Finita Elementmetoden

Storlek: px
Starta visningen från sidan:

Download "Finita Elementmetoden"

Transkript

1 Finita Elementmetoden Bilder: Elena Kabo Anders Ekberg Teknisk mekanik / CHARMEC anders.ekberg@me.chalmers.se

2 Bakgrund Allmängiltighet Geometri Last Material Datorbaserat CAD -> CAE -> CAM Beräkningsintensivt Skalbart Små / stora modeller Modulärt Portabla data Parallelldatorer Historia Matematisk kuriositet 1900 Ingenjörsmodell, Boeing 1950 Kommersiellt standardverktyg 2000 I Sverige: Byggnadsstatik, Chalmers (SO Asplund) Verkstadsindustrin 1980 Byggindustrin 1990 Dagsläget Allmänt accepterat Hyfsat användarvänligt Snygg resultatredovisning

3 Teori exempel, stångbärverk P A Elementarfall L P B A = P A L EA EA L A = P A P A A =1 B = 0 L P B P B = P A EA L A = P B B = P B L EA EA L B = P B A = 0 B = 1 P A = P B EA L B = P A EA L 1 1 A = P A 1 1 B P B Elementstyvhetsmatris För ett element K e d e = P e Hur översätta till en struktur?

4 Assemblering För varje element K e d e = P e För strukturen K d = P där K =" K e ", d =" d e " och P =" P e " L 1 L 2 P A1 = P a P B1 = P A2 = P b 1 2 P B2 = P c A1 = a För element 1: E 1 A A1 = P A1 L B1 För element 2: P B1 E 2 A A2 = P A2 L B2 P B2 B1 = A2 = b B2 = c För hela stången: EA L a b c = P a P b P c (om vi antar L 1 = L 2 = L, etc)

5 Styvhetsmatrisen Noder och element Element är de delar den totala strukturen (stången) är indelad i. Elementnätet kallas mesh Noder är där element möts Symmetri Elementstyvhetsmatriserna är symmetriska > den globala styvhetsmatrisen blir symmetrisk Bandning Varje element ger ett styvhetstillskott enbart till ett par noder > styvhetsmatrisen blir gles Om numreringen av noderna är hyfsat smart, så kommer detta att resultera i en bandad styvhetsmatris Symmetri och bandning kan utnyttjas vid lagring av K och lösning av ekvationssystemet Element = 0 Element 0 Element = 0

6 Laster och randvillkor Laster Yttre laster läggs på i högerledet av ekvationssystemet EA L a b c 0 = 0 P c a b c P Randvillkor, i form av föreskrivna förskjutningar, läggs på i förskjutningsvektorn. Om dessa är noll, kan motsvarande laster och styvhetselement helt enkelt strykas. EA L b = c P c P EA L b 1 1 = 0 P c a b c

7 Beräkning av resultat Ekvationssystem FEM formulering resulterar i ett ekvationssystem som - alltid är lösbart - innehåller många obekanta - byggs upp av en gles matris Datorberäkning måste (i princip) alltid till Statiska, elastiska problem är snabba att beräkna (även om de kan ha hundratusentals obekanta) Resultatet blir normalt bättre ju fler element man använder (meshberoende) Komplicerande faktorer Dynamiska (eller tidsberoende, kvasistatiska) problem Olinjära problem - plasticitet - kontaktproblem Adaptivitet (lösningskvalitet)

8 Problemtyper Balkar o stänger Enligt exemplet ovan Knäckning (2:a ordningens teori) Differentialekvation: w IV N w = q EI EI K + n2 K 2 = P Styvhetsmatrisen K + n 2 K 2 vekare ju högre tryckande normalkraft (representerad av n 2 ) Vid kritiskt värde blir styvheten 0 (det[ K + n 2 K 2 ]= 0) Balksvängning (dynamik) Differentialekvation w IV + A EI w = q EI K + a2 K 2 = P Detta är helt analogt med knäckningsekvationen, men den andra termen beror av svängningsfrekvensen (accelerationen) Vid kritiskt värde (det K + a 2 K 2 [ ]= 0 har vi en egenfrekvens)

9 Exempel Materialdefekt i järnvägshjul } 5-25 mm Picture by courtesy of Johan Marais, Spoornet

10 Modell Idealiseringar Tvådimensionell Circulär (cylindrisk) defekt Analytisk kontaktlast ( cylinder på ett plan ) Friktionslös kontakt med rörlig räls Moving direction

11 Finit elementmodell Moving Hertzian load element noder ca obekanta löses för 105 lastplaceringar i varje lösning itereras en plastisk respons fram lösningstid ca 7 timmar 120 elements in the area around the defect node elements in the FE mesh 100 mm 200 mm

12 Trescas effektivspänning

13 Residualspänningar Viewport: 1 Model: Model-1 Module: Visualization S, Pressure (Ave. Crit.: 75%) e e e e e e e e e e e e e+08 Max e+08 at elem node Min e+08 at elem 7657 node 18 Step: 63 Frame: Step: 63 Frame: SF: +2 Step: 63 Frame: 2 el.-plast.problem with round defect, 10 passes load., d=1mm, z=15mm, F=12MN/m ODB: Z odb ABAQUS/Standard Mon Mar 06 15:24:55 MET Step: Step 63 Increment 1: Step Time = Primary Var: S, Pressure Deformed Var: U Deformation Scale Factor: e+01 SF: SF:

14 Strukturdynamik Egensvängning och egenfrekvenser För vissa lastfrekvenser (som ger motsvarande accelerationer) hamnar strukturen i egensvängning Matematiskt kan man se detta som att strukturens styvhetsmatris är noll För en böjsvängande balk visas de lägsta egenmoderna nedan Ökad styvhet -> högre egenfrekvens Ökad massa -> lägre egenfrekvens Jämför med ett enfrihetsgradssystem: f = 1 k m 2 De högre frekvenserna ger normalt ett mindre tillskott till total deformation = 2 = 4 2 EI ml 4 EI ml 4

15 Strukturdynamik Analys av dynamiska problem Dynamiska problem kännetecknas av att diffekvationen innehåller en accelerationsterm Detta innebär att man får en tidsberoende lösning. Det finns, i princip, två sätt att bestämma denna: Tidsintegration Här stegar man sig fram i tiden och bestämmer en lösning vid varje tidssteg Generell, men beräkningskrävande metod Modanalys Här bestämmer man egenfrekvenser och egenmoder Last, styvhet och massa relateras till strukturens egenfrekvenser och responsen summeras från samtliga egenmoder Snabbt men mindre generellt

16 Dämpning Viskös dämpning Dämpningen kopplas här till hastigheten Den kan väljas som styvhets- och eller massproportionell. Detta innebär att den kopplas mot olika termer i differentialekvationen. För balksvängning blir detta: EIw IV + aeiw IV + m w + bmw = q där w = wx,t ( ) och där m och EI antagits konstanta över balkens längd Ickeviskös dämpning Man låter här dämpningen vara proportionell mot styvheten. Detta kan man göra m.h.a. en komplex E-modul E(1 + i)iw IV + mw = q Här är förlustfaktorn. Man kan även ha icke-viskös massproportionell dämpning För icke-harmonisk svängning är diffekvationen ovan olämplig

17 Laster Dynamiska laster Uppmätning: - givarplacering (jmfr egenmoder) - samplingsintervall (jmfr egenfrekvenser) - slumpmässighet och brus Redovisning - lastkollektiv - tidsserier - frekvensinnehåll Statiska laster Säkerhet kontra ekonomi (statistisk spridning) Uppskattning av lastnivå och placering (exempel: snölast) Samverkan (broupplagsbyte & storm?)

18 Dimensionerande lastfall Lastplacering q 2 q 1 q 2

19 Konstruktionsfilosofi Totalhållfasthet Redundans

Finita Elementmetoden

Finita Elementmetoden Bilder: Elena Kabo Finita Elementmetoden Anders Ekberg Teknisk mekanik / CHARMEC anders.ekberg@me.chalmers.se Bakgrund Allmängiltighet Geometri Last Material Datorbaserat CAD -> CAE -> CAM Beräkningsintensivt

Läs mer

Datorbaserade beräkningsmetoder

Datorbaserade beräkningsmetoder Material, form och kraft, F10 Datorbaserade beräkningsmetoder Finita elementmetoden Beräkningar Strukturmekaniska analyser Kraft-deformation, inverkan av temperatur, egenfrekvens, buckling COSMOS/Works

Läs mer

1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip

1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip --8 FE för Ingenjörstillämpningar, SE rshen@kth.se.6 Castiglianos :a Sats och insta Arbetets rincip ilder ritade av Veronica Wåtz. Givet: k () L Sökt: Lösning: et står att ska beräknas med hjälp av energimetod

Läs mer

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig

Läs mer

FEM1: Randvärdesproblem och finita elementmetoden i en variabel.

FEM1: Randvärdesproblem och finita elementmetoden i en variabel. MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som

Läs mer

Matrismetod för analys av stångbärverk

Matrismetod för analys av stångbärverk KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen

Läs mer

Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012

Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012 Umeå universitet Tillämpad fysik och elektronik Annika Moström 01-0-3 Rambärverk Projektuppgift Hållfasthetslärans grunder Våren 01 Rambärverk 1 Knut Balk Knut 3 Balk 1 Balk 3 Knut 1 Knut 4 1 Figure 1:

Läs mer

Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk. Projektuppgift 1 Hållfasthetslärans grunder Våren 2012

Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk. Projektuppgift 1 Hållfasthetslärans grunder Våren 2012 Umeå universitet Tillämpad fysik och elektronik Annika Moström 212-3-6 Fackverk Projektuppgift 1 Hållfasthetslärans grunder Våren 212 Fackverk 1 Knut 3 Knut 2 Stång 2 Stång 3 y Knut 4 Stång 1 Knut 1 x

Läs mer

Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan

Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system

Läs mer

Övning 1 FEM för Ingenjörstillämpningar Rickard Shen

Övning 1 FEM för Ingenjörstillämpningar Rickard Shen Övning FE för Ingenjörstillämpningar Rickard Shen 9--9 rshen@kth.se 7-7 7 59.6 Castiglianos :a Sats och insta Arbetets rincip Bilder ritade av Veronica Wåtz, asse emeritus. 6EI Givet: k = () L Sökt: θ

Läs mer

Stötlastanalys på en plan balk

Stötlastanalys på en plan balk Stötlastanalys på en plan balk à Problem beskrivning -Studera plan böjsvängande stålbalk ( E = 210 GPa) -Fast inspänd i vänsterändan -Balken har ett IPE-200 tvärsnitt -Balken är belastad med en stötlast

Läs mer

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett

Läs mer

Hållfasthetslära Sammanfattning

Hållfasthetslära Sammanfattning 2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning

Läs mer

Manual för ett litet FEM-program i Matlab

Manual för ett litet FEM-program i Matlab KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet

Läs mer

Svängningar och frekvenser

Svängningar och frekvenser Svängningar och frekvenser Vågekvationen för böjvågor Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska linjens ekvation. Den skiljer sig från de ovanstående genom att

Läs mer

Material, form och kraft, F11

Material, form och kraft, F11 Material, form och kraft, F11 Repetition Dimensionering Hållfasthet, Deformation/Styvhet Effektivspänning (tex von Mises) Spröda/Sega (kan omfördela spänning) Stabilitet instabilitet Pelarknäckning Vippning

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,

Läs mer

4.6 Stelkroppsrörelse i balk

4.6 Stelkroppsrörelse i balk Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 rshen@kth.se.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz Givet: w L w L () Sökt: Visa att förskjutningsansatsen

Läs mer

Strukturdynamiska simuleringar och PDE

Strukturdynamiska simuleringar och PDE Strukturdynamiska simuleringar och PDE Staffan Häglund 4 november 2014 Staffan Häglund Strukturdynamiska simuleringar och PDE 4 november 2014 1 / 16 Struktur Struktur Om FS Dynamics Exempel, vad kan man

Läs mer

Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk

Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk .6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I2 MHA 051. 6 april 2002 08.45 13.45 (5 timmar) Lärare: Anders Ekberg, tel 772 3480

TENTAMEN I HÅLLFASTHETSLÄRA FÖR I2 MHA 051. 6 april 2002 08.45 13.45 (5 timmar) Lärare: Anders Ekberg, tel 772 3480 2002-04-04:anek TENTAMEN I HÅFASTHETSÄRA FÖR I2 MHA 051 6 april 2002 08.45 13.45 (5 timmar) ärare: Anders Ekberg, tel 772 3480 Maximal poäng är 15. För godkänt krävs 6 poäng. AMÄNT Hjälpmedel 1. äroböcker

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

Program för Hållfasthetslära, grundkurs med energimetoder (SE1055, 9p) VT 2013

Program för Hållfasthetslära, grundkurs med energimetoder (SE1055, 9p) VT 2013 Program för Hållfasthetslära, grundkurs med energimetoder (SE1055, 9p) VT 2013 Utvecklingen av fysiska produkter och utforskandet av världen kräver kunskap om hur material, komponenter, och strukturer

Läs mer

Kurs-PM för grundkurs TMHL02 i Hållfasthetslära Enkla Bärverk, 4p, för M, vt 2008

Kurs-PM för grundkurs TMHL02 i Hållfasthetslära Enkla Bärverk, 4p, för M, vt 2008 T Dahlberg, Hållfasthetslära/IEI (f d IKP) tel 013-28 1116, 070-66 511 03, torda@ikp.liu.se Kurs-PM för grundkurs TMHL02 i Hållfasthetslära Enkla Bärverk, 4p, för M, vt 2008 Utbildningsområde: Teknik Ämnesgrupp:

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband

Läs mer

BALKTEORI, INLÄMNINGSUPPGIFTER

BALKTEORI, INLÄMNINGSUPPGIFTER BALKTEORI, INLÄMNINGSUPPGIFTER Det finns tre inlämningsuppgifter (I, II och III). De löses individuellt eller i grupper om två personer. Uppgifterna avser arbete i anslutning till tre demonstrationslaborationer:

Läs mer

Lösning: ε= δ eller ε=du

Lösning: ε= δ eller ε=du Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange

Läs mer

Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers

Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 2 Förord Detta kompendie är tänkt som ett komplement till eempelsammlingen av Ekevid,

Läs mer

Deformationer i träbjälklag och trägolv på grund av fuktvariationer

Deformationer i träbjälklag och trägolv på grund av fuktvariationer Deformationer i träbjälklag och trägolv på grund av fuktvariationer Erik Serrano School of Engineering Report No 7, 211 ISBN: 978-91-86491-9-1 Deformationer i träbjälklag och trägolv på grund av fuktvariationer

Läs mer

Gradientbaserad Optimering,

Gradientbaserad Optimering, Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos

Läs mer

Påtvingad svängning SDOF

Påtvingad svängning SDOF F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften

Läs mer

Reducering av analystid vid svetssimulering

Reducering av analystid vid svetssimulering EXAMENSARBETE 27:7 CIV Reducering av analystid vid svetssimulering KATARINA HANDELL CIVILINGENJÖRSPROGRAMMET Teknisk fysik Luleå tekniska universitet Institutionen för Tillämpad fysik, maskin- och materialteknik

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010 SF624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 29 november, 200 UPPGIFT () Betrakta det linjära ekvationssystemet x + x 2 + x 3 = 7, x x 3 + x 4

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Laboration 1. Ekvationslösning

Laboration 1. Ekvationslösning Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen

Läs mer

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib

Läs mer

FEM M2 & Bio3 ht06 lp2 Projekt P 3

FEM M2 & Bio3 ht06 lp2 Projekt P 3 HH/SET/BN E, Projekt 1 E & Bio ht06 lp Projekt P Allmänt Lös uppgifterna nedan med E. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och utgör underlag för

Läs mer

FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D

FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D HH/SET/BN FEM, Projekt 1 FEM M2 & Bio ht07 lp2 Projekt P Grupp D Allmänt Lös uppgifterna nedan med FEM. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och

Läs mer

------------ -------------------------------

------------ ------------------------------- TMHL09 2013-10-23.01 (Del I, teori; 1 p.) 1. En balk med kvadratiskt tvärsnitt är tillverkad genom att man limmat ihop två lika rektangulära profiler enligt fig. 2a. Balken belastas med axiell tryckkraft

Läs mer

Gradientbaserad strukturoptimering

Gradientbaserad strukturoptimering Gradientbaserad strukturoptimering Anders Klarbring solutions by Bo Torstenfelt, Thomas Borrvall and others Division of Mechanics, Linköping University, Sweden ProOpt Workshop - October 7, 2010 Klarbring

Läs mer

FEM-modellering och analys av en elastisk komponent

FEM-modellering och analys av en elastisk komponent FEM-modellering och analys av en elastisk komponent - Laboration 2 MF102X/MF103X/MF104X/MF111X/MF112X/MF114X/MF1025 VT 2012 Ulf Sellgren KTH Maskinkonstruktion Skolan för Industriell teknik och management

Läs mer

Exempel 11: Sammansatt ram

Exempel 11: Sammansatt ram Exempel 11: Sammansatt ram 11.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera den sammansatta ramen enligt nedan. Sammansatt ram Tvärsnitt 8 7 6 5 4 3 2 1 Takåsar Primärbalkar 18 1,80 1,80

Läs mer

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar: Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.

Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. 1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag

Läs mer

Hållfasthetslära Z2, MME175 lp 3, 2005

Hållfasthetslära Z2, MME175 lp 3, 2005 Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Mål Kursen Mekanikmodeller ger

Mål Kursen Mekanikmodeller ger Mål Kursen Mekanikmodeller ger 1. Enhetlig beskrivning av mekanikens och termomekanikens modeller. Exempel: partikelmekanik, stela kroppar, linjär elasticitetsteori, rörströmning, viskös och ickeviskös

Läs mer

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet

Läs mer

VIDAREUTVECKLING AV DATORPROGRAM FÖR STUDIER AV SNABB SPRICKTILLWXT OCH SPRICKSTOPPNING I REAKTORTRYCKKÄRL

VIDAREUTVECKLING AV DATORPROGRAM FÖR STUDIER AV SNABB SPRICKTILLWXT OCH SPRICKSTOPPNING I REAKTORTRYCKKÄRL VIDAREUTVECKLING AV DATORPROGRAM FÖR STUDIER AV SNABB SPRICKTILLWXT OCH SPRICKSTOPPNING I REAKTORTRYCKKÄRL ROBERTO OLIVE I RA BJÖRK BRICKSTA: VETENSKAP OCH KONST RAPPORT 48 HÅLLFASTHETSLÄRA KTH i-ti- Ht-ti

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan

Läs mer

Välkommen till Hållfasthetslära gk med projekt (SE1010) Föreläsare för T: Sören Östlund

Välkommen till Hållfasthetslära gk med projekt (SE1010) Föreläsare för T: Sören Östlund Välkommen till Hållfasthetslära gk med projekt (SE1010) Föreläsare för T: Sören Östlund Besöksadress: Osquars backe 1, 2 tr Telefon: 08-790 7542 e-post: soren@kth.se Lärandemål Efter avslutad kurs skall

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011 Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:

Läs mer

TENTAMEN I VIBRATIONSANALYS 7,5 hp

TENTAMEN I VIBRATIONSANALYS 7,5 hp UMEÅ UNIVERSITET Tillämpad fysik och elektronik Högskoleingenjörsprogrammet i maskinteknik 2013 TENTAMEN I VIBRATIONSANALYS 7,5 hp Tentamensdatum: 2 maj 2013 Skrivtid: 9 00-15 00 Skrivsal: Östra Paviljongen,

Läs mer

Laboration 1. 1 Matlab-repetition. 2 Störningsräkning 1. 3 Störningsräkning 2

Laboration 1. 1 Matlab-repetition. 2 Störningsräkning 1. 3 Störningsräkning 2 Laboration 1 Hela labben måste vara redovisad och godkänd senast 19 november för att generera bonuspoäng till tentan. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat

Läs mer

Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling).

Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling). Laboration 1 Sista dag för bonuspoäng är 18 mars. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen ska kunna redogöra för

Läs mer

Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0)

Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) Repetition Newtons första lag En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) v Om ett föremål är i vila eller likformig rörelse är summan

Läs mer

Exempel 12: Balk med krökt under- och överram

Exempel 12: Balk med krökt under- och överram 6,00 Exempel 12: Exempel 12: 12.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera fackverket med krökt under- och överram enligt nedan. Överram Underram R 235,9 det.2 R 235,9 1,5 det.1 10,00

Läs mer

TENTAMEN I KURSEN BYGGNADSMEKANIK 2

TENTAMEN I KURSEN BYGGNADSMEKANIK 2 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström

Läs mer

Nyheter i Creo Simulate 2.0:

Nyheter i Creo Simulate 2.0: Nyheter i Creo Simulate 2.0: Nya beräkningsfunktioner: 1. Utökning av icke-linjära analyser: Efter att snyggt och intuitivt implementerat generell plasticering fortsätter PTC med att utveckla den icke-linjära

Läs mer

Jämförelse av ventilsystems dynamiska egenskaper

Jämförelse av ventilsystems dynamiska egenskaper Jämförelse av ventilsystems dynamiska egenskaper Bo R. ndersson Fluida och Mekatroniska System, Institutionen för ekonomisk och industriell utveckling, Linköping, Sverige E-mail: bo.andersson@liu.se Sammanfattning

Läs mer

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa

Läs mer

2D1240 Numeriska metoder gk II för T2, VT 2004 LABORATION 1. Ekvationslösning

2D1240 Numeriska metoder gk II för T2, VT 2004 LABORATION 1. Ekvationslösning 1 Olof Runborg NADA 15 januari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 A LABORATION 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till

Läs mer

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann

Läs mer

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -

Läs mer

Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014

Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014 Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Laboration 4 mars 4 Stångbärverk Hållfasthetslärans grunder Civilingenjörsprogrammet i teknisk fysik Knut Knut....4 y/ L.5.6.7.8.9 Knut

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

1. Mekanisk svängningsrörelse

1. Mekanisk svängningsrörelse 1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på

Läs mer

Material, form och kraft, F4

Material, form och kraft, F4 Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan

Läs mer

Projekt : Samverkan upplagstryck-5 mm spikningsplåt

Projekt : Samverkan upplagstryck-5 mm spikningsplåt Projekt 241831: Samverkan upplagstryck-5 mm spikningsplåt Beräkningsrapport: Olinjär finit elementberäkning av testrigg för limträknutpunkt Mats Ekevad LTU Träteknik 2013-04-05 Sammanfattning Testriggen

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers

Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 1 Förord Denna skrift innehåller de konstruktionsuppgifter som avses lösas i kursen Strukturmekanik

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

Kompositberä kning i Solidworks

Kompositberä kning i Solidworks Kompositberä kning i Solidworks Uppdaterad 2014-12-03 Här följer en kort beskrivning av hur en komposit kan beräknas i SolidWorks. Beräkningen utgår från ett enkelt lastfall, som på bilden. Kriterier Modell

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, (ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

LÖSNING

LÖSNING TMHL09 2013-05-31.01 (Del I, teori; 1 p.) Strävan i figuren ska ha cirkulärt tvärsnitt och tillverkas av antingen stål eller aluminium. O- avsett vilket material som väljs ska kritiska lasten mot knäckning

Läs mer

Numerisk lösning av PDE: Comsol Multiphysics

Numerisk lösning av PDE: Comsol Multiphysics J.Oppelstrup p 1 (5) Numerisk lösning av PDE: Comsol Multiphysics I denna lab ska du bekanta dig med programmet Comsol Multiphysics för numerisk lösning av PDE med finita element. Programmet har många

Läs mer

Användarmanual till Maple

Användarmanual till Maple Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

Angående skjuvbuckling

Angående skjuvbuckling Sidan 1 av 6 Angående skjuvbuckling Man kan misstänka att liven i en sandwich med invändiga balkar kan haverera genom skjuvbuckling. Att skjuvbuckling kan uppstå kan man förklara med att en skjuvlast kan

Läs mer

Exempel 13: Treledsbåge

Exempel 13: Treledsbåge Exempel 13: Treledsbåge 13.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera treledsbågen enligt nedan. Treledsbåge 84,42 R72,67 12,00 3,00 56,7º 40,00 80,00 40,00 Statisk modell Bestäm tvärsnittets

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

c) Sarrus regel ger L6.2 Hur många lösningar har ekvationssystemen?

c) Sarrus regel ger L6.2 Hur många lösningar har ekvationssystemen? Avsnitt Determinanter L Använd determinanter för att avgöra om följande matriser är inverterbara ( ) a) b) 5 8 ( ) cos ϕ sin ϕ c) d) sin ϕ cos ϕ En matris A är inverterbar om och endast om det A Vi beräknar

Läs mer

2 november 2016 Byggnadsmekanik 2 2

2 november 2016 Byggnadsmekanik 2 2 Byggnadsmekanik 2 Välkommen! 2 november 2016 Byggnadsmekanik 2 2 Byggnadsmekanik 2 Kursen är en fortsättning i byggnadsmekanik och hållfasthetslära med inriktning mot byggnadskonstruktion. I kursen behandlas

Läs mer