig och uppsällda ekvaioner/samband moiveras (de ska vara möjlig a följa ankegången). Använd enydiga beeckningar och ria ydliga figurer. Konrollera dimensioner och (där så är möjlig) rimligheen i svaren. esulalisa: Anslås senas /4 på samma sälle som lösningarna sam på kurshemsidan. esulaen sänds ill beygsexpediionen senas vecka 6. Granskning: Tisdag / sam orsdag 4/ på ins. (plan 3 i nya M huse) Uppgiferna är ine ordnade i svårighesgrad /WM
2 . Axelkonsrukionen i figuren besår av en cenral massiv axel med radien r och e omgivande unnväggig rör med medelradie och godjocklek T r T Delarna är illverkade av e lineär elasisk 0 maerial med skjuvmodul G, och de är förenade med gavlar som kan berakas som sela. a: esäm radieförhållande r så a snimomenen i rör och axel blir lika sora, då konsrukionen belasas med e vridande momen T. (3p) 3r b: Vilken del kommer förs a plasicera då vridmomene T successiv ökar, om ----? (p). p En packning besår av vå delar med olika maerial enlig figuren. Vid monering uppsår e konakryck p på övre yan av pack- a y ningsdel delen pressas då mo x anliggande sålyor så a äning uppsår. a b Såle är mycke syvare än packningen och sel kan berakas som oändlig syv. ackningsmaerial är lineär elasiska och fria a uvidga sig i z led; frikionen mellan de olika konakyorna kan försummas. esäm normalspänningarna i de båda packningsdelarna ( σ x, σ y, σ x, σ y ). (5p) Daa: a b 0 mm, p 00 Ma, E E 3 0 Ga, ν ν 0,4 3. Den lineär elasiska balken AC är fas inspänd vid A och rullagrad vid och C, så a vå spann med längden vardera bildas. Delen A har dubbel så sor böjsyvhe som delen C. Mi på delen C verkar en nedå rikad kraf, medan AC belasas med en fördelad las med lineär varierande inensie (kraf/längd); sörsa inensieen är (se figur). a: ia momendiagramme för delen C (3p) A C /WM
3 9 b: För en viss belasning blir M max i delen C. alken har här 0 e enkelsymmerisk I värsni med flänsbredder H och H, sam H z livhöjd H (se figur); godjockleken är och anas mycke mindre än övriga värsnisdimmensioner ( «H ). esäm så a säkerheen mo plasicering blir Daa: 50 kn, 30 Ma, σ max H y m och H 00 mm. (p) H 4. En halvcirkelbåge med krökningsradien och konsan böjsyvhe är fas inspänd vid A och ska rullagras vid. De visar sig a öppnings vinkeln bara är π ϕ (rad) så A ϕ ϕ e passningsfel ϕ «uppkommer vid rullsöde. Hur sor blir inspänningsmomene efer moneringen? (5p) 5. Axialkrafen är rikad längs balkens medellinje och angriper balken vid misöde. a: esäm övre och undre gräns för kriisk las med avseende på elasisk sabilie. (p) b: Den kriiska lasen kan beräknas genom a lösa differenialekvaionen 4 d w d w + n, där. Ange och moivera de randvillkor som då behövs för a d dx 0, x ( 0, ) n x 4 besämma. andvillkoren ska ges i ermer av villkor på funkionen w och dess derivaor. (p) kr c: Härled knäckekvaionen, dvs en ekvaion vars lägsa posiiva ro n, n -----, ger kriiska las- en med avseende på elasisk sabilie. (p) kr z, w( x) x A C Observera a bara delen A är ryck! /WM
4 ösning a: Vi har rivial a M v T, där M v är snimomene i respekive del. Vridningsvinkeln för axeln är v M 0M (undh 6,); vinkeln för röre är v ϕ axel (undh 6 6). πgr 4 ϕ rör πg 4 Dessa vridningsvinklar måse vara lika sora efersom gavlarna är sela: ϕ axel ϕ rör -- r ,5 r ösning b: Skjuvspänningen i röre (konsan pga unnväggighe) fås enlig undh 6 4 som τ rör M v,rör 0M v,rör π π 3 --r 3 80M v,rör πr 3 undh 6 4 ger maximal skjuvspänning i axeln: τ axel M v,axel πr 3 3r Efersom ---- ve vi från deluppgif a a M, så skjuvspänningen i röre är sörre än v,axel M v,rör sörsa skjuvspänningen i axeln röre plasicerar förs ösning : Jämvik vid den belasade yan ger a σ y p 00 Ma. Jämvik i gränsskike mellan de vå maerialen visar a σ x σ x () Axialöjningarna beräknas enlig undh 0 5,6 (al. Formelsamling sid 4, med σ z 0 i båda maerialen: ε x ( σ x νσ y ) ( σ,, sam E x + νp) ε x ( σ x νσ y ) ( σ 3E x νσ y ) E ε y ( σ. Villkore ger då E y νσ x ) ( σ 3E y νσ x ) aε y 0 E σ y νσ x () medan villkore aε x + 0 bε x ger b ( σ E x + νp) + -- ( σ 3 x νσ y ) 0 (3) 6νp där vi unyja a a b. Ekvaionerna (), () och (3) ger σ x σ x och 7 ν 35 Ma σ y 6ν p ν 4 Ma /WM
