m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2,
|
|
- David Henriksson
- för 7 år sedan
- Visningar:
Transkript
1 Linköpings tekniska högskola IEI/Mekanik och hållfasthetslära Peter Christensen Datorsimuleringsuppgift i Mekanik Y del 1 (TMME12) Syftet med denna uppgift är att simulera hur ett mekaniskt system rör sig i tiden. Rörelseekvationerna för systemet ska först härledas och därefter lösas numeriskt med hjälp av MATLAB. I [1] beskrivs användandet av MATLAB. Sidorna 1 9 i denna ska läsas igenom noggrant förelabbtillfället. Uppgiften löses i grupper om maximalt två personer och redovisas i form av en skriftlig rapport, se nedan. Rapporten ska inlämnas till lektionsledaren senast fredag 16 december. Referens [1] Peter Christensen, Mekanik med MATLAB en minimanual. 1 Kvartsbilmodell Figur 1: En fjärdedels bil på en ojämn väg. För att analysera bilars rörelse över gupp räcker det ibland att bara studera ett av hjulen samt det av chassit som hör till just det hjulet. Den del av bilen som befinner sig ovanför hjulupphängningen kallas den fjädrade massan medan den del som är under hjulupphängningen är den ofjädrade massan. Chassit är alltså fjädrad massa, medan hjulen, naven och bromsoken är ofjädrad massa. Komponenterna i hjulupphängningen (fjädrar, dämpare och länkarmar) räknas till 50 % som fjädrad massa och till 50 % som ofjädrad massa. I figur 1 är m 1 den ofjädrade massan, m 2 den fjädrade massan, k 1 fjäderkonstanten för ett däck, k 2 fjäderkonstanten för en chassifjäder och c 2 dämpningskonstanten för en dämpare. Vägens form ges av den tidsberoende storheten u = u 0 sin ωt = u 0 sin 2πft, där u 0 är en given amplitud och f en given frekvens. Läget på m 1 och m 2 ges av x 1 respektive x 2. 1
2 Numeriska data: Uppgift 1 m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm m 2 = 300 kg k 2 =20kN/m. l 0,2 =0.35 m. Härled rörelseekvationerna, d.v.s. de styrande differentialekvationerna, för kropparna ur Newtons andra lag. Härled även ett uttryck för normalkraften N som verkar på vägen. Uppgift 2 Låt c 2 = 0 och bestäm amplituderna för kropparna i fortvarighet, d.v.s. steady-state. Ledning: ansätt partikulärlösningarna på formen där X 1, C 1, X 2 och C 2 är konstanter. x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, En masspunkt som är upphängd i en fjäder har en resonansvinkelfrekvens eftersom systemet bara har en frihetsgrad. Systemet i vår kvartsbilmodell har två frihetsgrader eftersom vi måste känna både x 1 och x 2 för att kunna beskriva systemets rörelse. Detta gör att systemet har två resonansvinkelfrekvenser. Bestäm dessa inklusive motsvarande frekvenser. Uppgift 3 Figur 2: Approximerade modeller. Låt återigen c 2 =0samt u =0. Det stora tunga chassit påverkas inte så mycket av rörelsen för det lätta hjulet. Man kan därför göra approximationen till vänster i figur 2. Bestäm m 1 :s egenvinkelfrekvens w appr n,1 och motsvarande egenfrekvens f appr n,1. När det stora tunga chassit rör sig upp och nerkan man med hygglig noggrannhet approximera det mycket lättare hjulet som en masslös, stel kropp, se den högra figuren. Bestäm m 2 :s egenvinkelfrekvens w appr n,2 och motsvarande egenfrekvens f appr n,2. Jämför de uträknade frekvenserna här med de verkliga resonansfrekvenserna enligt uppgift 2 (förhoppningsvis ser du att de verkligen är någorlunda bra approximationer av de verkliga 2
