Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011

Storlek: px
Starta visningen från sidan:

Download "Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011"

Transkript

1 Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära: Hans undh, Grundläggande hållfasthetslära, Stockholm,.. Handbok och formelsamling i hållfasthetslära, KTH, eller utdrag ur denna; vid Inst. for tillämad mekanik utarbetad formelsamling. 3. ublicerade matematiska, fysiska och tekniska formelsamlingar. Medtagna böcker får innehålla normala marginalanteckningar, men inga lösningar till roblemugifter. ösa anteckningar i övrigt är inte tillåtna. Vid tveksamma fall: kontakta skrivningsvakten innan hjälmedlet används. 4. Valfri kalkylator i fickformat med tangentbord och sifferfönster i samma enhet. ärare: eter Möller, tel (77) 55 ösningar: Anslås vid ingången till institutionens lokaler, lan 3 i norra trahuset, Nya M huset, 3/5. Se även kurshemsidan. oängbedömning: Varje ugift kan ge maimalt 5 oäng. Maoäng å tentan är 5. Betygsgränser: 4 ger betyg 3; 5 9 ger betyg 4; för betyg 5 krävs minst. Ytterligare oäng ges för varje korrekt löst inlämningsugift under kursens gång (l 4 ) dock krävs ovillkorligen minst 7 oäng å tentamen. För att få oäng å en ugift ska den vara läsligt och uställda ekvationer/ samband motiveras (det ska vara möjligt att följa tankegången). Använd entydiga beteckningar och rita tydliga figurer. Kontrollera dimensioner och (där så är möjligt) rimligheten i svaren. Resultatlista: Granskning: Anslås senast 3/6 å samma ställe som lösningarna samt å kurshemsidan. Resultaten sänds till betygseeditionen senast 7/6. Torsdag 6/6 samt tisdag 3/8 3 å inst. (lan 3 i södra trahuset, nya M huset). Ugifterna är inte ordnade i svårighetsgrad 5 3/WM

2 . Beräkna förlängningen δ av en stång med längden som enbart belastas med sin egentyngd, då den hänger fritt från ett tak. Materialet är lineärt elastiskt med elasticitetsmodul E och densitet (masstäthet) ρ. Tvärsnittsarean är cirku- A( ) lär och varierar enligt A( ) A e, där k > är en dimensionslös konstant. (5) k δ. I en lineärt elastisk kro, elasticitetsmodul E 4 Ga, oissons tal ν 3 och sträckgräns Ma, har sänningarna i en unkt beräknats till σ 4 Ma σ y 8 Ma σ 4 Ma τ y τ 4 Ma τ y a: Beräkna den relativa volymökningen, dvs den volymetriska töjningen ε v ε + ε y + ε, i unkten () b: Bestäm säkerheten mot lasticering, s -----, enligt Trescas hyotes () c: Hur stor är den största skjuvsänningen (i något lan) i unkten? () σ e 3. En balk ABC har längden och konstant böjstyvhet EI. Dess vänstra ände är rullagrad medan högra änden är fast insänd; vid B stöds balken av ytterligare en rullagring, så att två lika långa sann bildas. Mitt å det vänstra sannet belastas konstruktionen av en nedåt riktad kraft. a: Beräkna det böjande momentet i balken vid (dvs under kraften ). (3) A B C b: I ett visst snitt blir det böjande momentet M y Beräkna den till 56 H beloet största normalsänningen, σ ma, i snittet. Tvärsnittet är enkelsymmetriskt och tunnväggigt med godstjocklek t «H ; form och M y y H dimensioner i övrigt framgår av figuren till höger. ( H 5 3/WM