5 ösning 3a: Konsrukionen är saisk obesämd efersom vi har 5 södreakioner, men bara illgång ill 3 jämviksekvaioner. Vi använder här krafmeod och elemenarfall för lösa uppgifen. Snia omedelbar ill vänser och höger om söde vid. Momenjämvik för de usniade söde ger a M A M C ; forsäningsvis beecknar vi snimomene med M. Från formelsamlingen sid 9 och får vi a vinklarna på ömse sidor söde blir H A M A M C A M θ A M θ C θ A M M θ C C 7 Kompaibiliesvillkore θ A + θ C 0 ger nu M eraka nu momenjämvik vid för delen C: C M. Med fås C 0 M C M C å M mi beeckna snimomene mi på spanne C; snia omedelbar ill höger om krafen och beraka momenjämvik för den högra delen: M mi + C -- 0 M mi Vid den fria änden C är snimomene 0 efersom inge yre momen verkar här. Mellan C och mipunken måse momene d M variera lineär, efersom dx q( x) 0 ; av samma anledning är variaionen lineär mellan och mipunken. Vi kan nu ria momendiagrame. ösning 3b: Vi har a sam beräkna arearöghesmomene σ max M max z max För a hia z 3 max, måse vi förs hia värsnies y yngdpunk. Med beeckningar enlig figuren får vi de saiska momene m.a.p η axeln S η Az p H H + H H + H 0, där 4 A 5H är värsnisyan; vi finner då z p --H, så 5 z max 6H H + z p I y I y M: 7 M mi 9 z H H H C C z p η y /WM
6 Med Seiners sas får vi nu arearöghesmomene I y ( H) H( H z p ) H( H z p ) Hz p 5H (vi har här försumma ermer som är kubiska 9 6H 5 i, efersom «H ). Insäning ger nu ur vilke 0 5 5H ösning 4: Inför södreakionen vid ( De böjande momene M( ϕ) V i bågen kan då skrivas ) som saisk överalig H 7,8 mm M( ϕ) M( ϕ) V ( cosϕ). Casiglianos a sas ger nu π M ϕ M d ϕ V, varur V 3 ( cosϕ) dϕ 0 0 π ϕ V V ϕ ϕ π 3π ( cosϕ) dϕ 0 ϕ π De söka momene är då 4 ϕ M( π) V ( cosπ) V π ösning 5a: Om spanne C as bor så har vi Eulers a knäckfall, medan om i spanne C så fås 3e knäckfalle. De vå yerligheerna ger en vekare respekive vekare sukur, så π,05π knäcklasen måse ligga däremellan: < kr < ösning 5b: Vi har rivial a ransversalförskjuningen är noll vid de båda söden A och : w( 0) 0 w( ) 0 Vid x 0 är snimomene noll; efersom M w'' har vi då w'' ( 0) 0 Vid x kan vi hia e samband mellan roaionen θ w' ( ) och snimomene M w'' ( ) 3 M( ) w' ( ) ; formelsamling sid 9 ger θ , så w' ( ) eller w'' ( ) + --w' ( ) ösning 5c: Differenialekvaionens lösning är w( x) A + x + Ccos( nx) + Dsin( nx) (undh ekv 8 66). andvillkoren vid x 0 ger då A + C 0 och Cn 0, så A C 0. Villkore w( ) 0 ger sin( n) därefer + Dsin( n) 0, varur D Vi har då sin( n) w D sin( nx) x sin( n) w' D n cos( nx) w'' D( n sin( nx ))) Sisa randvillkore ger nu D n 3n 3 sin( n) cos( n) sin( n) 0. Icke riviala lösningar ( D 0 ) kräver a urycke inom parenes är noll: 3n ( 3 + ( n) ) an( n) /WM
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017
Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2016
Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTAMEN I ÅFASTETSÄA KF OC F MA 81 17 AUGUSTI 16 Tid och plas: 8.3 1.3 i M huse. ärare besöker salen ca 9.3 sam 11.3 jälpmedel: 1. ärobok
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel)
DEL - (Teoridel uan hjälpmedel). Vilken yp av ekvaion är dea: LÖSNINGAR ε x = E (σ x νσ y )+α T Ange vad sorheerna ε x, σ x, σ y, E, ν, α och T beyder, inklusive deras dimension (enhe) i SI-enheer. E maerialsamband
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30
2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.
Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014
Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2015
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ENAMEN I HÅFASHESÄA F MHA 8 5 AI 5 ösningar id och plats: 8.3.3 i V huset. ärare besöker salen 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:
Mekanik och maritima vetenskaper, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2017
Mekanik och maritima vetenskaper, Chalmers tekniska högskola ENAMEN I HÅFASHESÄRA KF OCH F MHA 8 6 OKOBER 7 i och plats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt.3 Hjälpmeel: ösningar. ärobok i
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011
Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:
= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2
Tenamensskrivning i Maemaik IV, SF1636(5B11,5B13). Tisdagen den 1 januari 1, kl 14-19. Hjälpmedel: BETA, Mahemaics Handbook. Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa.
{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1
ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I ÅLLFASTETSLÄRA F MA 081 JUNI 014 Lösningar Tid och plats: 14.00 18.00 i M huset. Lärare besöker salen ca 15.00 samt 16.0 jälpmedel:
Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000
Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns
Tentamensskrivning i Matematik IV, 5B1210.
Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Lösningar till Matematisk analys IV,
Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en
Reglerteknik AK, FRT010
Insiuionen för REGLERTEKNIK, FRT Tenamen 5 mars 27 kl 8 3 Poängberäkning och beygssäning Lösningar och svar ill alla uppgifer skall vara klar moiverade. Tenamen omfaar oal 25 poäng. Poängberäkningen finns
TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )
VERSION A TENTAMEN Daum: mars 7 Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H, 6L, 6A TEN (Maemaisk saisik ) Skrivid: 8:5-:5 Lärare: Armin Halilovic Kurskod 6H, 6L, 6A Hjälpmedel: Miniräknare av vilken yp
a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).
TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge
TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1
LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,
FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30
Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:
TENTAMEN HF1006 och HF1008
TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och
Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)
TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns
KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))
Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010
Institutionen för tillämpad mekanik, halmers tekniska högskola TENTEN I HÅFSTHETSÄ F H 8 UGUSTI ösningar Tid och plats: 8.3.3 i V huset. ärare besöker salen ca 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på
Om antal anpassningsbara parametrar i Murry Salbys ekvation
1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara
Föreläsning 19: Fria svängningar I
1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen
3 Rörelse och krafter 1
3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns
1 Elektromagnetisk induktion
1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9
ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Differentialekvationssystem
3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 00-08-8 Lokaler: TER Ansvarig lärare: Klas Nordberg besöker lokalen kl. 5.00 och 7.00 el 8634 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sax
Om exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens
Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.