3 resonansfrekvenserna). Obs.: approximationerna i denna uppgift ska inte göras i några andra uppgifter! De görs här bara för att demonstrera att man med hygglig noggrannhet kan dela upp kvartsbilmodellen, som ju har två frihetsgrader, i två modeller med en frihetsgrad vardera: ena för att bestämma x 1, andra för att bestämma x 2. 2 Val av resonansfrekvenser För personbilar väljs resonansfrekvensen f appr n,2 för den fjädrade massan enligt framaxel: Hz bakaxel: Hz. Figur 3: En bil som kör över ett gupp. Frekvensen vid bakaxeln är alltid ca % högre än vid framaxeln. Anledningen till det är att man i regel träffar ett gupp med framhjulet först varvid chassit börjar rotera (pitcha), jämför figur 3. Genom att använda en högre frekvens på bakaxeln kommer bakänden av chassit att röra sig snabbare så att den hinner ifatt framänden så att chassit inte pitchar lika mycket. Eftersom vi är extra känsliga för pitchrörelse innebär detta att komforten höjs. Varför väljs då f appr n,2 just kring 1 Hz och inte någon annan frekvens? För att svara på det studerar vi komfortdiagrammet i figur 4. Komforten beror både på amplituden och frekvensen av svängningarna. Obehaget ökar naturligtvis med ökande amplitud av svängningarna. För frekvenser över 1 Hz, ökar obehaget upp till 4 Hz. Därefter är obehaget konstant upp till 8 Hz, men för högre frekvenser minskar obehaget! Anledningen till att obehaget är som störst mellan 4 och 8 Hz är att vissa kroppsdelar har en resonansfrekvens inom detta intervall, se figur 5. Skuldrorna har en resonansfrekvens mellan 4 och 5 Hz, så om excitationen från vägen har en frekvens i detta intervall känner man sig stel i nacken. Magen har en resonansfrekvens mellan 4 och 8 Hz varför man känner sig kräkfärdig om excitationen från vägen har en frekvens i detta intervall. Eftersom obehaget ökar upp till 4 Hz kan man tycka att det vore en bra idé att välja den fjädrade massans (chassits) resonansfrekvens så låg som möjligt. Men det visar sig att svängningar under 0.8 Hz tenderar att göra oss åksjuka. Av denna anledning väljs f appr n,2 något över 1 Hz. För den ofjädrade massan väljs f appr n,2 till mellan 10 och 14 Hz. Maxgränsen 14 Hz väljs eftersom vi inte kan höra ljud med en frekvens under 16 Hz. 3
4 Figur 4: Komfortdiagram. Figur 5: Resonansfrekvenser för den mänskliga kroppen. 4
5 3 Dämparkraften Figur 6: Dämparkraften F d som funktion av dämparhastigheten v d för olika dämpare till en Opel Kadett. Som vi såg på föreläsning 2 är bildämpare inte är linjära, jämför figur 6, där dämparkraften F d har plottas som funktion av dämparhastigheten v d, d.v.s. hastighetsskillnaden mellan dämparens ändpunkter: v d = ẋ 2 ẋ 1. Om v d 0 rör sig ändpunkterna ifrån varandra varvid dämparen sägs vara i rebound. Om v d < 0 är dämparen i bump. För att undvika att chassit får en stor uppåtriktad acceleration när man träffar ett gupp, är dämparkraften i bump av komfortskäl i allmänhet lägre än i rebound. Vi skulle naturligtvis kunna göra en splineapproximation av någon av kurvorna i figur 6, men vi nöjer oss här med att använda en styckvis linjär approximation. För N-dämparen i figuren approximerar vi dämpningskonstanten i rebound som c + 2 = 500/0.26 = 1900 Ns/m. I bump väljer vi approximationen c 2 = 180/0.26 = 690 Ns/m: c 2 = { c + 2 = 1900 Ns/m om v d =ẋ 2 ẋ 1 0 c 2 = 690 Ns/m annars. 5
6 Uppgift 4 Du ska nu lösa differentialekvationerna från uppgift 1 numeriskt. Låt systemet starta från vila då fjädrarna är ospända. Du ska lösa rörelseekvationerna upp till en viss tidpunkt t max för 100 frekvenser f mellan 0 och 25 Hz för excitationen u från vägen. För en viss frekvens f kommer x 1 likna kurvan i figur 7. Figur 7: x 1 på väg mot fortvarighet. Kurvan närmar sig en fortvarighetslösning som är oberoende av begynnelsevillkoren. För varje frekvens ska bl.a. amplituden för x 1 i fortvarighet beräknas. Amplituden fås bekant som hälften av maxvärdet minus minvärdet. Du måste se till att välja t max tillräckligt stor så att x 1 hunnit svänga in sig mot fortvarighetslösningen redan efter, säg, 90 % av t max. Amplituden i fortvarighet kan därmed fås genom att bestämma min- och maxvärdena för x 1 iintervallet 0.9t max t t max,sekoden nedan: t_max=5.0; f=linspace(0,25,100); % Höj till 100 i uppgift 4 e). % Frekvenser. x1_ampl=zeros(length(f),1); % Allokera en nollvektor med 100 element. for jj=1:length(f) [t_vec,y]=ode45(@lab_2016_ekv,[0 t_max],zeros(1,4),options,... m1,m2,g,k1,k2,c2_plus,c2_minus,u0,f(jj)); % I funktionsfilen lab_2016_ekv.m definieras % de styrande differentialekvationerna. 6
7 n=length(t_vek); n_90=round(0.9*n); % Antal element i t_vek. % Elementet som motsvarar tiden 0.9*t_max. x1=y(:,1); x1_ampl(jj)=(max(x1(n_90:n))-min(x1(n_90:n)))/2; end a) Sätt t max =5.0 s. Plotta x 1 och x 2 som funktion av tiden för en frekvens, säg 10 Hz, för att säkerställa att fortvarighet verkligen infinner sig före t =0.9 t max (plott 1 2). b) Plotta amplituderna i fortvarighet för följande storheter som funktion av frekvensen: x 1, x 2, ẋ 1, ẋ 2 (plott 3 6). c) Plotta amplituderna i fortvarighet för ẍ 2 och normalkraften N som funktion av frekvensen. Jämför lösningen som fås med de ovan angivna värdena på m 1, m 2, k 1, k 2, c + 2 och c 2,och lösningen som fås då en storhet i taget ändras från originalstorheterna enligt: m 1,ny =1.5 m 1 (plott 7 8) m 2,ny =1.5 m 2 (plott 9 10) k 2,ny =1.5 k 2 (plott 11 12) c + 2,ny =1.5 c + 2, c 2,ny =1.5 c 2 (plott 13 14). I varje plott ska både lösningen med originalvärdena och de nya värdena visas. d) Komforten är dålig om amplituden av den fjädrade massans acceleration ẍ 2 är hög. Här måste man tänka på att vi är som känsligast för frekvenser mellan 4 och 8 Hz, så fokusera på det intervallet. En stor amplitud av normalkraften N på vägen gör att väggreppet varierar kraftigt så att det blir svårt för föraren att prediktera greppet. Därmed blir säkerheten dålig. Avgör baserat på plottarna i c) huruvida en ökning av m 1, m 2, k 2 respektive c 2 ökar komforten respektive säkerheten. Kan du se någon konflikt mellan komfort och säkerhet huruvida en viss storhet bör höjas eller inte? e) P.g.a. dämpningen kan man från plottarna i b) inte se var resonansfrekvenserna ligger. Minska därför dämpningen rejält till c 2 = c + 2 =50Ns/m, men ha kvar originalvärdena på alla andra storheter. (Vi kan inte sätta dämpningen till noll eftersom vår metod att ta fram partikulärlösningen bygger på att den homogena lösningen dött ut efter en viss tid. Om dämpningen är noll gör den ju inte det.) Den lilla dämpningen gör att 7
8 lösningen konvergerar långsamt mot fortvarighetslösningen, så öka t max till t max = 100 s. Plotta amplituden av x 1 och x 2 i fortvarighet som funktion av frekvensen (plott 15 16). Jämför med resonansfrekvenserna i uppgift 2. 4 Redovisning Den skriftliga rapporten, gärna handskriven, ska innehålla: 1. Personnummer och e-postadress. 2. Fullständiga härledningar till uppgifterna 1, 2 och 3 (detta inkluderar friläggningsfigurer). Alla storheter som du fört in själv ska vara noggrant definierade. Alla steg i härledningarna ska kunna följas. Dimensionskontroll av svarsuttrycken ska redovisas. 3. MATLAB-filerna till uppgift Resultatplottar till uppgift Svar/kommentarer till uppgifterna 2, 3 och 4. Rapporten lämnas direkt till lektionsledaren eller i facket utanför dennes kontor (se kursinfot). Där hämtas även rättade rapporter ut: både godkända och de som måste kompletteras. 8
x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, m 1 =20.0 kg m 2 =1.0 kg F 0 =10N k 1 = 4000 N/m m 1 =20.0 kg k 1 = 4000 N/m l 01 =0.
