Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan

Storlek: px
Starta visningen från sidan:

Download "Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan"

Transkript

1 TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system - Tal 3) räknas på övning. Talen ges nedan. Lösningar och ledningar ges också. Dock bör observeras att en del lösningar/ledningar gäller för ett annat två-frihetsgradssystem än det som ges i Tal (massorna är olika). Även en del material som inte hör till övningen ges nedan. Tal 1 Den lägsta egenvinkelfrekvensen hos en konsolbalk, längd 3L, böjstyvhet EI och massbeläggning m (kg/m) ska snabbt uppskattas (balkens totala massa är m3l). Därför gör man så att man söker en approximativ lösning till problemet. Man diskretiserar problemet. Man väljer att ta en tredjedel av balkens totala massa och placerar den massan (d v s massan m3l/3 = ml) längst ut på konsolbalken och så försummar man den övriga massan (den massa som ligger nära infästningen deltar inte nämnvärt i svängningen, varför den massan kan försummas). Bestäm egenvinkelfrekvensen för det nu erhållna en-frihetsgradssystemet. Lösning Tal 1: Se Exempel 14/1 (sid 37) i läroboken. Svar: ω e = 3EI ml (3L) = 0, 333 EI 3 ml 4 Tal Det visar sig att konsolbalken i Tal 1 kommer att exciteras med en frekvens som är högre än den frekvens du räknat fram ovan (i Tal 1). Därför vill chefen snabbt veta även den andra egenvinkelfrekvensen hos konsolbalken. Du måste nu snabbt uppskatta även denna frekvens. Därför väljer du att ånyo diskretisera problemet, men nu med två punktmassor på balken. Välj att placera en sjättedel av balkens totala massa (d v s massan m3l/6 = ml/) längst ut på balken (i x =3L) och en tredjedel av den totala massa (d v s massan m3l/3 = ml) placerar du i x =L. Övrig massa (nära infästningen) försummas. Vad blir de två egenvinkelfrekvenser du nu erhåller?

2 L, EI L (a) (b) x L, EI L w1 S 1 S M 1 M w S 1 S w 1 w M 1 M Figur (a,b). (a) Konsolbalk med två punktmassor. (b) Massorna och balken har frilagts och snittkrafter S 1 och S har förts in. Massornas förskjutningar respektive balkens utböjning är w 1 och w. M 1 = ml i x =L och M = ml/ i x =3L. Hemuppgift (Tal ): Systemet är i vila då tiden t är negativ. Vid tiden t = 0 ges massan M 1 en hastighet v 0 vinkelrätt mot balkens längdriktning. Begynnelsevillkoren för massornas rörelse blir då w 1 (t=0) = 0 och ẇ 1 (0)=v 0 respektive w (t=0) = 0 och ẇ (0)=0. Teckna lösningarna w 1 hom och w hom. Partikulärlösningarna blir här noll eftersom ingen yttre kraft belastar någon av massorna. (Se lösning för ett liknande tal, med M 1 = M = M, nedan.) Tal 3 (Variant av 14/8) Nu har chefen sålt sin maskin för 7 miljoner dollar till en fattig oljeshejk i Kuwait och du har tid att göra en exakt analys av strukturens (konsolbalkens) egenvinkelfrekvenser. Använd differentialekvation och randvillkor för att bestämma konsolbalkens egenvinkelfrekvenser. (Vad kan du nu meddela chefen?) Tal 4 (Hemtal) Fast inspänd styrd balk Bestäm egenvinkelfrekvenserna vid böjsvängning för en balk med längd L (m), konstant böjstyvhet EI (Nm ) och konstant massbeläggning m (kg/m). Balken är fast inspänd i x = 0 och styrd (slidlagrad) i x = L. Bestäm även någon egenmod. x m, L, EI styrd balk: längd L (m), böjstyvhet EI (Nm ) och mass- Figur (a). Fast inspänd beläggning m (kg/m).

3 LÖSNINGAR Lösning Tal 1: Se Exempel 14/1, sid 37, i läroboken. Svar: ω e = 3EI ml (3L) = 0, 333 EI 3 ml 4 Tal Det visar sig att konsolbalken i Tal 1 kommer att exciteras med en frekvens som är högre än den frekvens du räknat fram ovan (i Tal 1). Därför vill chefen snabbt veta även den andra egenvinkelfrekvensen hos konsolbalken. Du måste nu snabbt uppskatta även denna frekvens. Därför väljer du att ånyo diskretisera problemet, men nu med två punktmassor på balken. Välj att placera en sjättedel av balkens totala massa (d v s massan m3l/6 = ml/) längst ut på balken (i x =3L) och en tredjedel av den totala massa (d v s massan m3l/3 = ml) placerar du i x =L. Övrig massa (nära infästningen) försummas. Vad blir de två egenvinkelfrekvenser du nu erhåller? Extra hemuppgift: Systemet är i vila då tiden t är negativ. Vid tiden t = 0 ges massan M 1 en hastighet v 0 vinkelrätt mot balkens längdriktning. Begynnelsevillkoren för massornas rörelse blir då w 1 (t=0) = 0 och ẇ 1 (0)=v 0 respektive w (t=0) = 0 och ẇ (0)=0. Teckna lösningarna w 1 hom och w hom. Partikulärlösningarna blir här noll eftersom ingen yttre kraft belastar någon av massorna. (Se lösning för ett liknande tal, med M 1 = M = M, nedan.) Lösning Tal : En konsolbalk, längd 3L och böjstyvhet EI, bär punktmassan M 1 = ml i x =L och i sin fria ände (x =3L) har den en punktmassa M = ml/ enligt Figur (a). Balkens övriga massa antas kunna försummas i jämförelse med M 1 och M. Massornas utsträckning är liten. Därför kan deras rotationströghet försummas. L, EI L (a) x S 1 S M 1 M (b) L, EI L w1 w S 1 S w 1 w M 1 M Figur (a,b). (a) Konsolbalk med två punktmassor. (b) Massorna och balken har frilagts och snittkrafter S 1 och S har förts in. Massornas förskjutningar respektive balkens utböjning är w 1 och w. M 1 = ml och M = ml/. 3

4 Massans rörelse beskrivs med förskjutningen w 1, medan massans M rörelse beskrivs med förskjutningen w, som också är den fria balkändens förskjutning. Bestäm de egenvinkelfrekvenser systemet kommer att svänga med. Massornas förskjutningar vinkelrätt mot balken är w 1 = w 1 (t) respektive w = w (t). Snitta mellan massorna och balken och inför snittkrafterna S 1 = S 1 (t) och S = S (t) mellan balk och respektive massa. Krafterna S i (i = 1, ) påverkar alltså både massa och balk, se Figur (b). Deformationssambanden för balken (elementarfall) och rörelseekvationerna för massorna ger w 1 = S 1 (L) 3 3 EI w = S 1 (L) 3 3 EI + S (3L) 3 6 EI + S 1 (L) EI 3 (L) (3L) (L)3 = 8 S 1 L S L 3 (3L) 3 3 EI 3 EI L + S (3L) 3 3 EI M 1 ẅ 1 = S 1 M ẅ = S = 14 S 1 L 3 3 EI + 9 S L 3 EI (a1) (a) (b1) (b) Man kan nu välja att eliminera S i ur (a1,) och (b1,) och få ett ekvationssystem i de obekanta förskjutningarna w i. Alternativt kan man eliminera w i och få ett ekvationssystem i de obekanta krafterna S i. Här väljer vi det förstnämnda, eftersom vi önskar veta massornas förskjutningar, och begynnelsevillkoren var givna i förskjutningar och hastigheter. Vi måste alltså bestämma förskjutningarna w i för att kunna utnyttja begynnelsevillkoren och därur bestämma lösningens konstanter (de så kallade integrationskonstanterna). Eliminera därför S i ur ekvationerna (a1,) och (b1,). Sambanden (a1,) ger 8 S S = 3 EI w L 3 1 (c1) som ger 14 S S = 3 EI L 3 w (c) S 1 = EI 0 L 3 (81w 1 4w ) (d1) S = EI 10 L 3 ( 1w 1 + 1w ) (d) Sätt in S 1 och S i rörelseekvationerna. Det ger ekvationssystemet 81 EI M 1 ẅ L w 4 EI L w 3 = 0 (e1) 4

5 För att minska skrivarbetet införs EI / 0L 3 = e. Det ger M 1 ẅ ew 1 4 ew = 0 Man ser likheten med ekvationsystemet (3a,b) (med F i (t) = 0). Fjäderstyvheterna k i i (3a,b) svarar här mot olika styvheter som balken ger. Ansätt lösningen M ẅ 4 EI 0 L w 4 EI L w 3 = 0 (e) M ẅ 4 ew ew = 0 För in ansatsen (g1,) i (f1,). Det ger ett ekvationssystem för konstanterna W 1 och W. Man får (efter viss förenkling) (f1) (f) w 1 (t)=w 1 sin ωt och w (t)=w sin ωt (g1, ) M 1 ω + 81e 4e 4e M ω + 4e W 1 = 0 W 0 (h1,) För att få en svängning, d v s för att få W 1 0 och/eller W 0, måste systemdeterminanten vara noll. Det ger Förenkling ger Om M 1, M och e är kända erhålls ur denna ekvation två värden på ω. Dessa två värden ger systemets egenvinkelfrekvenser ω e1 och ω e. För att komma vidare måste vi veta M 1 och M. Inför nu att M 1 = ml =M och M = ml/ = M. Då erhålls med lösning ( M 1 ω + 81e)( M ω + 4e) ( 4e) = 0 (i1) M 1 M ω 4 (4eM eM )ω + 180e = 0 M ω 4 (4eM + 81eM)ω + 180e = 0 ω e M ω + 90 e M = 0 ω e1, = 64, 5 e M ± 64, 5 e 90 e M M d v s (återinför EI / 0L 3 = e och M = ml/) = (64, 5 ± 61, 65) ω e1 = 0, 377 EI / ml 4 och ω e =, 511 EI / ml 4 e M (i) (j1) (j) (k1,) (l1,) Härur kan de två egenfrekvenserna f ei (periodtiderna) T ei =1 / f ei beräknas. = ω ei / π och de två egensvängningstiderna 5

6 Kommentar (kontroll) Svängningen i den första moden för två-frihetsgradssystemet kan jämföras med svängningen hos ett en-frihetsgradssystem. Eftersom massorna i mod 1 svänger i fas kan två-frihetsgradssystemet här approximeras med en konsolbalk med bara en massa, d v s ett en-frihetsgradssystem. Enligt Tal 1 gäller för en konsolbalk (längd L*, böjstyvhet EI*) med en punktmassa M* i änden att egenvinkelfrekvensen blir ω konsol e = 3EI* M* L* = 1, 73 EI* (n) 3 M* L* 3 Om vi approximerar vårt två-frihetsgradssystem med en konsolbalk som har en massa M 1 + M = 1,5mL på avståndet,5l från infästningen fås egenvinkelfrekvensen, enligt formeln (n), approx = 3EI 1, 5mL (, 5L) = 0, 358 EI 3 ω e1 Detta resultat ligger nära det resultat vi fick ovan i sambandet (l1) (vi fick där 0,377 att jämföra med det approximativa värdet 0,358 här, d v s ca 5 % avvikelse). Därmed har vi snabbt och enkelt fått fram ett approximativt värde på den lägsta egenvinkelfrekvensen hos två-frihetsgradssystemet i Figur (a). Här blev resultatet någorlunda bra på grund av att massorna M 1 och M ligger så nära varandra att de kunde slås samman till en massa. ml 4 (o) Diskussionen nedan gäller ett annat tal och tillhör inte det ni ska göra på övningen Bestäm egenmoderna OBS! Dessa egenmoder gäller för ett annat tal!!!! Med M 1 = M = M erhålls Härur löses M ω 4 105eM ω + 180e = 0 ω e1, = 105 e M ± 105 e 180 e M M d v s (återinför EI / 0L 3 = e) Insättning av egenvinkelfrekvensen ω e1 i en av ekvationerna (h1,) ger W 11 = 0, 530W 1 =(5, 5 ± 50, 8) e M ω e1 = 0, 95 EI / ML 3 och ω e =, 7 EI / ML 3 (j) (k1,) (l1,) (m1) 6

7 d v s massan M 1 svänger med en amplitud som är cirka hälften så stor som amplituden hos massan M. Massorna svänger i fas, d v s de svänger båda nedåt samtidigt och uppåt samtidigt. Detta är systemets första (lägsta) egensvängningsmod; systemet svänger med sin lägsta egenvinkelfrekvens, eller med sin grundton. Insättning av egenvinkelfrekvensen ω e i en av ekvationerna (h1,) ger W 1 = 1, 89W (m) d v s massan M 1 svänger vid denna frekvens med en amplitud som är nästan dubbelt så stor som amplituden hos massan M. Massorna svänger i motfas, d v s en massa svänger nedåt samtidigt som den andra svänger uppåt, och vice versa. Detta är systemets andra egensvängningsmod; systemet svänger med sin andra egenvinkelfrekvens eller med sin första överton. Mod 1 L, EI W 11 L W 1 Mod W 1 W Figur (c). De två egensvängningsmoderna för en masslös konsolbalk med två punktmassor, där M 1 = M = M. Kommentar (kontroll) Svängningen i den första moden kan jämföras med svängningen hos ett en-frihetsgradssystem. Eftersom massorna i mod 1 svänger i fas kan två-frihetsgradssystemet här approximeras med en konsolbalk med bara en massa, d v s ett en-frihetsgradssystem. Enligt Exempel 4 i Kapitel (Avsnitt.4.4) gäller för en konsolbalk (längd L*, böjstyvhet EI*) med en punktmassa M* i änden att egenvinkelfrekvensen blir ω konsol e = 3EI* M* L* = 1, 73 EI* (n) 3 M* L* 3 Om vi approximerar vårt två-frihetsgradssystem med en konsolbalk som har en massa M på avståndet,5l från infästningen fås egenvinkelfrekvensen, enligt formeln (n), approx = 3EI M (, 5L) = 0, 310 EI 3 ω e1 ML 3 (o) 7

8 Detta resultat ligger ganska nära det resultat vi fick ovan i sambandet (l1) (vi fick där 0,95 att jämföra med det approximativa värdet 0,310 här, d v s bara 5 procents avvikelse). Därmed har vi snabbt och enkelt fått fram ett approximativt värde på den lägsta egenvinkelfrekvensen hos det ursprungliga två-frihetsgradssystemet i Figur (a). Här blev resultatet någorlunda bra på grund av att massorna M 1 och M ligger så nära varandra att de kunde slås samman till en massa. Man kan även kontrollera den första egenmoden. En konsolbalk (längd 3L) med en kraft P i ytteränden böjer ut δ = P(3L) 3 /3EI =9PL 3 /EI (vid ytteränden). Samma balk får vid x =L utböjningen δ 1 = P (3L)3 6 EI = 4, 67 PL3 3 EI Man ser att δ 1 = (4,67 / 9) δ = 0,519 δ, vilket ligger nära sambandet mellan W 11 och W 1 i (m1), som gav W 11 = 0,530W 1. Slutsatsen blir att det två-frihetsgradssystem vi här studerar i sin lägsta egensvängningsmod mycket påminner om svängningen av ett en-frihetsgradssystem bestående av en konsolbalk med en massa i sin fria ände. Någon liknande jämförelse för den andra egenvinkelfrekvensen och motsvarande egenmod är inte lika enkel att göra. (p) Extra hemuppgift; lösning av liknande tal: Följande gäller ett annat tal med M 1 = M = M Bestäm systemets svängning efter igångsättning vid tiden t = 0 Bestäm nu den svängning som uppkommer i systemet i Figur (a) på grund av igångsättningen vid tiden t = 0, d v s på grund av begynnelsevillkoren (BV). Eftersom ingen last ligger på systemet då tiden t är större än noll (t > 0) blir lösningen till ekvationssystemet enbart den homogena lösningen, som tidigare givits i ekvation (14). Man får och där egenvinkelfrekvenserna ges i (l1,). Utnyttja sambanden (m1,) mellan amplituderna. Behåll A, B, C, D som obekanta och eliminera A 1, B 1, C 1 och D 1 med hjälp av egenmoderna (m1,). Det ger och w 1 (t)=w 1 hom (t)=a 1 sin ω e1 t + B 1 cos ω e1 t + C 1 sin ω e t + D 1 cos ω e t w (t)=w hom (t)=a sin ω e1 t + B cos ω e1 t + C sin ω e t + D cos ω e t w 1 (t)=0, 530 A sin ω e1 t + 0, 530 B cos ω e1 t 1, 89 C sin ω e t 1, 89 D cos ω e t Konstanterna A till D bestäms med hjälp av begynnelsevillkoren (BV). Man får (q1) (q) w (t)=a sin ω e1 t + B cos ω e1 t + C sin ω e t + D cos ω e t (r1, ) 8

9 BV1: Förskjutningen w 1 är noll då rörelsen sätts igång vid tiden t = 0. Det ger w 1 (0) = 0, som med (r1) ger w 1 (0)=0, 530 B 1 1, 89 D 1 = 0 (s1) BV: Vid tiden t = 0 sätts massan 1 i rörelse. Massan 1 ges hastigheten v 0. Det ger ẇ 1 (0)=v 0, som ger 0, 530 A ω e1 1 1, 89 C ω e 1 = v 0 (s) BV3: Förskjutningen w är noll då rörelsen sätts igång vid tiden t = 0. Det ger w (0) = 0, som med (r) ger w (0)=B 1 + D 1 = 0 BV4: Vid tiden t = 0 är massans hastigheten noll. Det ger ẇ (0)=A ω e1 1 + C ω e 1 = 0 (s3) (s4) Ekvationerna (s1,,3,4) ger det fyra konstanterna A, B, C, D. Sambanden (s1) och (s3) ger B = D = 0 (t1, ) Sambandet (s4) ger A ω e1 = C ω e, som i (s) ger varur löses v 0 =( 0, 530 1, 89) C ω e C = v 0 v 0 och A, 4 ω = (t3, 4) e, 4 ω e1 Därmed erhålls, med konstaterna A, B, C, D förskjutningar w 1 och w som införda i (r1,), massornas och w 1 (t)= 0, 530 v 0, 4 ω e1 sin ω e1 t + 1, 89 v 0, 4 ω e sin ω e t (u1) w (t)= v 0 v 0 sin ω, 4 ω e1 t sin ω e1, 4 ω e t (u) e Lösningen till differentialekvationerna (e1,) är nu bestämd (man får ingen partikulärlösning här). Man ser att rörelsen blir en svängning med vinkelfrekvenser ω e1 och ω e och att amplituden vid respektive frekvens ges av begynnelsehastigheten v 0 och de två egensvängningsmoderna. Att systemet skulle svänga med de två egenvinkelfrekvenserna var väntat eftersom det utför fri svängning. 9

10 Lösningen (u1,) kan kontrolleras genom att man kontrollerar att den uppfyller differentialekvationerna och begynnelsevillkoren. Om både differentialekvationerna och begynnelsevillkoren är uppfyllda har vi funnit rätt lösning till problemet. (Genomför denna kontroll.) Om så önskas kan snittkrafterna S i mellan massorna och balken nu bestämmas. Om man för in w 1 och w från (u1,) i sambanden (d1,) erhålls snittkrafterna. Tal 3 Nu har chefen sålt sin maskin för 7 miljoner dollar till en fattig oljeshejk i Kuwait och du har tid att göra en exakt analys av strukturens (konsolbalkens) egenvinkelfrekvenser. Använd differentialekvation och randvillkor för att bestämma konsolbalkens egenvinkelfrekvenser. (Vad kan du nu meddela chefen?) Lösning till Tal 3: Fast inspänd fri balk, d v s en konsolbalk Talet löses här med totala längden L. Detta tal löste jag (diskuterade) på föreläsning i kursen TMHL0, så detta (d v s lösningsgången) har de redan sett. På slutet sätts längden 3L in. Uppgift: Bestäm egenvinkelfrekvenserna vid böjsvängning för en konsolbalk med längd L (m), konstant böjstyvhet EI (Nm ) och konstant massbeläggning m (kg/m). x m, L, EI Figur (a). Konsolbalk (fast inspänd fri): längd L (m), böjstyvhet EI (Nm ) och massbeläggning m (kg/m). Lösning: Differentialekvationen för en böjsvängande balk med konstant böjstyvhet EI och konstant massbeläggning m lyder, enligt Euler-Bernoullis balkteori, EIw IV (x, t)+mẅ(x, t)=q(x, t) (a) Då balken svänger fritt gäller att lasten q(x,t) på balken är noll, d v s q(x,t) =0, vilket ger EIw IV (x, t)+mẅ(x, t)=0 (b) Lösningen till differentialekvationen (b) kan skrivas, med konstanter C 1 till C 4, w(x, t) =X(x) T*(t)={C 1 cosh μx + C cos μx + C 3 sinh μx + C 4 sin μx } e i ω t (c) 10

11 Använd denna lösning för att bestämma frekvensfunktionen (den funktion som ger egenvinkelfrekvenserna) för det givna problemet. Randvillkor Randvillkor (RV) ger, med utelämnande av faktorn e iωt, följande ekvationer för konstanterna C 1 till C 4 : RV1: På grund av stödet vid balkens vänstra ände blir balkens vertikala förskjutning vid vänsteränden noll. Det ger w(x=0,t) =w(0,t) = 0, som ger X(x=0) = X(0) = 0, vilket ger Härav fås C 1 cosh 0 + C cos 0 + C 3 sinh 0 + C 4 sin 0 = 0 C 1 + C = 0 (d) RV: Vinkeln vid vänster ände är noll. Det ger w (0,t) = 0, som ger X (0) = 0, vilket ger Härav fås μc 1 sinh 0 μc sin 0 +μc 3 cosh 0 +μc 4 cos 0 = 0 C 3 + C 4 = 0 (e) RV3: Momentet vid höger balkände är noll (inget pålagt moment). Det ger M(L,t) = 0, som ger EI w (L,t) = 0, som ger X (L) = 0, vilket ger μ C 1 cosh μl μ C cos μl +μ C 3 sinh μl μ C 4 sin μl = 0 (f) RV4: Tvärkraften vid höger balkände, d v s vid x = L, är noll. Det ger w (L,t) = 0, som ger X (L) = 0, vilket ger μ 3 C 1 sinh μl +μ 3 C sin μl +μ 3 C 3 cosh μl μ 3 C 4 cos μl = 0 (g) De fyra randvillkoren har nu utnyttjats och det gav de fyra ekvationerna (d), (e), (f) och (g). Ekvationssystemet (d), (e), (f) och (g) kan skrivas på matrisform. Man får ( μ 0 förkortas bort) 11

12 cosh μl cos μl sinh μl sin μl sinh μl sin μl cosh μl cos μl C 1 C C 3 C = 0 0 (h) Systemdeterminanten sätts till noll, vilket ger frekvensekvationen, och den ger systemets (balkens) egenvinkelfrekvenser ω e n där n = 1,, 3, 4,... Man får cos μl sinh μl sin μl sin μl cosh μl cos μl cosh μl sinh μl sin μl sinh μl cosh μl cos μl = cos μl sinh μl sin μl sin μl cosh μl cos μl cosh μl sinh μl sin μl sinh μl cosh μl cos μl = cos μl sin μl sin μl cos μl + 1 cos μl sin μl sinh μl cosh μl 0 1 cosh μl sinh μl sin μl cos μl + 1 cosh μl sinh μl sinh μl cosh μl = 0 {( cos μl)( cos μl) (sin μl)( sin μl)} + {( cos μl)(cosh μl) (sin μl)(sinh μl)} +{(cosh μl)( cos μl) (sinh μl)( sin μl)} {(cosh μl)(cosh μl) (sinh μl)(sinh μl)} = 0 {(cos μl)+(sin μl)} {(cos μl)(cosh μl)+(sin μl)(sinh μl)} +{(cosh μl)( cos μl)+(sinh μl)(sin μl)} {(cosh μl) (sinh μl)} = 0 1 (cos μl)(cosh μl) (sin μl)(sinh μl)} +{ (cosh μl)(cos μl)+(sinh μl)(sin μl)} {1} =0 1 (cos μl)(cosh μl) (sin μl)(sinh μl) (cosh μl)(cos μl)+(sinh μl)(sin μl) 1 = 0 eller (cos μl)(cosh μl)=0 eller 1 +(cos μl)(cosh μl)=0 Denna ekvation ger rötterna (egenvärdena) μ 1 L = 1,8751, μ L = 4,6941, μ 3 L = 7,8548, μ 4 L = 10,9955. Man ser att μ n L =(n 1/)π (approximativt) för n (på grund av att cosμl skall vara nära noll). 1

13 Detta ger egenvinkelfrekvenserna: ω en =β n π EI ml 4 där β 1 = 0, 356 β =, 33 β 3 = 6, 51 β n =(n 1/) (approximativt) för n Så långt för balk med längd L Balklängd 3L: Sätt nu in balklängden 3L i stället. Det ger ω e1 = 0, 356π EI m(3l) 4 = 0, 391 EI ml 4 och ω e =, 33π EI m(3l) 4 =, 449 EI ml 4 att jämföra med de två egenvinkelfrekvenser vi fick för två-frihetsgradssystemet: ω e1 = 0, 377 EI / ml 4 och ω e =, 511 EI / ml 4 (l1,) Inte så illa, eller...? De approximativa värdena från två-frihetsgradssystemet ger att lägsta egenvinkelfrekvensen ω e1 är mindre än 4 % fel och andra egenvinkelfrekvensen ω e är mindre än 3 % fel. (Detta kan du berätta för chefen.) En-frihetsgradssystemet gav lägsta egenvinkelfrekvensen ω e = 0, 333 EI / ml 4, vilket är ca 15 % fel Nedanstående ingår ej (balklängden är nu återigen L) Bestäm egenmoderna Sätt in C = C 1 och C 4 = C 3. Det ger C 1 {cosh μl + cos μl} +C 3 {sinh μl + sin μl }=0 C 1 {sinh μl sin μl} +C 3 {cosh μl + cos μl }=0 (p) (o) Sätt systemdeterminanten till noll {cosh μl + cos μl} {sinh μl + sin μl }{sinh μl sin μl} =0 vilket ger frekvensekvationen 1 + cosh μl cos μl = 0 d v s samma frekvensekvation som ovan (vilket ju var väntat). 13

14 Inför nu egenvärdena μl = μ n L i ekvationssystemet (h). Det ger, med utnyttjande av att C = C 1 och C 4 = C 3, {cosh μ n L + cos μ n L} C 3 = C 1 {sinh μ n L + sin μ n L } För varje egenvärde μ n L, d v s för varje egenvinkelfrekvens ω en, kan lösningen X n (x) till differentialekvationen (b) skrivas, med konstanter C till C 4 uttryckta i C 1, X n (x) ={C 1n cosh μ n x + C n cos μ n x + C 3n sinh μ n x + C 4n sin μ n x } = C 1n cosh μ n x cos μ n x {cosh μ nl + cos μ n L} {sinh μ n L + sin μ n L } {sinh μ nx sin μ n x } vilket ger egenmoderna för en konsolbalk. De fyra lägsta har plottats i nedanstående figur, där även nodernas koordinater har angetts. e1 0,783L e 0,504L 0,868L e3 e 4 0,358 L 0,644L 0,906L Figur (b). Egen(svängnings)moder för konsolbalk. Svar (sammanfattning av resultat i Tal 3): Elementarfall för fast inspänd fri balk (konsolbalk) x m, L, EI Figur (a). Balk som är fast inspänd fri (d v s en konsolbalk). Randvillkor: Frekvensekvation: Lösningar: w(0)=0, w (0)=0, M(L)=0 och T(L)=0 1 + cosh μl cos μl = 0 där μ 4 = mω EI μ 1 L = 1, 875; μ L = 4, 694; μ 3 L = 7, 855; μ 4 L = 10, 996; μ n L =(n 1/)π (approximativt) för n 14

15 Egenvinkelfrekvenser: Egenmoder: EI ω en =β n π ml 4 β 1 = 0, 356; β =, 33; β 3 = 6, 51; β n =(n 1/) (approximativt) för n X n (x)=a n cosh μ n x cos μ n x {cosh μ nl + cos μ n L} {sinh μ n L + sin μ n L} {sinh μ nx sin μ n x} där e1 0,783L e 0,504L 0,868L e3 0,358 L 0,644L 0,906L e 4 Figur (b). Egensvängningsmoder för konsolbalk. Lösning Tal 4 (Hemtal) Fast inspänd styrd balk Bestäm egenvinkelfrekvenserna vid böjsvängning för en balk med längd L (m), konstant böjstyvhet EI (Nm ) och konstant massbeläggning m (kg/m). Balken är fast inspänd i x = 0 och styrd (slidlagrad) i x = L. Bestäm även någon egenmod. x m, L, EI styrd balk: längd L (m), böjstyvhet EI (Nm ) och mass- Figur (a). Fast inspänd beläggning m (kg/m). Lösning: Differentialekvationen för en böjsvängande balk med konstant böjstyvhet EI och konstant massbeläggning m lyder, enligt Euler-Bernoullis balkteori, EIw IV (x, t)+mẅ(x, t)=q(x, t) (a) Då balken svänger fritt gäller att lasten q(x,t) på balken är noll, d v s q(x,t) =0, vilket ger EIw IV (x, t)+mẅ(x, t)=0 (b) 15

16 Lösningen till differentialekvationen (b) kan skrivas, med konstanter C 1 till C 4, w(x, t) =X(x) T*(t) ={C 1 cosh μx + C cos μx + C 3 sinh μx + C 4 sin μx } e i ω t (c) Använd denna lösning för att bestämma frekvensfunktionen (den funktion som ger egenvinkelfrekvenserna) för det givna problemet. Randvillkor Randvillkor (RV) ger, med utelämnande av faktorn e iωt, följande ekvationer för konstanterna C 1 till C 4 : RV1: På grund av stödet vid balkens vänstra ände blir balkens vertikala förskjutning vid vänsteränden noll. Det ger w(x=0,t) =w(0,t) = 0, som ger X(x=0) = X(0) = 0, vilket ger Härav fås C 1 cosh 0 + C cos 0 + C 3 sinh 0 + C 4 sin 0 = 0 C 1 + C = 0 (d) RV: Vinkeln vid vänster ände är noll. Det ger w (0,t) = 0, som ger X (0) = 0, vilket ger Härav fås μc 1 sinh 0 μc sin 0 +μc 3 cosh 0 +μc 4 cos 0 = 0 C 3 + C 4 = 0 RV3: Vinkeln w (x,t) vid höger balkände, d v s vid x = L, är noll. Det ger w (L,t) = 0, som ger X (L) = 0, vilket ger μ C 1 sinh μl μc sin μl +μc 3 cosh μl +μc 4 cos μl = 0 (e) (f) RV4: Tvärkraften vid höger balkände är noll (balken är fri). Det ger w (L,t) = 0, som ger X (L) = 0, vilket ger μ 3 C 1 sinh μl +μ 3 C sin μl +μ 3 C 3 cosh μl μ 3 C 4 cos μl = 0 (g) 16

17 De fyra randvillkoren har nu utnyttjats och det gav de fyra ekvationerna (d), (e), (f) och (g). Ekvationssystemet (d), (e), (f) och (g) kan skrivas på matrisform. Man får ( μ 0 förkortas bort) sinh μl sin μl cosh μl cos μl sinh μl sin μl cosh μl cos μl Systemdeterminanten sätts till noll, vilket ger frekvensekvationen, och den ger systemets (balkens) egenvinkelfrekvenser ω e n där n = 1,, 3, 4,... Här väljs att först eliminera konstanterna C och C 4. Sätt in C = C 1 och C 4 = C 3 i (h). Det ger C 1 {sinh μl + sin μl} +C 3 {cosh μl cos μl }=0 C 1 C C 3 C = 0 0 (h) (i) C 1 {sinh μl sin μl} +C 3 {cosh μl + cos μl }=0 (j) Sätt systemdeterminanten till noll {sinh μl + sin μl} {cosh μl + cos μl } {sinh μl sin μl} {cosh μl cos μl }=0 vilket ger frekvensekvationen sinh μl cos μl + cosh μl sin μl = 0 Denna ekvation ger rötterna (egenvärdena) μ 1 L =,3650, μ L = 5,4978, μ 3 L = 8,6394, μ 4 L = 11,7810. Man ser att μ n L =(n 1/4)π (approximativt) för n (på grund av att cosμl måste hamna nära sinμl för stora värden på μl). Detta ger egenvinkelfrekvenserna: ω en =β n π EI ml 4 β 1 = 0, 5667 β = 3, 065 β 3 = 7, 565 β 4 = 14, 065 β n =(n 1/4) (approximativt) för n Inför nu egenvärdena μl = μ n L i ekvationssystemet (h). Det ger, med utnyttjande av att C = C 1 och C 4 = C 3, {sinh μ n L + sin μ n L} C 3 = C 1 {cosh μ n L cos μ n L } där 17

18 För varje egenvärde μ n L, d v s för varje egenvinkelfrekvens ω en, kan lösningen X n (x) till differentialekvationen (b) skrivas, med konstanter C till C 4 uttryckta i C 1, X n (x) ={C 1n cosh μ n x + C n cos μ n x + C 3n sinh μ n x + C 4n sin μ n x } = C 1n cosh μ n x cos μ n x {sinh μ nl + sin μ n L} {cosh μ n L cos μ n L } {sinh μ nx sin μ n x } vilket ger egenmoderna för balken. De lägsta böjmoderna har plottats i nedanstående figur, där även nodernas koordinater har angetts. e1 0,717L e 0,456 L 0,818 L e3 e 4 0,335 L 0,600 L 0,867 L Figur (b). Egen(svängnings)moder för fast inspänd styrd balk. 18

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband

Läs mer

Lösning: ε= δ eller ε=du

Lösning: ε= δ eller ε=du Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12 Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

LÖSNING

LÖSNING TMHL09 2013-05-31.01 (Del I, teori; 1 p.) Strävan i figuren ska ha cirkulärt tvärsnitt och tillverkas av antingen stål eller aluminium. O- avsett vilket material som väljs ska kritiska lasten mot knäckning

Läs mer

BALKTEORI, INLÄMNINGSUPPGIFTER

BALKTEORI, INLÄMNINGSUPPGIFTER BALKTEORI, INLÄMNINGSUPPGIFTER Det finns tre inlämningsuppgifter (I, II och III). De löses individuellt eller i grupper om två personer. Uppgifterna avser arbete i anslutning till tre demonstrationslaborationer:

Läs mer

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar: Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med

Läs mer

TMHL09 - Hållfasthetslära - Dimensioneringsmetoder Sammanfattning Får ej medföras på tentamen. ger stabil jämvikt ger instabil jämvikt

TMHL09 - Hållfasthetslära - Dimensioneringsmetoder Sammanfattning Får ej medföras på tentamen. ger stabil jämvikt ger instabil jämvikt TMHL09 - Hållfasthetslära - Dimensioneringsmetoder Sammanfattning Får ej medföras på tentamen Stabilitet - diskreta system Fjädermodeller M återförande M utböjande = 0 ger kritisk last (ett egenvärde)

Läs mer

Fouriers metod, egenfunktionsutvecklingar.

Fouriers metod, egenfunktionsutvecklingar. Vårterminen 2002 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder i kap 3 och H (partiellt) Fouriers metod, egenfunktionsutvecklingar Värmeledning i en begränsad stav med variabelseparation Problem:

Läs mer

Övning 1 FEM för Ingenjörstillämpningar Rickard Shen

Övning 1 FEM för Ingenjörstillämpningar Rickard Shen Övning FE för Ingenjörstillämpningar Rickard Shen 9--9 rshen@kth.se 7-7 7 59.6 Castiglianos :a Sats och insta Arbetets rincip Bilder ritade av Veronica Wåtz, asse emeritus. 6EI Givet: k = () L Sökt: θ

Läs mer

Matrismetod för analys av stångbärverk

Matrismetod för analys av stångbärverk KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen

Läs mer

Cirkelkriteriet (12.3)

Cirkelkriteriet (12.3) Föreläsning 3-4 Cirkelkriteriet (12.3) En situation där global stabilitetsanalys kan utföras. r + u G(s) y f( ) där f( ) är en statisk olinjäritet, t ex f(y) = 1 y 0 1 y < 0 eller Antag att: f(y) = y 2

Läs mer

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005 Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:

Läs mer

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.

Läs mer

Alltså är {e 3t, e t } en bas för lösningsrummet, och den allmänna lösningen kan därmed skrivas

Alltså är {e 3t, e t } en bas för lösningsrummet, och den allmänna lösningen kan därmed skrivas ektion 7, Envariabelanalys den 8 oktober 1999 Visa att funktionerna y 1 = e r 1t och y = e r t, där r 1 r, är linjärt oberoende. 17.7. Finn den allmänna lösningen till y 3y = 0. Vi ska visa implikationen

Läs mer

Tentamen i kursen Balkteori, VSM-091, , kl

Tentamen i kursen Balkteori, VSM-091, , kl Tentamen i kursen Balkteori, VSM-091, 009-10-19, kl 14.00-19.00 Maximal poäng på tentamen är 40. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och alfemmanual.

Läs mer

Tentamen i kursen Balkteori, VSM-091, , kl

Tentamen i kursen Balkteori, VSM-091, , kl Tentamen i kursen Balkteori, VSM-091, 008-10-1, kl 08.00-13.00 Maimal poäng på tentamen är 0. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och Calfemmanual.