STOCKHOLMS UNIVERSITET Naionalekonomiska insiuionen Mas Persson Tenamen på grundkursen EC1201: Makroeori med illämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. Tenamen besår av io frågor
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas
DIGITALTEKNIK. Laboration D171. Grindar och vippor
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Håkan Joëlson 2006-01-19 v 1.3 DIGITALTEKNIK Laboraion D171 Grindar och vippor Innehåll Uppgif 1...Grundläggande logiska grindar Uppgif 2...NAND-grindens
Biomekanik, 5 poäng Kinetik Härledda lagar
Uöver Newons andra lag, kraflagen, finns också andra samband som kan användas för a lösa olika problem Bland dessa s.k. härledda lagar finns Arbee Energisamband Impuls Rörelsemängdssamband (Impulsmomen
Inbyggd radio-styrenhet 1-10 V Bruksanvisning
Version: R 2.1 Ar. r.: 0865 00 Funkion Radio-syrenheen möjliggör en radiosyrd ändning/ släckning och ljusdämpning av en belysning. Inkopplingsljussyrkan kan sparas i apparaen som memory-värde. Bejäning
Antal uppgifter: Datum:
KARLSTADS UNIVERSITET Insiuionen för ingenjörsveenskp, fysik och memik Mskineknik Tenmen i: Konsrukiv uformning och CAD Kod: MSGC27/MSGC31 Anl uppgifer: + 5 Dum: 16-11-04 Exminor: Nils Hllbäck Skrivid:8.15-13.15
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
Lektion 4 Lagerstyrning (LS) Rev 20130205 NM
ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller
Repetition Kraft & Rörelse Heureka Fysik 1: kap. 4, version 2013
Repeiion Kraf & Rörelse Heureka Fysik 1: kap. 4, 11.1-11 version 013 Rörelse En kropps rörelse kan beskrivas med olika yper av diagram. Sräcka-id-graf (s--graf) I en s--graf kan man uläsa hur lång e föremål
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!
Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen
Om exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. De flesa av övningarna har, om ine lösningar, så i
Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.
Från kap. 5: Ohm s lag Hög poenial på den sida där srömmen går in Låg poenial på den sida där srömmen går u Man får allid e spänningsfall i srömmens rikning i e mosånd. Från kap. 5: Poenialskillnaden över
Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)
Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen
Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl
Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a
MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS 494 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsäningar som ges här är ine bindande för sudeneamensnämndens bedömning Censorerna besluar om de krierier
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Diverse 2(26) Laborationer 4(26)
Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer
Upphandlingar inom Sundsvalls kommun
Upphandlingar inom Sundsvalls kommun 1 Innehåll Upphandlingar inom Sundsvalls kommun 3 Kommunala upphandlingar - vad är de? 4 Kommunkoncernens upphandlingspolicy 5 Vad är e ramaval? 6 Vad gäller när du
Funktionen som inte är en funktion
Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Generell dimensionering av ett grundelement i Sandwich
Projeknummer Kund Rappornummer D4.089.00 Läa karossmoduler TR08-006 Daum Referens Revision 008-0-7 Regisrerad Ufärdad av Granskad av Godkänd av Klassificering Open Generell dimensionering av e grundelemen
2 Laboration 2. Positionsmätning
2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni
Laborationstillfälle 4 Numerisk lösning av ODE
Laboraionsillfälle 4 Numerisk lösning av ODE Målsäning vid labillfälle 4: Klara av laboraionsuppgif 3. Läs förs een om differensmeoder och gör övningarna. Läs avsnie Högre ordningens differenialekvaioner
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.
Anm 3: Var noga med att läsa och studera kurslitteraturen.
TNA- Maemaisk grundkurs Repeiionsuppgifer (inklusive förslag ill planeringsförslag sam faci) -- Sien Nilsson Kurshemsida: hp://websaff.in.liu.se/~sini/tna.hm Hänvisningar FN = Forsling Nemark: Anals i
INSTUDERINGSUPPGIFTER
INSTUERINGSUPPGIFTER essa uppgifer skall hjälpa dig vid inlärningen de skall fungera som e slags diagnosisk prov efer de a du har räkna övningsuppgiferna i PB: (hur bra kan du redan de vi har gå igenom
System med variabel massa
Sysem med variabel massa (YF kap. 8.6) Generella Newon II: ሜF ex = dplj, där p lj = mഥv och ሜF d ex är alla yre krafer som verkar på föremåle. Om kroppens massa ändras genom a vi illför massor dm per idsenhe
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom
KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version B Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad (som delas u i salen) Förbjudna
Spiskåpa Orion. Spiskåpa Orion Datablad. För synligt montage utan kökslucka. Spiskåpa Orion
Spiskåpa Orion Daablad 17-02-14 Spiskåpa Orion För synlig monage uan kökslucka Kräver lie lufflöde ack vare sor volym; är enkel a sköa, ys och lä a monera. Sängd Öppen Spiskåpa Orion För synlig monage
Formelblad, lastfall och tvärsnittsdata
Strukturmekanik FE60 Formelblad, lastfall och tvärsnittsdata Formelblad för Strukturmekanik Spännings-töjningssamband för linjärt elastiskt isotropt material Enaiell normalspänning: σ = Eε Fleraiell normalspänning:
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
Demodulering av digitalt modulerade signaler
Kompleeringsmaeriel ill TSEI67 Telekommunikaion Demodulering av digial modulerade signaler Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping Februari 27 No: Denna uppsas
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går
Grundläggande maskinteknik II 7,5 högskolepoäng
Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,
TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12
Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två
BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator
Tryckoberoende elekronisk flödesregulaor Beskrivning är en komple produk som besår av e ryckoberoende A-spjäll med mäenhe som är ansluen ill en elekronisk flödesregulaor innehållande en dynamisk differensryckgivare.