3 4. En konsolbalk med längden belastas i sin fria ände med ett moment M. Tvärsnittet är rektangulärt, där bredden varierar lineärt så att böjstyvheten blir EI( ) θ M EI( ) EI --, där E är det lineärt elastiska materialets elasticitetsmodul och I är areatrög- hetsmomentet vid. Beräkna a: konsoländens rotation θ () b: konsoländens utböjning (3) 5. Ramen ABC består av en elare AB med längden och böjstyvheten EI, samt en horisontell balk BC med längd och böjstyvhet EI B EI C Balken är fast insänd vid C, medan elaren är ledad vid golvet A och belastas med en tryckande aialkraft. Aialdeformationer EI (längdändringar) kan försummas. a: Ange med tydlig motivering en övre och en undre gräns för den A kritiska lasten kr, med avseende å elastisk instabilitet. () b: Härled knäckekvationen, dvs en ekvation vars lösning ger kritisk last med avseende å elastisk instabilitet, för konstruktionen. (4) ösning : Snitta genom stången vid en godtycklig koordinat egentyngden för delen nedanför snittet blir Q( ) ρg A( ξ) dξ. Från jämvikt får vi att normalkraften N( ) Q( ). Om den aiella förskjutningen betecknas u( ) har vi vidare du d σ( ) N( ) ε( ) E EA( ) ρga e k ρg e k ke k k ---- e e k N( ) Q( ) ξ du ρg Vi får nu stångförlängningen som δ d d k ( k + e k ) E 3 5 3/WM

4 Alternativt: ösning av randvärdesroblemet d du EA ρga < < d d du u( ) d ger u( ) k( ) ρg e --e k +, varefter vi får δ u( ) ke k k ösning a: Hookes lag för aiella töjningar (undh ekv 7,8,9 eller formelsamling sid 4) ger ε --( σ och analoget för töjningskomonenterna och. Vi får då E ν( σ y + σ )) ε y ε ε + ε y + ε -- ( σ E + σ y + σ ν( σ + σ y + σ )),5 3 (Notera att med ν,5 så blir den volymetriska töjningen noll inkomressibilitet) ösning b: Effektivsänningen enligt Tresca, är skillnaden mellan största och minsta huvudsänningen (undh ekv 4, formelsamling sid 4). Huvudsänningarna fås som egenvärdena σ τ y τ till sänningstensorn S τ y σ y τ y, där τ ij τ ji. Med τ y τ y fås τ τ y σ det( S σi) ( σ σ) ( σ y σ) ( σ σ) τ ( σ y σ) som har rötterna 8 Ma, σ Ma och σ 3 8 Ma. Vi får då s σ σ e σ σ 3 ösning c: Maimal skjuvsänning i en unkt, fås som halva skillnaden mellan största och σ minsta huvudsänning (radien i den största av Mohrs sänningcirklar): σ 3 τ ma Ma ösning 3a: Snitta omedelbart till vänster om lasten, låt T beteckna stödreaktionen vid A, och betrakta vänstra delen: momentjämvikt ger M () M( ) Vi behöver hitta. Det finns flera sätt å vilka vi kan beräkna stödkraften mha elementarfall; här visas ett förslag. åt M B vara snittmomentet i balken vid stödet B. Balkens rotation omedelbart till vänster,, och till höger,, om mittstödet fås ut formelsamlingen sid 9 resektive. θ BA θ BC θ BA θ BC θ BA θ M B M BC B M B EI 6EI M B EI 3 Komatibilitetsvillkoret θ BA + θ BC ger att M B Momentjämvikt kring B för den vänstra /WM