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Harmonisk oscillator Ulf Torkelsson

Harmonisk oscillator Ulf Torkelsson 1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel

Läs mer

6.4 Svängningsrörelse Ledningar

6.4 Svängningsrörelse Ledningar 6.4 Svängningsrörelse Ledningar 6.166 b) Krafterna i de båda fjädrarna är lia stora och lia med raften på roppen (inses genom att man frilägger roppen och de två fjädrarna var för sig). Kroppens förflyttning

Läs mer

Uppgifter 2 Grundläggande akustik (II) & SDOF

Uppgifter 2 Grundläggande akustik (II) & SDOF Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den

Läs mer

Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams

Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams Balkböjning Teknisk balkteori Stresses in Beams Som den sista belastningstypen på en kropps tvärsnitt kommer vi att undersöka det böjande momentet M:s inverkan. Medan man mest är intresserad av skjuvspänningarna

Läs mer

------------ -------------------------------

------------ ------------------------------- TMHL09 2013-10-23.01 (Del I, teori; 1 p.) 1. En balk med kvadratiskt tvärsnitt är tillverkad genom att man limmat ihop två lika rektangulära profiler enligt fig. 2a. Balken belastas med axiell tryckkraft

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, m 1 =20.0 kg m 2 =1.0 kg F 0 =10N k 1 = 4000 N/m m 1 =20.0 kg k 1 = 4000 N/m l 01 =0.

x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, m 1 =20.0 kg m 2 =1.0 kg F 0 =10N k 1 = 4000 N/m m 1 =20.0 kg k 1 = 4000 N/m l 01 =0. Linköpings tekniska högskola 2015 10 15 IEI/Mekanik och hållfasthetslära Peter Christensen Datorsimuleringsuppgift i Mekanik Y del 1 (TMME12) Syftet med denna uppgift är att simulera hur ett mekaniskt

Läs mer

Påtvingad svängning SDOF

Påtvingad svängning SDOF F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften

Läs mer

FEM1: Randvärdesproblem och finita elementmetoden i en variabel.

FEM1: Randvärdesproblem och finita elementmetoden i en variabel. MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014 Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I ÅLLFASTETSLÄRA F MA 081 JUNI 014 Lösningar Tid och plats: 14.00 18.00 i M huset. Lärare besöker salen ca 15.00 samt 16.0 jälpmedel:

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2,

m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, Linköpings tekniska högskola 2016 10 14 IEI/Mekanik och hållfasthetslära Peter Christensen Datorsimuleringsuppgift i Mekanik Y del 1 (TMME12) Syftet med denna uppgift är att simulera hur ett mekaniskt

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

Användarmanual till Maple

Användarmanual till Maple Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip

1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip --8 FE för Ingenjörstillämpningar, SE rshen@kth.se.6 Castiglianos :a Sats och insta Arbetets rincip ilder ritade av Veronica Wåtz. Givet: k () L Sökt: Lösning: et står att ska beräknas med hjälp av energimetod

Läs mer

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl. Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.

Läs mer

LÖSNING

LÖSNING .01 (Del I, teori; 1 p.) 1. En fast inspänd balk med kontinuerlig massfördelning enligt figuren utför fria svängningar. Visa med enkla skisser hur 1a och 2a egensvängningsmoderna frihetsgraderna ser ut..02

Läs mer

Tentamen i Mekanik - Partikeldynamik TMME08

Tentamen i Mekanik - Partikeldynamik TMME08 Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen

Läs mer

Program: DATA, ELEKTRO

Program: DATA, ELEKTRO Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic

Läs mer

2320 a. Svar: C = 25. Svar: C = 90

2320 a. Svar: C = 25. Svar: C = 90 2320 a Utgå ifrån y = sin x Om vi subtraherar 25 från vinkeln x, så kommer den att "senareläggas" med 25 och således förskjuts grafen åt höger y = sin(x 25 ) Svar: C = 25 b Utgå ifrån y = sin x Om vi adderar

Läs mer

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant. Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014 Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok

Läs mer

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T, Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +

Läs mer

2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT

2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT 1 Lennart Edsberg Beatrice Frock Katarina Gustavsson NADA, mars 2006 2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT A I detta projekt ska du tillämpa de metoder som du lärt dig under kursens gång för att

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk

Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk .6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N

Läs mer

Del I: Lösningsförslag till Numerisk analys,

Del I: Lösningsförslag till Numerisk analys, Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan

Läs mer

Tentamen i Balkteori, VSMN35, , kl

Tentamen i Balkteori, VSMN35, , kl Tentamen i Balkteori, VSMN35, 2012-10-26, kl 08.00-13.00 Maimal poäng på tentamen är 40. För godkänt tentamensresultat krävs 16 poäng. Tentamen består av två delar: En del med frågor och en del med räkneuppgifter.

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011 Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:

Läs mer

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl

Tentamen i Hållfasthetslära AK2 för M Torsdag , kl Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts

Läs mer

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Studietips info r kommande tentamen TEN1 inom kursen TNIU23

Studietips info r kommande tentamen TEN1 inom kursen TNIU23 Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j. 1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder

Läs mer

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen: Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är

Läs mer

4.6 Stelkroppsrörelse i balk

4.6 Stelkroppsrörelse i balk Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 rshen@kth.se.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz Givet: w L w L () Sökt: Visa att förskjutningsansatsen

Läs mer

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-01-09

Läs mer

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. 1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller

Läs mer

FEM M2 & Bio3 ht06 lp2 Projekt P 3

FEM M2 & Bio3 ht06 lp2 Projekt P 3 HH/SET/BN E, Projekt 1 E & Bio ht06 lp Projekt P Allmänt Lös uppgifterna nedan med E. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och utgör underlag för

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

FYSIKENS MATEMATISKA METODER

FYSIKENS MATEMATISKA METODER FYSIKENS MATEMATISKA METODER TREDJE UPPLAGAN TORBJÖRN ERIKSON HENRIK CHRISTIANSSON ERIK LINDAHL JOHAN LINDE LARS SANDBERG MATS WALLIN mfl Boken är typsatt i L A TEX med 11pt Times Printed in Sweden by

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,

Läs mer

FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D

FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D HH/SET/BN FEM, Projekt 1 FEM M2 & Bio ht07 lp2 Projekt P Grupp D Allmänt Lös uppgifterna nedan med FEM. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och

Läs mer

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0 LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område

Läs mer

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),

Läs mer