4.6 Stelkroppsrörelse i balk
|
|
- Ann-Charlotte Axelsson
- för 6 år sedan
- Visningar:
Transkript
1 Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 Stelkroppsrörelse i balk Bild av Veronica Wåtz Givet: w L w L () Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs Lösning: Allmänt: e w wx x. w w Nd N N N N N w N N w N () Från formelbladet: N N N N L L () Sätt in () och () i (). Här nedan har jag förberett en tabell så att man snabbt kan se vad varje term blir, vilket också borde förenkla summeringen. w Bidrag till term Bidrag till L term L N w N L 0 L N w N L 0 x w L w L wx x, Q.E.D. L Notera att δ är en stelkroppsförflyttning, och θ är en stelkroppsrotation.
2 Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 5. Blandad användning av stång- och balkelement Bilder av Veronica Wåtz Givet: EI k, L Q x q x, 0 x L LL Sökt: wx, M x Lösning: Börja med att modellera geometrin med element. Balken utsätts för både böjning och normalkraft, så den bör modelleras med både stångelement och balkelement som sitter ihop i gemensamma noder. Fjädern kan modelleras med ett fjäderelement.
3 Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 Steg : Beräkna K. Stångdelen och fjädern är lätta, så vi kan väl börja med dem: EA K a L () Innehåller noderna och, men viktigare i det här fallet, frihetsgraderna och c c c cos a a c cs EI Kc k, där c, a Kc ac ac cs s s sin 90 L Innehåller noderna och, frihetsgraderna,5,7 och 8. () EI Alt. K a L, innehållandes frihetsgrader 5 och 8. Se bara till att assemblera rätt. Bara balkdelen kvar då. För balkar gäller: a T ke B EIB dx, där a halva elementlängden a Obs! Finns INTE med i formelbladet uttryckt på det här sättet. Om, och endast om, EI är konstant, kan det brytas ut ur integralen, och resten fås från formelbladet: Notera att L i formelbladet motsvarar L för det här problemet eftersom vi har elementlängden L. a a a T a a a a k b EI dx EI B B () a a a a Finns i formelbladet a a a a Vi har tur eftersom balkelementet sammanfaller med x-axeln. Vi slipper alltså transformera.
4 Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 EI K k a L 6L b e 6L 6L 6L 6L 6L 8L 6L 6L 6L 8L 6L 6L Innehåller noderna och, frihetsgraderna,,5 och 6. Med elementstyvhetsmatriserna kända är det dags att assemblera. I tidigare övningar har det räckt att hålla koll på vilka noder en elementstyvhetsmatris behandlar. Eftersom noderna och är en kombination av både stång och balk får man istället gå över till det mer allmänna fallet: att hålla koll på de individuella frihetsgraderna. Assemblera Steg : Beräkna F. q x 0, L x 0 0, 0 x Q x qx Q, 0 x L L, 0 L L L () Den utbredda lasten angriper balkdelen, stångdelen behöver inte behandlas då den inte tar upp last i den riktningen. Notera tecken på den utbredda lasten! L Q q x dx dx dx Ld L L L L T Fb,b N balk body force, element b L 0
5 Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 5 Q L Q L 5 L Q Q 60 d Q L Q L L 5 60 Dessa krafter verkar på frihetsgraderna,,5 respektive 6. 0 (5) Nodlasten stoppas in i en global vektor direkt: R R M R P F s (6) 0 0 R 7 R8 I exempelsamlingens lösningsförslag sätter man R7 0 direkt här eftersom fjädern inte kan överföra krafter i x-led. Alternativt kan man göra som vanligt och få fram krafterna som Assemblera lasterna till en global lastvektor: 8 8 F KD. R 0 R R Q 0 R Q 0 M R 7QL 60 M R 7QL 60 P 0 P F Fs F b (7) 0 9Q 0 9Q 0 0 QL 60 QL R 0 R 5
6 Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 Steg : Lös ut okända i D på det gamla hederliga sättet via F KD Notera att D praktiskt taget är utskrivet. EA PL P D 0 D5 0 D D 6 L EA 9Q 7EI EI QL D 5 0 6L 8L D 5 5 EI QL EI EI D 6 QL D6 60 8L L 5EI (8) Steg : Ta fram det vi ville ha, utböjningen och tvärsnittsmomentet. Som tur var sammanfaller balkens koordinatsystem med globala x-axeln, och vi behöver alltså inte tänka på transformationer hit och dit. Utböjning: w T 0 0 L QL Nbalkd e (9) 5 EI L QL 5EI Tar för stor plats att skriva på horisontell ledd QL QL x x x w w x EI EI 5 5 L 0 L 9 L (0) x M x EIw'' x EIBbalkd e M x QL () 5 L 6
