Finita Elementmetoden
|
|
- Ann-Marie Nyberg
- för 6 år sedan
- Visningar:
Transkript
1 Finita Elementmetoden Bilder: Elena Kabo Anders Ekberg Teknisk mekanik / CHARMEC anders.ekberg@me.chalmers.se
2 Bakgrund Allmängiltighet Geometri Last Material Datorbaserat CAD -> CAE -> CAM Beräkningsintensivt Skalbart Små / stora modeller Modulärt Portabla data Parallelldatorer Historia Matematisk kuriositet 1900 Ingenjörsmodell, Boeing 1950 Kommersiellt standardverktyg 2000 I Sverige: Byggnadsstatik, Chalmers (SO Asplund) Verkstadsindustrin 1980 Byggindustrin 1990 Dagsläget Allmänt accepterat Hyfsat användarvänligt Snygg resultatredovisning
3 Teori exempel, stångbärverk P A Elementarfall L P B A = P A L EA EA L A = P A P A A =1 B = 0 L P B P B = P A EA L A = P B B = P B L EA EA L B = P B A = 0 B = 1 P A = P B EA L B = P A EA L 1 1 A = P A 1 1 B P B Elementstyvhetsmatris För ett element K e d e = P e Hur översätta till en struktur?
4 Assemblering För varje element K e d e = P e För strukturen K d = P där K =" K e ", d =" d e " och P =" P e " L 1 L 2 P A1 = P a P B1 = P A2 = P b 1 2 P B2 = P c A1 = a För element 1: E 1 A A1 = P A1 L B1 För element 2: P B1 E 2 A A2 = P A2 L B2 P B2 B1 = A2 = b B2 = c För hela stången: EA L a b c = P a P b P c (om vi antar L 1 = L 2 = L, etc)
5 Styvhetsmatrisen Noder och element Element är de delar den totala strukturen (stången) är indelad i. Elementnätet kallas mesh Noder är där element möts Symmetri Elementstyvhetsmatriserna är symmetriska > den globala styvhetsmatrisen blir symmetrisk Bandning Varje element ger ett styvhetstillskott enbart till ett par noder > styvhetsmatrisen blir gles Om numreringen av noderna är hyfsat smart, så kommer detta att resultera i en bandad styvhetsmatris Symmetri och bandning kan utnyttjas vid lagring av K och lösning av ekvationssystemet Element = 0 Element 0 Element = 0
6 Laster och randvillkor Laster Yttre laster läggs på i högerledet av ekvationssystemet EA L a b c 0 = 0 P c a b c P Randvillkor, i form av föreskrivna förskjutningar, läggs på i förskjutningsvektorn. Om dessa är noll, kan motsvarande laster och styvhetselement helt enkelt strykas. EA L b = c P c P EA L b 1 1 = 0 P c a b c
7 Beräkning av resultat Ekvationssystem FEM formulering resulterar i ett ekvationssystem som - alltid är lösbart - innehåller många obekanta - byggs upp av en gles matris Datorberäkning måste (i princip) alltid till Statiska, elastiska problem är snabba att beräkna (även om de kan ha hundratusentals obekanta) Resultatet blir normalt bättre ju fler element man använder (meshberoende) Komplicerande faktorer Dynamiska (eller tidsberoende, kvasistatiska) problem Olinjära problem - plasticitet - kontaktproblem Adaptivitet (lösningskvalitet)
8 Problemtyper Balkar o stänger Enligt exemplet ovan Knäckning (2:a ordningens teori) Differentialekvation: w IV N w = q EI EI K + n2 K 2 = P Styvhetsmatrisen K + n 2 K 2 vekare ju högre tryckande normalkraft (representerad av n 2 ) Vid kritiskt värde blir styvheten 0 (det[ K + n 2 K 2 ]= 0) Balksvängning (dynamik) Differentialekvation w IV + A EI w = q EI K + a2 K 2 = P Detta är helt analogt med knäckningsekvationen, men den andra termen beror av svängningsfrekvensen (accelerationen) Vid kritiskt värde (det K + a 2 K 2 [ ]= 0 har vi en egenfrekvens)
9 Exempel Materialdefekt i järnvägshjul } 5-25 mm Picture by courtesy of Johan Marais, Spoornet
10 Modell Idealiseringar Tvådimensionell Circulär (cylindrisk) defekt Analytisk kontaktlast ( cylinder på ett plan ) Friktionslös kontakt med rörlig räls Moving direction
11 Finit elementmodell Moving Hertzian load element noder ca obekanta löses för 105 lastplaceringar i varje lösning itereras en plastisk respons fram lösningstid ca 7 timmar 120 elements in the area around the defect node elements in the FE mesh 100 mm 200 mm
12 Trescas effektivspänning
13 Residualspänningar Viewport: 1 Model: Model-1 Module: Visualization S, Pressure (Ave. Crit.: 75%) e e e e e e e e e e e e e+08 Max e+08 at elem node Min e+08 at elem 7657 node 18 Step: 63 Frame: Step: 63 Frame: SF: +2 Step: 63 Frame: 2 el.-plast.problem with round defect, 10 passes load., d=1mm, z=15mm, F=12MN/m ODB: Z odb ABAQUS/Standard Mon Mar 06 15:24:55 MET Step: Step 63 Increment 1: Step Time = Primary Var: S, Pressure Deformed Var: U Deformation Scale Factor: e+01 SF: SF:
14 Strukturdynamik Egensvängning och egenfrekvenser För vissa lastfrekvenser (som ger motsvarande accelerationer) hamnar strukturen i egensvängning Matematiskt kan man se detta som att strukturens styvhetsmatris är noll För en böjsvängande balk visas de lägsta egenmoderna nedan Ökad styvhet -> högre egenfrekvens Ökad massa -> lägre egenfrekvens Jämför med ett enfrihetsgradssystem: f = 1 k m 2 De högre frekvenserna ger normalt ett mindre tillskott till total deformation = 2 = 4 2 EI ml 4 EI ml 4
15 Strukturdynamik Analys av dynamiska problem Dynamiska problem kännetecknas av att diffekvationen innehåller en accelerationsterm Detta innebär att man får en tidsberoende lösning. Det finns, i princip, två sätt att bestämma denna: Tidsintegration Här stegar man sig fram i tiden och bestämmer en lösning vid varje tidssteg Generell, men beräkningskrävande metod Modanalys Här bestämmer man egenfrekvenser och egenmoder Last, styvhet och massa relateras till strukturens egenfrekvenser och responsen summeras från samtliga egenmoder Snabbt men mindre generellt
16 Dämpning Viskös dämpning Dämpningen kopplas här till hastigheten Den kan väljas som styvhets- och eller massproportionell. Detta innebär att den kopplas mot olika termer i differentialekvationen. För balksvängning blir detta: EIw IV + aeiw IV + m w + bmw = q där w = wx,t ( ) och där m och EI antagits konstanta över balkens längd Ickeviskös dämpning Man låter här dämpningen vara proportionell mot styvheten. Detta kan man göra m.h.a. en komplex E-modul E(1 + i)iw IV + mw = q Här är förlustfaktorn. Man kan även ha icke-viskös massproportionell dämpning För icke-harmonisk svängning är diffekvationen ovan olämplig
17 Laster Dynamiska laster Uppmätning: - givarplacering (jmfr egenmoder) - samplingsintervall (jmfr egenfrekvenser) - slumpmässighet och brus Redovisning - lastkollektiv - tidsserier - frekvensinnehåll Statiska laster Säkerhet kontra ekonomi (statistisk spridning) Uppskattning av lastnivå och placering (exempel: snölast) Samverkan (broupplagsbyte & storm?)
18 Dimensionerande lastfall Lastplacering q 2 q 1 q 2
19 Konstruktionsfilosofi Totalhållfasthet Redundans
Finita Elementmetoden
Bilder: Elena Kabo Finita Elementmetoden Anders Ekberg Teknisk mekanik / CHARMEC anders.ekberg@me.chalmers.se Bakgrund Allmängiltighet Geometri Last Material Datorbaserat CAD -> CAE -> CAM Beräkningsintensivt
Datorbaserade beräkningsmetoder
Material, form och kraft, F10 Datorbaserade beräkningsmetoder Finita elementmetoden Beräkningar Strukturmekaniska analyser Kraft-deformation, inverkan av temperatur, egenfrekvens, buckling COSMOS/Works
1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip
--8 FE för Ingenjörstillämpningar, SE rshen@kth.se.6 Castiglianos :a Sats och insta Arbetets rincip ilder ritade av Veronica Wåtz. Givet: k () L Sökt: Lösning: et står att ska beräknas med hjälp av energimetod
CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor
Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig
FEM1: Randvärdesproblem och finita elementmetoden i en variabel.
MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som
Matrismetod för analys av stångbärverk
KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen
Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012
Umeå universitet Tillämpad fysik och elektronik Annika Moström 01-0-3 Rambärverk Projektuppgift Hållfasthetslärans grunder Våren 01 Rambärverk 1 Knut Balk Knut 3 Balk 1 Balk 3 Knut 1 Knut 4 1 Figure 1:
Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk. Projektuppgift 1 Hållfasthetslärans grunder Våren 2012
Umeå universitet Tillämpad fysik och elektronik Annika Moström 212-3-6 Fackverk Projektuppgift 1 Hållfasthetslärans grunder Våren 212 Fackverk 1 Knut 3 Knut 2 Stång 2 Stång 3 y Knut 4 Stång 1 Knut 1 x
Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan
TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system
Övning 1 FEM för Ingenjörstillämpningar Rickard Shen
Övning FE för Ingenjörstillämpningar Rickard Shen 9--9 rshen@kth.se 7-7 7 59.6 Castiglianos :a Sats och insta Arbetets rincip Bilder ritade av Veronica Wåtz, asse emeritus. 6EI Givet: k = () L Sökt: θ
Stötlastanalys på en plan balk
Stötlastanalys på en plan balk à Problem beskrivning -Studera plan böjsvängande stålbalk ( E = 210 GPa) -Fast inspänd i vänsterändan -Balken har ett IPE-200 tvärsnitt -Balken är belastad med en stötlast
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Hållfasthetslära Sammanfattning
2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning
Manual för ett litet FEM-program i Matlab
KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet
Svängningar och frekvenser
Svängningar och frekvenser Vågekvationen för böjvågor Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska linjens ekvation. Den skiljer sig från de ovanstående genom att
Material, form och kraft, F11
Material, form och kraft, F11 Repetition Dimensionering Hållfasthet, Deformation/Styvhet Effektivspänning (tex von Mises) Spröda/Sega (kan omfördela spänning) Stabilitet instabilitet Pelarknäckning Vippning
Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006
KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,
4.6 Stelkroppsrörelse i balk
Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 rshen@kth.se.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz Givet: w L w L () Sökt: Visa att förskjutningsansatsen
Strukturdynamiska simuleringar och PDE
Strukturdynamiska simuleringar och PDE Staffan Häglund 4 november 2014 Staffan Häglund Strukturdynamiska simuleringar och PDE 4 november 2014 1 / 16 Struktur Struktur Om FS Dynamics Exempel, vad kan man
Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk
.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N
TENTAMEN I HÅLLFASTHETSLÄRA FÖR I2 MHA 051. 6 april 2002 08.45 13.45 (5 timmar) Lärare: Anders Ekberg, tel 772 3480
2002-04-04:anek TENTAMEN I HÅFASTHETSÄRA FÖR I2 MHA 051 6 april 2002 08.45 13.45 (5 timmar) ärare: Anders Ekberg, tel 772 3480 Maximal poäng är 15. För godkänt krävs 6 poäng. AMÄNT Hjälpmedel 1. äroböcker
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Program för Hållfasthetslära, grundkurs med energimetoder (SE1055, 9p) VT 2013
Program för Hållfasthetslära, grundkurs med energimetoder (SE1055, 9p) VT 2013 Utvecklingen av fysiska produkter och utforskandet av världen kräver kunskap om hur material, komponenter, och strukturer
Kurs-PM för grundkurs TMHL02 i Hållfasthetslära Enkla Bärverk, 4p, för M, vt 2008
T Dahlberg, Hållfasthetslära/IEI (f d IKP) tel 013-28 1116, 070-66 511 03, torda@ikp.liu.se Kurs-PM för grundkurs TMHL02 i Hållfasthetslära Enkla Bärverk, 4p, för M, vt 2008 Utbildningsområde: Teknik Ämnesgrupp:
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband
BALKTEORI, INLÄMNINGSUPPGIFTER
BALKTEORI, INLÄMNINGSUPPGIFTER Det finns tre inlämningsuppgifter (I, II och III). De löses individuellt eller i grupper om två personer. Uppgifterna avser arbete i anslutning till tre demonstrationslaborationer:
Lösning: ε= δ eller ε=du
Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange
Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers
Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 2 Förord Detta kompendie är tänkt som ett komplement till eempelsammlingen av Ekevid,
Deformationer i träbjälklag och trägolv på grund av fuktvariationer
Deformationer i träbjälklag och trägolv på grund av fuktvariationer Erik Serrano School of Engineering Report No 7, 211 ISBN: 978-91-86491-9-1 Deformationer i träbjälklag och trägolv på grund av fuktvariationer
Gradientbaserad Optimering,
Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos
Påtvingad svängning SDOF
F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften
Reducering av analystid vid svetssimulering
EXAMENSARBETE 27:7 CIV Reducering av analystid vid svetssimulering KATARINA HANDELL CIVILINGENJÖRSPROGRAMMET Teknisk fysik Luleå tekniska universitet Institutionen för Tillämpad fysik, maskin- och materialteknik
KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,
KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007
I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt
Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,
Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning
SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010
SF624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 29 november, 200 UPPGIFT () Betrakta det linjära ekvationssystemet x + x 2 + x 3 = 7, x x 3 + x 4
KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Laboration 1. Ekvationslösning
Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen
PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT
Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
FEM M2 & Bio3 ht06 lp2 Projekt P 3
HH/SET/BN E, Projekt 1 E & Bio ht06 lp Projekt P Allmänt Lös uppgifterna nedan med E. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och utgör underlag för
FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D
HH/SET/BN FEM, Projekt 1 FEM M2 & Bio ht07 lp2 Projekt P Grupp D Allmänt Lös uppgifterna nedan med FEM. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och
------------ -------------------------------
TMHL09 2013-10-23.01 (Del I, teori; 1 p.) 1. En balk med kvadratiskt tvärsnitt är tillverkad genom att man limmat ihop två lika rektangulära profiler enligt fig. 2a. Balken belastas med axiell tryckkraft
Gradientbaserad strukturoptimering
Gradientbaserad strukturoptimering Anders Klarbring solutions by Bo Torstenfelt, Thomas Borrvall and others Division of Mechanics, Linköping University, Sweden ProOpt Workshop - October 7, 2010 Klarbring
FEM-modellering och analys av en elastisk komponent
FEM-modellering och analys av en elastisk komponent - Laboration 2 MF102X/MF103X/MF104X/MF111X/MF112X/MF114X/MF1025 VT 2012 Ulf Sellgren KTH Maskinkonstruktion Skolan för Industriell teknik och management
Exempel 11: Sammansatt ram
Exempel 11: Sammansatt ram 11.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera den sammansatta ramen enligt nedan. Sammansatt ram Tvärsnitt 8 7 6 5 4 3 2 1 Takåsar Primärbalkar 18 1,80 1,80
8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:
Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:
TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning
MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
Hållfasthetslära Z2, MME175 lp 3, 2005
Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Mål Kursen Mekanikmodeller ger
Mål Kursen Mekanikmodeller ger 1. Enhetlig beskrivning av mekanikens och termomekanikens modeller. Exempel: partikelmekanik, stela kroppar, linjär elasticitetsteori, rörströmning, viskös och ickeviskös
Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik
Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet
VIDAREUTVECKLING AV DATORPROGRAM FÖR STUDIER AV SNABB SPRICKTILLWXT OCH SPRICKSTOPPNING I REAKTORTRYCKKÄRL
VIDAREUTVECKLING AV DATORPROGRAM FÖR STUDIER AV SNABB SPRICKTILLWXT OCH SPRICKSTOPPNING I REAKTORTRYCKKÄRL ROBERTO OLIVE I RA BJÖRK BRICKSTA: VETENSKAP OCH KONST RAPPORT 48 HÅLLFASTHETSLÄRA KTH i-ti- Ht-ti
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan
Välkommen till Hållfasthetslära gk med projekt (SE1010) Föreläsare för T: Sören Östlund
Välkommen till Hållfasthetslära gk med projekt (SE1010) Föreläsare för T: Sören Östlund Besöksadress: Osquars backe 1, 2 tr Telefon: 08-790 7542 e-post: soren@kth.se Lärandemål Efter avslutad kurs skall
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011
Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:
TENTAMEN I VIBRATIONSANALYS 7,5 hp
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Högskoleingenjörsprogrammet i maskinteknik 2013 TENTAMEN I VIBRATIONSANALYS 7,5 hp Tentamensdatum: 2 maj 2013 Skrivtid: 9 00-15 00 Skrivsal: Östra Paviljongen,
Laboration 1. 1 Matlab-repetition. 2 Störningsräkning 1. 3 Störningsräkning 2
Laboration 1 Hela labben måste vara redovisad och godkänd senast 19 november för att generera bonuspoäng till tentan. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat
Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling).