Linköpings tekniska högskola 2015 10 15 IEI/Mekanik och hållfasthetslära Peter Christensen Datorsimuleringsuppgift i Mekanik Y del 1 (TMME12) Syftet med denna uppgift är att simulera hur ett mekaniskt
Läs merMatematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer
2 mars 2017 Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer Syftet med denna matlab-övning är att studera differentialekvationer och introducera hur man använder
Läs merTentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Läs merLennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare
Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med
Läs merTentamen. TSFS 02 Fordonsdynamik med reglering 1 november, 2013, kl. 8 12
Tentamen TSFS 02 Fordonsdynamik med reglering 1 november, 2013, kl. 8 12 Hjälpmedel: Miniräknare. Ansvarig lärare: Jan Åslund, 281692. Totalt 50 poäng. Betygsgränser: Betyg 3: 23 poäng Betyg 4: 33 poäng
Läs merLaboration Svängningar
Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med
Läs merAlltså är {e 3t, e t } en bas för lösningsrummet, och den allmänna lösningen kan därmed skrivas
ektion 7, Envariabelanalys den 8 oktober 1999 Visa att funktionerna y 1 = e r 1t och y = e r t, där r 1 r, är linjärt oberoende. 17.7. Finn den allmänna lösningen till y 3y = 0. Vi ska visa implikationen
Läs merDatorsimuleringsuppgift i Mekanik I del 2, Ht Stela Kroppens Dynamik (TMME18) Rulle på Cylinder. Deadline för inlämning: , kl 15.
(6) Bakgrnd Datorsimleringsppgift i Mekanik I del, Ht 0 Stela Kroppens Dynamik (TMME8) Rlle på Cylinder Deadline för inlämning: 0--09, kl 5.00 I ppgiften skall d ställa pp rörelseekvationerna för ett mekaniskt
Läs merTentamen i Mekanik II
Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd
Läs merLABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel
Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer
Läs merFöreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
Läs merUppgifter 2 Grundläggande akustik (II) & SDOF
Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den
Läs merMEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007
I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt
Läs merSvängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar
Svängningar Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande... 3 Det dämpade men odrivna systemet... 3 Det drivna systemet... 4 Några praktiska tips...
Läs merKOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Läs merTentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merLÄRARHANDLEDNING Harmonisk svängningsrörelse
LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren
Läs merEnvariabelanalys 5B Matlablaboration
Mariana Dalarsson, ME & Johan Svenonius, IT Envariabelanalys 5B47 - Matlablaboration 7-- Kurs: 5B47 Handledare: Karim Daho Uppgift Situationen kan illustreras med följande figur: Följande krafter verkar
Läs merTentamen. TSFS 02 Fordonsdynamik med reglering 14 januari, 2017, kl. 8 12
Tentamen TSFS 02 Fordonsdynamik med reglering 14 januari, 2017, kl. 8 12 Hjälpmedel: Miniräknare. Ansvarig lärare: Jan Åslund, 281692. Totalt 50 poäng. Betygsgränser: Betyg 3: 23 poäng Betyg 4: 33 poäng
Läs merOrdinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 2 juni 2017 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Godkänd minikräknare och Matte Beta Examinator: Stellan Östlund Jour: Stellan
Läs mer1. Mekanisk svängningsrörelse
1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.