7 Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE Symmetri Givet: Om R h kan man bestämma fjäderkonstanten till k 8 EI. R Sökt: Ta fram symmetrivillkor. Lösning: Det viktiga att ta med sig från den här uppgiften är hur man kan modellera symmetrivillkor i FEM med hjälp av randvillkor. Varje gång man kan införa ett symmetriplan halverar man det som behöver modelleras, vilket är väldigt trevligt. I det här fallet kan vi börja med att konstatera att problemet har en övre och undre halva som är symmetriska. När man ska modellera det här bör man tänka igenom randvillkoren:. De två halvorna sitter ihop i planet och får varken tryckas in i varandra eller dras isär. u 0 vid y 0 y. Materialet måste sticka upp normalt mot symmetriplanet, annars skulle förskjutningarna motsvara både en sprickbildning och att materialet krockar in i spegelbilden, se bilden nedan. 0. De två halvorna kan röra sig fritt i x-led, spegelbilden följer med, se bilden nedan. Detta uppfylls om man sätter ett randvillkor som ser ut såhär: 7
8 Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 Vi ser att vänster och höger sida fortfarande är spegelbilder av varandra. Vad gäller förskjutningar kan vi använda vagnen som randvillkor även här. För att inse hur man ska dela upp punktkraften tänker vi oss hur lasten skulle se ut i verkligheten. I verkligheten är punktlaster en väldigt koncentrerad utbredd last. Om vi zoomar in där lasten angriper skulle det kunna se ut såhär: Nu ser man tydligt hur halva kraften angriper på höger halva, och halva kraften på vänster halva. Genom att införa ett andra symmetrivillkor har problemet reducerats till en fjärdedel. Slutresultat: Betydligt enklare problem! 8
Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk
.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N
Övning 1 FEM för Ingenjörstillämpningar Rickard Shen
Övning FE för Ingenjörstillämpningar Rickard Shen 9--9 rshen@kth.se 7-7 7 59.6 Castiglianos :a Sats och insta Arbetets rincip Bilder ritade av Veronica Wåtz, asse emeritus. 6EI Givet: k = () L Sökt: θ
1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip
--8 FE för Ingenjörstillämpningar, SE rshen@kth.se.6 Castiglianos :a Sats och insta Arbetets rincip ilder ritade av Veronica Wåtz. Givet: k () L Sökt: Lösning: et står att ska beräknas med hjälp av energimetod
Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012
Umeå universitet Tillämpad fysik och elektronik Annika Moström 01-0-3 Rambärverk Projektuppgift Hållfasthetslärans grunder Våren 01 Rambärverk 1 Knut Balk Knut 3 Balk 1 Balk 3 Knut 1 Knut 4 1 Figure 1:
Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en
FEM M2 & Bio3 ht06 lp2 Projekt P 3
HH/SET/BN E, Projekt 1 E & Bio ht06 lp Projekt P Allmänt Lös uppgifterna nedan med E. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och utgör underlag för
Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk. Projektuppgift 1 Hållfasthetslärans grunder Våren 2012
Umeå universitet Tillämpad fysik och elektronik Annika Moström 212-3-6 Fackverk Projektuppgift 1 Hållfasthetslärans grunder Våren 212 Fackverk 1 Knut 3 Knut 2 Stång 2 Stång 3 y Knut 4 Stång 1 Knut 1 x
BT4003/MA6007 Finita elementmetoden, 7.5hp,
BT/MA67 Finita elementmetoden, 7hp, 7--8 Hjälpmedel: Räknedosa och kompendium Finita elementmetoden - en kort introduktion till teorin! Uppgift -8 p/uppgift Lösningarna ska skrivas i Mathematica på samma
8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:
Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:
Matrismetod för analys av stångbärverk
KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen
FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D
HH/SET/BN FEM, Projekt 1 FEM M2 & Bio ht07 lp2 Projekt P Grupp D Allmänt Lös uppgifterna nedan med FEM. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och
Manual för ett litet FEM-program i Matlab
KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.
Lösning: ε= δ eller ε=du
Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange
6.8 b) Konsistenta nodlaster med vanlig integrering
6.8 ) onsistenta nodlaster med vanlig integrering Bilder av Veronica Wåtz och Jonas Faleskog. Givet: Plåttjocklek, hm Densitet, kg m Sökt: Bidraget till nodlastvektorn (konsistenta nodlaster) på grund
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas
FEM1: Randvärdesproblem och finita elementmetoden i en variabel.
MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som
6.8 b) Konsistenta Nodlaster med Vanlig Integrering
6.8 ) Konsistenta Nodlaster med Vanlig Integrering Bilder av Veronica Wåtz och Jonas Faleskog. Givet: Plåttjocklek, hm [ ] Densitet, ρ kg m λ = Sökt: Bidraget till nodlastvektorn (konsistenta nodlaster)
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y
UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas
Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005
Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 008-10-1, kl 08.00-13.00 Maimal poäng på tentamen är 0. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och Calfemmanual.
Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
Ordinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,
B3) x y. q 1. q 2 x=3.0 m. x=1.0 m
B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,
TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12
Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två
Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan
TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system
Tillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
6.2 Transitionselement
6. Transitionselement Den här tpen av element används för förbinda ett linjärt och ett kvadratiskt element. Givet: Sökt: Bestäm formfunktionen för nod. Visa att den uppfller kraven för en formfunktion.
Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.
Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning
Datorbaserade beräkningsmetoder
Material, form och kraft, F10 Datorbaserade beräkningsmetoder Finita elementmetoden Beräkningar Strukturmekaniska analyser Kraft-deformation, inverkan av temperatur, egenfrekvens, buckling COSMOS/Works
Tentamen i Balkteori, VSMF15, , kl
Tentamen i Balkteori, VSMF15, 2011-10-18, kl 08.00-13.00 Maimal poäng på tentamen är 40. För godkänt tentamensresultat krävs maimalt 18 poäng. Tentamen består av två delar: En del med frågor och en del
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 16, 2018 9. Lösningar av Poissons ekvation Vi vet att Poissons
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband
Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik
Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006
KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,
Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Tid och plats: Lösningsskiss: Tisdagen den 20 december 2016 klockan 0830-1230 i M-huset Christian Forssén Detta är enbart en skiss av den
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011
Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:
(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,
Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 009-10-19, kl 14.00-19.00 Maximal poäng på tentamen är 40. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och alfemmanual.
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Användarmanual till Maple
Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort
Mekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag
SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och
Integraler av vektorfält Mats Persson
Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på
Skivbuckling. Fritt upplagd skiva på fyra kanter. Före buckling. Vid buckling. Lund University / Roberto Crocetti/
Skivbuckling Före buckling Fritt upplagd skiva på fyra kanter Vid buckling Axiellt belastad sträva (bredd = b, tjocklek = t) P cr E a I 1 (1 ) Axiellt belastad sträva (bredd = b, tjocklek = t) 1 E I P
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan
Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.
UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom
SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,
Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,
Biomekanik, 5 poäng Jämviktslära
Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande
TMV225 Kapitel 3. Övning 3.1
TMV225 Kapitel 3 Övning 3. Bestäm gränsvärdet och bestäm δ som funktion av ε. a) lim 3 [ 2 3 + 5] Vi har givet att 3, och då funktionen är kontinuerlig får vi gränsvärdet ȳ 5 genom att stoppa in. Per definition
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Torsdag 31:a Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Repetition Rast Föreläsning: Normaltöjning Deformation
FEM FÖR INGENJÖRSTILLÄMPNINGAR OH-MATERIAL
FEM FÖR INGENJÖRSTILLÄMPNINGAR OH-MATERIAL Jonas Faleskog, KTH Hållfasthetslära Januari 3 FEM för Ingenjörstillämpningar, VT3 / J.Faleskog SE5, FEM för ingenjörstillämpningar (6 hp) fortsättningskurs i
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av
Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk
Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
Mer om analytisk geometri
1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare
Tentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med
RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag 1 Uppgifter 1.1 Relationer 1. Vi ges mängden A = {p, q, r, s, t}. Är följande mängder relationer på A? Om inte, ge ett exempel som visar vad
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
Hållfasthetslära. VT2 7,5 p halvfart Janne Carlsson
Hållfasthetslära VT2 7,5 p halvfart Janne Carlsson Torsdag 30:e Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Fortsättning från föreläsning 1 Rast Föreläsning
FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 20 februari 2007 FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Projektuppgift Syfte: att träna på att skriva ett lite större Matlabprogram med relevans för byggnadsmekanik.
Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams
Balkböjning Teknisk balkteori Stresses in Beams Som den sista belastningstypen på en kropps tvärsnitt kommer vi att undersöka det böjande momentet M:s inverkan. Medan man mest är intresserad av skjuvspänningarna
Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers
Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 2 Förord Detta kompendie är tänkt som ett komplement till eempelsammlingen av Ekevid,
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter
1. En dragen stång (normalkraft N) av elastiskt material (E), längd L och med varierande tvärsnittsarea A(x) skall analyseras med två metoder.
KTH Solid Mechanics Tentamen i FEM för ingenjörstillämpningar (SE025) den 0 juni 206 kl. -9 Resultat kommer att finnas tillgängligt senast den 30 juni. Klagomål på rättningen skall vara framförda senast
TENTAMEN I KURSEN BYGGNADSMEKANIK 2
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30
SF1625 Envariabelanalys
Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Kompositberä kning i Solidworks
Kompositberä kning i Solidworks Uppdaterad 2014-12-03 Här följer en kort beskrivning av hur en komposit kan beräknas i SolidWorks. Beräkningen utgår från ett enkelt lastfall, som på bilden. Kriterier Modell
P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor
Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig
Veckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
Finita Elementmetoden
Finita Elementmetoden Bilder: Elena Kabo Anders Ekberg Teknisk mekanik / CHARMEC anders.ekberg@me.chalmers.se Bakgrund Allmängiltighet Geometri Last Material Datorbaserat CAD -> CAE -> CAM Beräkningsintensivt
Lösningar till seminarieuppgifter
Lösningar till seminarieuppgifter 2018-09-26 Uppgift 1 z ρ P z = 0 ρ Introducera ett koordinatsystem så att det jordade planet sammanfaller med planet z = 0, oc skivans centrum med punkten (0,0,). a) Problemet
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 1 juni 2011 kl
KTH HÅFASTHETSÄRA Tentamen i FEM för ingenjörstillämpningar (SE5) den juni l. 8-3. Resultat ommer att finnas tillgängligt senast den juni. Klagomål på rättningen sall vara framförda senast en månad därefter.
Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,