5 halvan i figuren ger nu att M B -- +, varur vi löser V. Ekvation () ger då A M M ösning 3b: Normalsänningen ga ett böjande moment fås som (undh ekv 7 9) y σ M y I y Här är M y givet, men vi måste hitta tvärsnittets yttyngdunkt för att kunna beräkna areatröghetsmomentet samt hitta. I y ma Tyngdunkten ligger å symmetrilinjen; för hitta dess läge i led beräk- nas statiska momentet ma å en referensael η : S η ζda A t Ht H + Ht H + Ht A (De tre termerna i högerledet är bidragen från i tur och ordning: övre flän- t ζ y η 6H sen, livet och undre flänsen). Med tvärsnittsarean A 5Ht fås då t och vidare 5 ma t. Areatröghetsmomentet ma y aeln fås mha Steiners sats (undh ekv 7 4): Ht 3 I y Ht ( H t ) t( H) Ht ( t H) Ht Ht t där de två första termerna är bidraget från övre flänsen, de två sista termerna är bidraget från undre flänsen och termerna 3 och 4 härrör från livets bidrag. Om vi beaktar att t «H kan vi försumma de termer som är kubiska i t, jämfört med de övriga termerna (som är lineära i t ) och får 5H H t då I y Alltså: σ (dragsänning i undre flänsen). 5 ma σ ma H t 456H t ösning 4: De sökta kan t.e beräknas med Castiglianos a sats (undh ekv 5 96,97) som W i W resektive i θ, där är en kraft i den sökta förskjutningens ( ) riktning och M M W i d är den elastiska energin ga böjning. Vi har då att EI W i M d M M EI d M EI M M d EI () och å samma sätt θ M M d EI M (3) 5 5 3/WM

6 M M Jämvikt ger att M( ) M + ( ), så och ( ). M Insättning i ekv (3) (med θ M ) ger nu M EI d ln -- M ln( ) -- EI EI M( ) M -- M Ur ekv () får vi Variabelsubstitutionen,, ger EI d ξ -- d dξ -- M ξ M dξ EI { matte-tabell} [ ξ ln( + ξ) ] + ξ EI ( ln( ) ) M EI Alternativt: Sambandet mellan moment och krökning, M EIκ, samt utböjning och krökning, w'' κ (transversalförskjutningen w är ositiv uåt), ger tillsammans med M( ) M (kon- M stant) att w'' integration och randvillkoren w' ( ) samt w( ) ger EI -- w' ( ) w( ) M ln EI M ( )ln EI De sökta fås nu som θ w' ( ) resektive w( ) ösning 5a: Om delarna AB och BC var ledade till varandra vid B, hade vi en vekare struktur och elaren skulle knäcka som en Euler a, kr π EI Om istället delen BC var mycket böjstyv så att rotation vid B var förhindrad, skulle vi ha en styvare struktur och elaren skulle fungera som en Euler 3a, kr π EI,5π EI dessa två: < kr < ,5π EI Den kritiska lasten för den givna stukturen måste ligga mellan ösning 5b: Den tryckta balkens (elarens) utböjning är w( ) A + B + Ccos( n) + Dsin( n), där n (se undh ekv 8 66). Med aeln enligt figuren har vi att utböjning och moment är noll vid och EI M( ) w' ( ) w' ( ) eftersom M EIw'' kan vi skriva w( ) w( ), w'' ( ) (4) Vid har vi w( ) (5) M( ) 6 5 3/WM

7 (aialdeformationer försummas), medan det andra villkoret fås genom att beakta samband mellan moment och vinkel för delen BC: formelsamlingen sid ger w' ( ) M( ) , så med 4 EI M( ) EIw'' ( ) får vi w'' ( ) + --w' ( ) (6) Randvillkoren ekv (4) ger direkt att A C, så w( ) B + Dsin( n) ; ekv (5) leder då till B sin( n) sin( n) D och alltså w( ) D sin( n) Randvillkoret ekv (6) ger nu D n n sin( n) sin( n) cos( n) Med D fås den triviala lösningen w ; icke triviala lösningar kräver att uttrycket inom cos( n) arentesen är noll. Om vi bryter ut en faktor fås knäckekvationen n ( + ( n) ) tan( n) eller tan( n) n ( n) (ägsta ositiva roten fås numeriskt till n 3.59, vilket ger kr ( n) EI,895 EI,3 π EI (jmf delugift a)) /WM

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014 Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014 Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I ÅLLFASTETSLÄRA F MA 081 JUNI 014 Lösningar Tid och plats: 14.00 18.00 i M huset. Lärare besöker salen ca 15.00 samt 16.0 jälpmedel:

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016 Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2015