Datorlaborationer i matematiska metoder E2, fk, del B (TMA980), ht05
Daorlaboraioner i maemaiska meoder E, fk, del B (TMA98), h5 Laboraionen är ej obligaorisk Den besår av re uppgifer som kan ge en bonuspoäng var vid enamina i maemaiska meoder, fk, del B, 5--6, vår 6 och
PUBLIKATION 2009:5 MB 801. Bestämning av brottsegheten hos konstruktionsstål
PUBLIKATION 2009:5 MB 801 Besämning av brosegheen hos konsrukionssål 2009-06 Tiel: MB 801 Besämning av brosegheen hos konsrukionssål Publikaion: 2009:5 Ansvarig: Mas Karlsson Konakperson: Yngve Thorén
1. Geometriskt om grafer
Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 207-04-9 Lokaler: G33, G35, TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.00 och 7.30 el 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna
INSTUDERINGSUPPGIFTER
INSTUERINGSUPPGIFTER essa ppgifer skall hjälpa dig vid inlärningen de skall fngera som e slags diagnosisk prov: (hr bra) kan d redan de vi har gå igenom den gångna veckan? Försök förs a lösa ppgiferna
Radio-persiennaktor, mini Art. Nr.:
Ar. r.: 0425 00 A Funkion Radio-persiennakorn möjliggör radio-fjärrkonroll av persienn- och såljalusimoor. Beroende på hur radiosändaren akiveras juseras lamellerna (kor knappryckning 1 s) eller körs persiennerna
Brandspjäll ETCE Monterings-, drift- och underhållsanvisning 01/2015
Monerings-, drif- och underhållsanvisning 0/05 Monering Brandspjäll ETCE ska moneras enlig denna moneringsanvisning, se sidorna -5. Drif och funkionskonroll Enlig CE märkning ska e brandspjäll allid förses
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
2017-03-17 Insallaionseknik Provmomen: Tenamen 5,0 hp Ladokkod: 41B18I Tenamen ges för: Byggingenjör åk 2 - BI 2 7,5 högskolepoäng Tenamenskod: Tenamensdaum: 2017-03-17 Tid: 14:00-18:00 Lokal: C 208 Hjälpmedel:
3. Matematisk modellering
3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes
Laboration 3: Växelström och komponenter
TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens
Ordinära differentialekvationer,
Ordinära dierenialekvaioner ODE:er sean@i.uu.se I is a ruism ha nohing is permanen excep change. - George F. Simmons ODE:er är modeller som beskriver örändring oa i iden Modellen är beskriven i orm av
bättre säljprognoser med hjälp av matematiska prognosmodeller!
Whiepaper 24.9.2010 1 / 5 Jobba mindre, men smarare, och uppnå bäre säljprognoser med hjälp av maemaiska prognosmodeller! Förfaare: Johanna Småros Direkör, Skandinavien, D.Sc. (Tech.) johanna.smaros@relexsoluions.com
SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1
SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk
Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som
Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005
Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A
Repetitionsuppgifter
MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den
Formelsamling i Hållfasthetslära för F
Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen
Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan
Laboration D158. Sekvenskretsar. Namn: Datum: Kurs:
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Lars Wållberg/Håkan Joëlson 2001-02-28 v 3.1 ELEKTRONIK Digialeknik Laboraion D158 Sekvenskresar Namn: Daum: Eposadr: Kurs: Sudieprogram: Innehåll
Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2
Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer