Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk. Projektuppgift 1 Hållfasthetslärans grunder Våren 2012
|
|
- Lars-Olof Ekström
- för 6 år sedan
- Visningar:
Transkript
1 Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk Projektuppgift 1 Hållfasthetslärans grunder Våren 212
2 Fackverk 1 Knut 3 Knut 2 Stång 2 Stång 3 y Knut 4 Stång 1 Knut 1 x Figure 1: Fackverk med en rörlig knutpunkter (1) och tre fasta (2-4) knutpunkter. Inledning Ett fackverk är ett bärverk som består av ett antal stänger sammankopplade i momentfria leder, så kallade knutpunkter. Ett enkelt exempel på ett stångbärverk hämtat från Dahlberg [1] nns avbildat i gur 1. En enskild stång illustreras i gur 2. Stången i guren går från punkt 1 har koordinaterna (x 1, y 1 ) till punkt 2 vid (x 2, y 2 ) i obelastat tillstånd. När belastning läggs på fackverket kan stången bara utsättas för en axiell kraft N. Kraften N antas vara positiv om den pekar i den utåtriktade normalens riktning i ett snitt enligt gur 2. Det innebär att N är positiv om stången utsätts för en dragkraft. Stångens längd i obelastat tillstånd blir då = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 (1) Vid belastning av fackverket kommer knutpunkterna vid 1 och 2 att förskjutas till (x 1 + x 1, y 1 + y 1 ) respektive (x 2 + x 2, y 2 + y 2 ). Stångens längd i det deformerade tillståndet blir då + δ = ((x 2 + x 2 ) (x 1 + x 1 )) 2 + ((y 2 + y 2 ) (y 1 + y 1 )) 2 (2) Stångens töjning ɛ δ, (3) ges av den konstitutiva ekvationen Hookes lag ɛ = σ E + α T, (4) där σ är (normal)spänningen, materialparametrarna E och α är stångens elasticitetsmodul respektive längdutvidgningskoecient, samt T = T T är temperaturändringen. Kom- 1
3 Fackverk 2 (x 1, y 1 ) N -N (x 2, y 2 ) Stång Snittkrafter Figure 2: Stång i ett bärverk med momentfria (ledade) knutar. Stångens ändpunkter ansluter till två knutar och betecknas (x 1, y 1 ) respektive (x 2, y 2 ). Görs ett tänkt snitt i stången kommer krafterna på snittytorna att vara N respektive N i normalens riktning. bineras de kinematiska och konstitutiva sambanden, så erhålls normakraften i stången [ ] δ N = EA α T, (5) där A betecknar stångens tvärsnittsarea. Deformationer och krafter i fackverk med förskjutningsmetod Beskrivning av generella förskjutningsmetoder för att beräkna krafter och deformationer i fackverk och andra strukturer nns att läsa till exempel i Hibbeler [2] bland många andra. Vid stora fackverk är det lämpligt att använda generella beräkningsprogram för beräkning av krafter och deformationer. Programmen nyttjar matrisformulering för att etablera jämviktssamband för hela systemet, globala jämviktssamband. Med givna randvillkor i form av förskjutningar och yttre laster kan förskjutning i enskilda knutar beräknas. Baserat på knutförskjutningar kan sedan krafter för enskilda stänger beräknas. Samma typ av beräkningar används i nita element metoden för strukturmekaniska problem. Stångelement med två noder är det enklaste element som kan ingå i ett program för nita elementberäkningar. Denition av vektorer och matriser för ett stångelement En stång går från punkt 1 till punkt 2 på lokala x-axeln. Förskjutning i ändpunkterna skrivs i vektorform: [ ] ue1 u e = (6) u e2 aster i ändpunkterna skriv som [ ] Fe1 F e = (7) F e2 Samband mellan last och förskjutning skrivs då 2
4 Fackverk 3 F e = K e u e (8) där K e kallas elementstyvhetsmatris och skrivs K e = EA [ ] (9) med E elasticitetsmodul för stångens material, A stångens tvärsnittsarea. Stångens längd beräknas ur = x 2 x 1 Temperaturlaster på enskild stång Temperaturlaster kan räknas som stånglast Q et = AEαdT [ 1 1 ] (1) Initialtöjningar Töjningen betecknas som ɛ = [ 1 Q e = EAɛ 1 ] (11) Transformationsmatris Om stången har en godtycklig riktning i x-y-planet måste lokala x-koordinater översättas till koordinater i x-y-planet. Det görs med hjälp av en transformationsmatris. Stångens ändar denieras av x,y koordinater för respektive ände (1,2), dvs Stångens längd beräknas då ur x = Transformationselementen beräknas som x 1 y 1 x 2 y 2 (12) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 (13) cos α = x 2 x 1 (14) sin α = y 2 y 1 Transformation från globala förskjutningar till stångens lokala förskjutningar [ ] cos α sin α D = cos α sin α (15) (16) Då kan den lokalt denierade förskjutningen i stångens ändar i globala koordinater beräknas ur 3
5 Fackverk 4 Transformation från lokala till globala koordinater för kraft dvs D T = u e = D u (17) cos α sin α cos α sin α (18) F = D T F e (19) Att transformera den lokala styvhetsmatrisen från lokala koordinater till globala görs med en 4x4 matris. K = D T K e D (2) Hela fackverket För att kunna beräkna deformationer och krafter för ett helt fackverk måste man etablera ett globalt ekvationssystem. Det görs genom att de enskilda stängernas komponenter (vektorer och matriser) adderas in i fackverkets komponenter. Ekvationssystemet för hela fackverket får den generella formen F = K u (21) där elementen i styvhetsmatrisen är summan av styvhetsmatriserna för varje enskild stång. Då måste man identiera vilka globala frihetsgrader stängernas lokala frihetsgrader motsvarar. Antag att förskjutningarna i ände 1, (x 1, y 1 ), motsvaras av förskjutningarna i punkt i, (x i, y i ) och ände 2, (x 2, y 2 ), motsvaras av förskjutningarna i punkt j, (x j, y j ). Då adderas stångens bidrag till styvhetsmatrisen som Strukturens styvhetsmatris kan då skrivas som K(i, j) = K(i, j) + K e (22) K = NoEl i=1 K ei (23) På samma sätt adderas krafter från värmeutvidning, Q T och initialq in i motsvarande positioner i kraftvektorn och initialtöjningar in i förskjutningsvektorn. Q = NoEl i=1 Q ei (24) 4
6 Fackverk 5 Randvillkor När fackverkets globala ekvationssystem är formulerat införs randvillkor. Föreskrivna förskjutningar betecknas u p och övriga, fria förskjutningar u f. Index för föreskrivna frihetsgrader p och fria frihetsgrader f. Förskjutningar kan denieras i lokala eller globala koordinater och adderas in i systemet förskjutningsvektor. u p = u def (25) Vanligaste randvillkoren innebär förhindrad förskjutning i frihetsgraden och skrivs Givna yttre laster adderas in i lastvektorn F = u p = (26) NoP j=1 F j (27) där NoP betecknar antal knutpunkter. Då har vi etablerat komponenterna i det globala ekvationssystemet F = Ku + Q T + Q (28) ösa ekvationssystemet Dela upp ekvationssystemet så att frihetsgrader utan föreskriven förskjutning ges index f och frihetsgrader med föreskriven förskjutning får index p. [ ] [ ] [ ] [ ] Ff Kff K = fp uf Qf + (29) F p K pf K pp u p Q p Beräkna förskjutningar Fria förskjutningar beräknas ur Beräkna stångkrafter Stångkrafter kan sedan beräknas för varje enskild stång ur u f = K 1 ff (F f K fp u p Q f ) (3) N = K T e D e u e + Q e (31) Exempel åt oss betrakta exemplet i gur 1 som består av tre stänger med samma axialstyvhet EA. Antag att knutpunkt 1 utsätts för en vertikal last [ ] F 1 = P (32) 1 5
7 Fackverk 6 ängd för de enskilda stängerna beräknas ur ekvation (13). Som ger resultatet att stängerna 1 och 3 har längden, medan stång 2 har längden 2. Temperaturen antas vara konstant, d.v.s. T =. För element 1 och 3 blir den lokala styvhetsmatrisen. K e = EA [ ] 1 1 (33) 1 1 okala styvhetsmatrisen för stång 2 blir K e = EA [ ] Stång 1 går från knutpunkt 4 till knutpunkt 1. Då kan stången beskrivas med knutpunktskoordinaterna x = x 4 y 4 x 1 y 1 = Styvhetsmatris för stång 1 tranformerad till globala koordinater ger K e = EA (34) (35) (36) Stång 2 går från knutpunkt 3 till knutpunkt 1. Då kan stången beskrivas med knutpunktskoordinaterna x = x 3 y 3 x 1 y 1 = Styvhetsmatris för stång 2 tranformerad till globala koordinater ger K e = EA (37) (38) Till sist stång 3 går från knutpunkt 2 till knutpunkt 1. Då kan stången beskrivas med knutpunktskoordinaterna x = x 2 y 2 x 1 y 1 = Styvhetsmatris för stång 3 tranformerad till globala koordinater ger (39) 6
8 Fackverk 7 K e = EA (4) I det globala ekvationssystemet kommer knutpunktskoordinaterna att denieras av x = x 1 y 1 x 2 y 2 x 3 y 3 x 4 y 4 = Transformera lokala styvhetsmatrisen till globala koordinater och addera in den i den globala styvhetsmatrisen enligt ekvation (22) ger: K 1 = EA K 2 = EA 2 2 K 3 = EA (41) (42) (43) (44) K = K 1 + K 2 + K 3 (45) 7
9 Fackverk 8 K = EA (46) Bundna frihetsgrader är 3-8 och fria 1 och 2. Förskjutningen i 1 och 2 kan då beräknas ur ekvation (3) som Med lastvektor K ff = EA [ F f = [ P Genom att lösa ekvationssystemet kan knutens förskjutning vid jämvikt beräknas ( ) ( ) x1 P u = = y 1 2EA ( ) (49) 2 och detta ger att axialkrafterna i stängerna blir ( ) P N 1 = 2 ( ) (5) 2P N 2 = 2 ( ) (51) Problem Problem att lösa med Matlab. ] ] (47) (48) P N 3 = 2 ( ) (52) 1. Beräkna knutpunktsförskjutningarna och axialkrafterna för stångbärverket i gur 1 om stånglängden är = 1 m, alla stänger har samma axialstyvhet AE = 3 MN och stång 2 utsätts för en termisk töjning α 2 T 2 = Endast knut 1 är rörlig. 2. Beräkna knutpunktsförskjutningarna och axialkrafterna för stångbärverket i gur 3 om knut 1 utsätts för en nedåtriktad kraft på 2 kn. Axialstyvheterna är AE = 3 MN. Beräkna även reaktionskrafterna på knutarna Knut 6 i stångbärverket i gur 3 placeras i obelastat tillstånd på ett stöd så att den endast kan röra sig i horisontell riktning. Beräkna knutpunktsförskjutningarna och reaktionskraften från stödet vid knut 6. 8
10 Fackverk 9 Knut 4 Knut 3 Knut 2 Stång 5 Stång 4 Stång 2 Stång 3 y Stång 6 Stång 1 Knut 5 Knut 6 Knut 1 x x Figure 3: Fackverk med två rörliga knutar (1 och 6) och fyra fasta knutar (2-5). Redovisning Redovisa lösningarna på problemen ovan i en individuell rapport. Rapporten ska innehålla en inledande teoridel, ett metodavsnitt där beräkningsalgoritmen beskrivs, en resultatdel där resultaten beskrivs, samt diskussion och slutsatser. Koden bifogas rapporten i en bilaga. Rapporten laddas upp i Moodle. Referenser [1] Tore Dahlberg, Teknisk hållfasthetslära, Studentlitteratur, 21 [2] R. C. Hibbeler, Structural analysis, Pearson Education, 29 9
Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012
Umeå universitet Tillämpad fysik och elektronik Annika Moström 01-0-3 Rambärverk Projektuppgift Hållfasthetslärans grunder Våren 01 Rambärverk 1 Knut Balk Knut 3 Balk 1 Balk 3 Knut 1 Knut 4 1 Figure 1:
Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014
Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Laboration 4 mars 4 Stångbärverk Hållfasthetslärans grunder Civilingenjörsprogrammet i teknisk fysik Knut Knut....4 y/ L.5.6.7.8.9 Knut
Matrismetod för analys av stångbärverk
KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen
Tentamen i Hållfasthetslära AK2 för M Torsdag , kl
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts
Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
Lösning: ε= δ eller ε=du
Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers
Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 2 Förord Detta kompendie är tänkt som ett komplement till eempelsammlingen av Ekevid,
Manual för ett litet FEM-program i Matlab
KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
Övning 1 FEM för Ingenjörstillämpningar Rickard Shen
Övning FE för Ingenjörstillämpningar Rickard Shen 9--9 rshen@kth.se 7-7 7 59.6 Castiglianos :a Sats och insta Arbetets rincip Bilder ritade av Veronica Wåtz, asse emeritus. 6EI Givet: k = () L Sökt: θ
Lunds Tekniska Högskola, LTH
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 2017-08-21 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk
.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N
1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip
--8 FE för Ingenjörstillämpningar, SE rshen@kth.se.6 Castiglianos :a Sats och insta Arbetets rincip ilder ritade av Veronica Wåtz. Givet: k () L Sökt: Lösning: et står att ska beräknas med hjälp av energimetod
4.6 Stelkroppsrörelse i balk
Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 rshen@kth.se.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz Givet: w L w L () Sökt: Visa att förskjutningsansatsen
Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik
Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet
3 Fackverk. Stabil Instabil Stabil. Figur 3.2 Jämviktskrav för ett fackverk
3 Fackverk 3.1 Inledning En struktur som består av ett antal stänger eller balkar och som kopplats ihop med mer eller mindre ledade knutpunkter kallas för fackverk. Exempel på fackverkskonstruktioner är
TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning
MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.
FEM1: Randvärdesproblem och finita elementmetoden i en variabel.
MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006
KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers
Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 1 Förord Denna skrift innehåller de konstruktionsuppgifter som avses lösas i kursen Strukturmekanik
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 009-10-19, kl 14.00-19.00 Maximal poäng på tentamen är 40. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och alfemmanual.
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
Spänning och töjning (kap 4) Stång
Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.
Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30
CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor
Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband
FEM M2 & Bio3 ht06 lp2 Projekt P 3
HH/SET/BN E, Projekt 1 E & Bio ht06 lp Projekt P Allmänt Lös uppgifterna nedan med E. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och utgör underlag för
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Material, form och kraft, F5
Material, form och kraft, F5 Repetition Material, isotropi, ortotropi Strukturelement Stång, fackverk Balk, ramverk Upplag och kopplingar Linjärt elastiskt isotropt material Normalspänning Skjuvspänning
Reducering av analystid vid svetssimulering
EXAMENSARBETE 27:7 CIV Reducering av analystid vid svetssimulering KATARINA HANDELL CIVILINGENJÖRSPROGRAMMET Teknisk fysik Luleå tekniska universitet Institutionen för Tillämpad fysik, maskin- och materialteknik
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 008-10-1, kl 08.00-13.00 Maimal poäng på tentamen är 0. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och Calfemmanual.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014
Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok
FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D
HH/SET/BN FEM, Projekt 1 FEM M2 & Bio ht07 lp2 Projekt P Grupp D Allmänt Lös uppgifterna nedan med FEM. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Laboration 1. Ekvationslösning
Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen
6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =
62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll
TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12
Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-05-06 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-08-8 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Laboration 2, M0043M, HT14 Python
Laboration 2, M0043M, HT14 Python Laborationsuppgifter skall lämnas in senast 19 december 2014. Förberedelseuppgifter Läs igenom teoridelen. Kör teoridelens exempel. Teoridel 1 Att arbeta med symboliska
Laboration 2. Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. x = 1±0.01, y = 2±0.05.
Laboration 2 Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. 1 Störningsräkning 1 Betrakta funktionen f(x,y) = e yx2. Värdena på x och y är givna av x =
LINJÄRA AVBILDNINGAR
LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling).
Laboration 1 Sista dag för bonuspoäng är 18 mars. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen ska kunna redogöra för
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar
e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2
Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π
Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar
Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir
TENTAMEN I KURSEN BYGGNADSMEKANIK 2
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström
Användarmanual till Maple
Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort
Analys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
B3) x y. q 1. q 2 x=3.0 m. x=1.0 m
B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,
Metodik för kalibrering av en beräkningsmodell Develop a method to determine material properties
Metodik för kalibrering av en beräkningsmodell Develop a method to determine material properties Examensarbete för högskoleingenjörsexamen inom Maskiningenjörsprogrammet ELIN ARVIDSSON SARA JOHANSSON Institutionen
Datorbaserade beräkningsmetoder
Material, form och kraft, F10 Datorbaserade beräkningsmetoder Finita elementmetoden Beräkningar Strukturmekaniska analyser Kraft-deformation, inverkan av temperatur, egenfrekvens, buckling COSMOS/Works
Diagonalisering och linjära system ODE med konstanta koe cienter.
Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på
1 Kvadratisk optimering under linjära likhetsbivillkor
Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
Biomekanik Belastningsanalys
Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 11, 2017 12. Tensorer Introduktion till tensorbegreppet Fysikaliska
Självkoll: Ser du att de två uttrycken är ekvivalenta?
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen
TENTAMEN I KURSEN TRÄBYGGNAD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-03-7 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken
Biomekanik, 5 poäng Jämviktslära
Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande
Linjärisering, Jacobimatris och Newtons metod.
Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system
Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov
Hållfasthetslära Lektion 2 Hookes lag Materialdata - Dragprov Dagens lektion Mål med dagens lektion Sammanfattning av förra lektionen Vad har vi lärt oss hittills? Hookes lag Hur förhåller sig normalspänning
5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3
1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift
Finita Elementmetoden
Finita Elementmetoden Bilder: Elena Kabo Anders Ekberg Teknisk mekanik / CHARMEC anders.ekberg@me.chalmers.se Bakgrund Allmängiltighet Geometri Last Material Datorbaserat CAD -> CAE -> CAM Beräkningsintensivt
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning
Bestäm den matris B som löser ekvationen = 1 2
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och
Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag
Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning
Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan
TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III
MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = =
Matematiska institutionen Stockholms universitet CG Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 5 MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
BERÄKNINGSPROGRAM FÖR TAKSTOLAR Jämförelse mellan förskjutningsmetoden och FEM
AKADEMIN FÖR TEKNIK OCH MILJÖ BERÄKNINGSPROGRAM FÖR TAKSTOLAR Jämförelse mellan förskjutningsmetoden och FEM Joakim Mårtensson Juni 2012 Examensarbete/uppsats/15hp Konstruktion/modellering Byggnadsingenjörsprogrammet
TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08
TME016 - Hållfasthetslära och maskinelement för Z, 7.5hp Period 3, 2007/08 Föreläsare och handledare: Lennart Josefson, lennart.josefson@chalmers.se, (772)1507 Föreläsare, övningsledare och handledare:
Karta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara
Föreläsning 1 Jag hettar Thomas Kragh och detta är kursen: Flervariabelanalys 1MA016/1MA183. E-post: thomas.kragh@math.uu.se Kursplan finns i studentportalens hemsida för denna kurs. Där är två spår: Spår