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2015 Institutionen för tillämpad mekanik, Chalmers tekniska högskola ENAMEN I HÅFASHESÄA F MHA 8 5 AI 5 ösningar id och plats: 8.3.3 i V huset. ärare besöker salen 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010 Institutionen för tillämpad mekanik, halmers tekniska högskola TENTEN I HÅFSTHETSÄ F H 8 UGUSTI ösningar Tid och plats: 8.3.3 i V huset. ärare besöker salen ca 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:

Läs mer

Mekanik och maritima vetenskaper, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2017

Mekanik och maritima vetenskaper, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2017 Mekanik och maritima vetenskaper, Chalmers tekniska högskola ENAMEN I HÅFASHESÄRA KF OCH F MHA 8 6 OKOBER 7 i och plats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt.3 Hjälpmeel: ösningar. ärobok i

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib

Läs mer

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12 Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två

Läs mer

Lösning: ε= δ eller ε=du

Lösning: ε= δ eller ε=du Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2016 Intitutionen för tillämad mekanik, Chalmer teknika högkola TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 08 7 OKTOBER 06 Tid och lat: 8.30.30 i M huet. ärare beöker alen ca 9.30 amt.30 Hjälmedel: öningar. ärobok

Läs mer

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas

Läs mer

Hållfasthetslära Z2, MME175 lp 3, 2005

Hållfasthetslära Z2, MME175 lp 3, 2005 Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling

Läs mer

Formelsamling i Hållfasthetslära för F

Formelsamling i Hållfasthetslära för F Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent

Läs mer

Tentamen i Hållfasthetslära för I2

Tentamen i Hållfasthetslära för I2 Department of pplied Mecanics FORMLI Tentamen i Hållfastetslära för I2 18 december 2001 14.15 19.15 (skrivningstid 5 timmar) Hjälpmedel 1. Läroböcker i ållfastetslära oc mekanik. 2. Handböcker, formelsamlingar

Läs mer

Lunds Tekniska Högskola, LTH

Lunds Tekniska Högskola, LTH Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 2017-08-21 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I2 MHA 051. 6 april 2002 08.45 13.45 (5 timmar) Lärare: Anders Ekberg, tel 772 3480

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I2 MHA 051. 6 april 2002 08.45 13.45 (5 timmar) Lärare: Anders Ekberg, tel 772 3480 2002-04-04:anek TENTAMEN I HÅFASTHETSÄRA FÖR I2 MHA 051 6 april 2002 08.45 13.45 (5 timmar) ärare: Anders Ekberg, tel 772 3480 Maximal poäng är 15. För godkänt krävs 6 poäng. AMÄNT Hjälpmedel 1. äroböcker

Läs mer

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017 Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:

Läs mer

Tentamen i kursen Balkteori, VSM-091, , kl

Tentamen i kursen Balkteori, VSM-091, , kl Tentamen i kursen Balkteori, VSM-091, 008-10-1, kl 08.00-13.00 Maimal poäng på tentamen är 0. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och Calfemmanual.

Läs mer

Grundläggande maskinteknik II 7,5 högskolepoäng

Grundläggande maskinteknik II 7,5 högskolepoäng Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,

Läs mer

Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk

Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk .6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar: Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom

Läs mer

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,

Läs mer

Tentamen i kursen Balkteori, VSM-091, , kl

Tentamen i kursen Balkteori, VSM-091, , kl Tentamen i kursen Balkteori, VSM-091, 009-10-19, kl 14.00-19.00 Maximal poäng på tentamen är 40. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och alfemmanual.

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan

Läs mer

Tentamen i Hållfasthetslära för K4 MHA 150

Tentamen i Hållfasthetslära för K4 MHA 150 Tentamen i Hållfasthetslära för K4 HA 150 aximal poäng är 18. För godkänt krävs 9 poäng 17 april 004, 8.45 1.45 4 timmar) Allmänt Hjälpmedel 1. Läroböcker i hållfasthetslära och mekanik.. Handböcker, formelsamlingar,

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I1 MME januari (5 timmar) Lärare: Lars Sonnerup, tel:

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I1 MME januari (5 timmar) Lärare: Lars Sonnerup, tel: 2002-01-18:anek ENAMEN I HÅFASHESÄRA FÖR I1 MME170 18 januari 2002 08.5 1.5 (5 timmar) ärare: ars Sonnerup, tel: 070 850689 Maimal poäng är 18. För gokänt krävs 9 poäng. Betyg ges sammanvägt me el A i

Läs mer

Matrismetod för analys av stångbärverk

Matrismetod för analys av stångbärverk KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen

Läs mer

13. Energimetoder. r R

13. Energimetoder. r R 13. Energimetoder 13.1 eräkn nedböjningen under lsten å kvrtscirkelbågen med krökningsrdien. Tg hänsyn till xil, skjuv och böjdeformtion. ågen hr ett mssivt cirkulärt tvärsnitt med rdien r «; mterilet

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag

Läs mer

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur.

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur. K-uppgifter K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft på 28 kn som angriper i tvärsnittets tngdpunkt. Bestäm normalspänningen i regeln och illustrera spänningen i

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

Spänning och töjning (kap 4) Stång

Spänning och töjning (kap 4) Stång Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)

Läs mer

TENTAMEN I KURSEN BYGGNADSMEKANIK 2

TENTAMEN I KURSEN BYGGNADSMEKANIK 2 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

Tentamen i. Konstruktionsteknik. 26 maj 2009 kl

Tentamen i. Konstruktionsteknik. 26 maj 2009 kl Bygg och Miljöteknolo gi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 26 maj 2009 kl. 8.00 13.00 Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter kan

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

Tentamen i Mekanik - Partikeldynamik TMME08

Tentamen i Mekanik - Partikeldynamik TMME08 Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTAMEN I ÅFASTETSÄA KF OC F MA 81 17 AUGUSTI 16 Tid och plas: 8.3 1.3 i M huse. ärare besöker salen ca 9.3 sam 11.3 jälpmedel: 1. ärobok

Läs mer

Formelblad, lastfall och tvärsnittsdata

Formelblad, lastfall och tvärsnittsdata Strukturmekanik FE60 Formelblad, lastfall och tvärsnittsdata Formelblad för Strukturmekanik Spännings-töjningssamband för linjärt elastiskt isotropt material Enaiell normalspänning: σ = Eε Fleraiell normalspänning:

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

4.6 Stelkroppsrörelse i balk

4.6 Stelkroppsrörelse i balk Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 rshen@kth.se.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz Givet: w L w L () Sökt: Visa att förskjutningsansatsen

Läs mer

Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan

Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system

Läs mer

Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers

Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 2 Förord Detta kompendie är tänkt som ett komplement till eempelsammlingen av Ekevid,

Läs mer

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005 Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A

Läs mer

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Tentamen i Mekanik Statik TMME63

Tentamen i Mekanik Statik TMME63 Tentamen i Mekanik Statik TMME63 2013-01-08, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: Eaminator: Peter Schmidt Tentajour: Carl-Gustaf ronsson, Tel. 28 17 83, (Besöker salarna första gången ca 10.00

Läs mer

motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6)

motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6) TENTAMENSSKRIVNING LUNDS TEKNISKA HÖGSKOLA MATEMATIK ENDIMENSIONELL ANALYS B (FMAA5)/A3 (FMAA) 74 kl. 83 Inga hjälmedel är tillåtna. För att du skall kunna erhålla full oäng skall dina lösningar vara läsvärda

Läs mer

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir

Läs mer

Material, form och kraft, F11

Material, form och kraft, F11 Material, form och kraft, F11 Repetition Dimensionering Hållfasthet, Deformation/Styvhet Effektivspänning (tex von Mises) Spröda/Sega (kan omfördela spänning) Stabilitet instabilitet Pelarknäckning Vippning

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Tentamen i Hållfasthetslära för I2 MHA 051

Tentamen i Hållfasthetslära för I2 MHA 051 Tentamen i Hållfasthetslära för I2 MHA 051 28 augusti 2004, 8 45 12 45 (4 timmar) Lärare: Anders Ekberg, tel: 772 480 Maximal poäng är 15. För godkänt krävs 6 poäng Allmänt Hjälpmedel 1. Läroböcker i hållfasthetslära