Laboration 1 Sista dag för bonuspoäng är 18 mars. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen ska kunna redogöra för
Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0)
Repetition Newtons första lag En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) v Om ett föremål är i vila eller likformig rörelse är summan
Exempel 12: Balk med krökt under- och överram
6,00 Exempel 12: Exempel 12: 12.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera fackverket med krökt under- och överram enligt nedan. Överram Underram R 235,9 det.2 R 235,9 1,5 det.1 10,00
TENTAMEN I KURSEN BYGGNADSMEKANIK 2
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström
Nyheter i Creo Simulate 2.0:
Nyheter i Creo Simulate 2.0: Nya beräkningsfunktioner: 1. Utökning av icke-linjära analyser: Efter att snyggt och intuitivt implementerat generell plasticering fortsätter PTC med att utveckla den icke-linjära
Jämförelse av ventilsystems dynamiska egenskaper
Jämförelse av ventilsystems dynamiska egenskaper Bo R. ndersson Fluida och Mekatroniska System, Institutionen för ekonomisk och industriell utveckling, Linköping, Sverige E-mail: bo.andersson@liu.se Sammanfattning
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
2D1240 Numeriska metoder gk II för T2, VT 2004 LABORATION 1. Ekvationslösning
1 Olof Runborg NADA 15 januari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 A LABORATION 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till
NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem
NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann
PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT
Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -
Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014
Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Laboration 4 mars 4 Stångbärverk Hållfasthetslärans grunder Civilingenjörsprogrammet i teknisk fysik Knut Knut....4 y/ L.5.6.7.8.9 Knut
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar
1. Mekanisk svängningsrörelse
1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på
Material, form och kraft, F4
Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan
Projekt : Samverkan upplagstryck-5 mm spikningsplåt
Projekt 241831: Samverkan upplagstryck-5 mm spikningsplåt Beräkningsrapport: Olinjär finit elementberäkning av testrigg för limträknutpunkt Mats Ekevad LTU Träteknik 2013-04-05 Sammanfattning Testriggen
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers
Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 1 Förord Denna skrift innehåller de konstruktionsuppgifter som avses lösas i kursen Strukturmekanik
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Kompositberä kning i Solidworks
Kompositberä kning i Solidworks Uppdaterad 2014-12-03 Här följer en kort beskrivning av hur en komposit kan beräknas i SolidWorks. Beräkningen utgår från ett enkelt lastfall, som på bilden. Kriterier Modell
Ordinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
LÖSNING
TMHL09 2013-05-31.01 (Del I, teori; 1 p.) Strävan i figuren ska ha cirkulärt tvärsnitt och tillverkas av antingen stål eller aluminium. O- avsett vilket material som väljs ska kritiska lasten mot knäckning
Numerisk lösning av PDE: Comsol Multiphysics
J.Oppelstrup p 1 (5) Numerisk lösning av PDE: Comsol Multiphysics I denna lab ska du bekanta dig med programmet Comsol Multiphysics för numerisk lösning av PDE med finita element. Programmet har många
Användarmanual till Maple
Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Tentamen i Hållfasthetslära AK2 för M Torsdag , kl
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
Angående skjuvbuckling
Sidan 1 av 6 Angående skjuvbuckling Man kan misstänka att liven i en sandwich med invändiga balkar kan haverera genom skjuvbuckling. Att skjuvbuckling kan uppstå kan man förklara med att en skjuvlast kan
Exempel 13: Treledsbåge
Exempel 13: Treledsbåge 13.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera treledsbågen enligt nedan. Treledsbåge 84,42 R72,67 12,00 3,00 56,7º 40,00 80,00 40,00 Statisk modell Bestäm tvärsnittets
Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem
Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen
c) Sarrus regel ger L6.2 Hur många lösningar har ekvationssystemen?
Avsnitt Determinanter L Använd determinanter för att avgöra om följande matriser är inverterbara ( ) a) b) 5 8 ( ) cos ϕ sin ϕ c) d) sin ϕ cos ϕ En matris A är inverterbar om och endast om det A Vi beräknar
2 november 2016 Byggnadsmekanik 2 2
Byggnadsmekanik 2 Välkommen! 2 november 2016 Byggnadsmekanik 2 2 Byggnadsmekanik 2 Kursen är en fortsättning i byggnadsmekanik och hållfasthetslära med inriktning mot byggnadskonstruktion. I kursen behandlas