Läs mer

Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag

Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning

Läs mer

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett

Läs mer

Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson

Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson Hållfasthetslära HT1 7,5 hp halvfart Janne Carlsson tisdag 11 september 8:15 10:00 Föreläsning 3 PPU203 Hållfasthetslära Förmiddagens agenda Fortsättning av föreläsning 2 Paus Föreläsning 3: Kapitel 4,

Läs mer

TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2008/09

TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2008/09 TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2008/09 Föreläsare och handledare: Lennart Josefson, lennart.josefson@chalmers.se, (772)1507 Föreläsare, övningsledare och handledare:

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08

TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08 TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08 Föreläsare och handledare: Lennart Josefson, lennart.josefson@chalmers.se, (772)1507 Föreläsare, övningsledare och handledare:

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Torsdag 31:a Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Repetition Rast Föreläsning: Normaltöjning Deformation

Läs mer

Hållfasthetslära Sammanfattning

Hållfasthetslära Sammanfattning 2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning

Läs mer

1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip

1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip --8 FE för Ingenjörstillämpningar, SE rshen@kth.se.6 Castiglianos :a Sats och insta Arbetets rincip ilder ritade av Veronica Wåtz. Givet: k () L Sökt: Lösning: et står att ska beräknas med hjälp av energimetod

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning

Läs mer

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring. Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?

Läs mer

------------ -------------------------------

------------ ------------------------------- TMHL09 2013-10-23.01 (Del I, teori; 1 p.) 1. En balk med kvadratiskt tvärsnitt är tillverkad genom att man limmat ihop två lika rektangulära profiler enligt fig. 2a. Balken belastas med axiell tryckkraft

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

Biomekanik Belastningsanalys

Biomekanik Belastningsanalys Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

KONTROLLSKRIVNING. Fysikintroduktion för basterminen. Datum: Tid: Hjälpmedel:

KONTROLLSKRIVNING. Fysikintroduktion för basterminen. Datum: Tid: Hjälpmedel: KONTROLLSKRIVNING Kurs: Moment: Program: Rättande lärare: Examinator: Datum: Tid: Hjälmedel: Omfattning och betygsgränser: ysikintroduktion för basterminen KS Teknisk bastermin Staffan Linnæus Staffan

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-05-06 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 01-1-07 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Carlsson

Hållfasthetslära. VT2 7,5 p halvfart Janne Carlsson Hållfasthetslära VT2 7,5 p halvfart Janne Carlsson Torsdag 30:e Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Fortsättning från föreläsning 1 Rast Föreläsning

Läs mer

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd. FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen) Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:

Läs mer

Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014

Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014 Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Laboration 4 mars 4 Stångbärverk Hållfasthetslärans grunder Civilingenjörsprogrammet i teknisk fysik Knut Knut....4 y/ L.5.6.7.8.9 Knut

Läs mer

1. Ett material har dragprovkurva enligt figuren.

1. Ett material har dragprovkurva enligt figuren. 1. Ett material har dragprovkurva enligt figuren. a) Vad kallas ett sådant materialuppträdande? b) Rita i figuren in vad som händer vid avlastning till spänning = 0 från det markerade tillståndet ( 1,

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Betongkonstruktion BYGC11 (7,5hp)

Betongkonstruktion BYGC11 (7,5hp) Karlstads universitet 1(11) Betongkonstruktion BYGC11 (7,5hp) Tentamen Tid Fredag 17/01 2014 kl. 14.00 19.00 Plats Universitetets skrivsal Ansvarig Asaad Almssad tel 0736 19 2019 Carina Rehnström tel 070

Läs mer

Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov

Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov Hållfasthetslära Lektion 2 Hookes lag Materialdata - Dragprov Dagens lektion Mål med dagens lektion Sammanfattning av förra lektionen Vad har vi lärt oss hittills? Hookes lag Hur förhåller sig normalspänning

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.: MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälmedel: inga A.Heintz Telefonvakt: Christo er Standar, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats.

Läs mer