Läs merSvängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar
Svängningar Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande Det dämpade men odrivna systemet... 3 Det drivna systemet... 4 Observation av ett urval av svängande
Läs merTentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE maj 2012,
Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE345 24 maj 2012, 8.30-13.00 1. Ge exempel på en avklingningsfunktion för att beskriva en gas som bryts ner i atmosfären. Presentera också
Läs merLösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)
Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen
Läs merOrdinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,
Läs merPreliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Läs merHarmonisk svängningsrörelse
Institutionen för Fysik och Astronomi Mekanik HI: 214 Harmonisk svängningsrörelse I den här laborationen kommer vi att titta på svängningsrörelse med olika egenskaper: fri odämpad, fri dämpad och tvungen
Läs merTentamen i Mekanik - partikeldynamik
Tentaen i Mekanik - partikeldynaik TMME08 011-01-14, kl 8.00-1.00 Tentaenskod: TEN1 Tentasal: Exainator: Peter Schidt Tentajour: Peter Schidt, Tel. 8 7 43, (Besöker salarna ca 9.00 och 11.00) Kursadinistratör:
Läs merPåtvingad svängning SDOF
F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften
Läs merTentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
Läs merMekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Läs merChalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar
Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Läs merInlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B
Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft
Läs merSvängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan
TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system
Läs merOmtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen
2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block
Läs mer9.2 Kinetik Allmän plan rörelse Ledningar
9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,
Läs merTentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Läs merKapitel extra Tröghetsmoment
et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten
Läs merTentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del 1 Statik och partikeldynamik TMME27 2016-10-24, kl 14.00-19.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE, TERF Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27
Läs mer2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT
1 Lennart Edsberg Beatrice Frock Katarina Gustavsson NADA, mars 2006 2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT A I detta projekt ska du tillämpa de metoder som du lärt dig under kursens gång för att
Läs merVälkomna till TSRT15 Reglerteknik Föreläsning 2
Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Läs merTentamen i Mekanik för D, TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics
Läs merSammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Läs merFöreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Läs merIntroduktion. Torsionspendel
Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen
Läs merGÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Läs merTentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar
Läs merUndersökning av hjulupphängning och styrning till ett fyrhjuligt skotarkoncept. Emil Larsson
Undersökning av hjulupphängning och styrning till ett fyrhjuligt skotarkoncept Emil Larsson MF2011 Systems engineering Skolan för industriell teknik och management Mars 2009 Sammanfattning Efter i tabell
Läs merTillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.
Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,
Läs merVälkomna till Reglerteknik Föreläsning 2
Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Läs merTentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av
Läs merTentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik
Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 2 Dynamik Måndagen den 8 April 2013, kl. 8-13 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av 5 uppgifter. Kontrollera
Läs merSF1625 Envariabelanalys
Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.
Läs merLaboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Läs merUPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander
UPPSALA UNIVERSITET Inst. för fysik och astronomi Mattias Klintenberg, Allan Hallgren, Staffan Yngve, Arnaud Ferrari, Glenn Wouda och Lennart Selander TENTAMEN 11-06-03 MEKANIK II 1FA102 SKRIVTID: 5 timmar,
Läs merMekanik KF, Moment 2. o Ingenting händer: T! = T! o Den blir kortare: T! =!! o Den blir längre: T! = 2T!
Mekanik KF, Moment 2 Datum: 2013-03-18, 8-13 Författare: Jan-Erik Rubensson Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna
Läs merHögskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Läs merVSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter
Läs mer2D1212 NumProg för BD2, Bio2 & K2 Laboration 7 PROJEKTUPPGIFT - HT2005
1 2D1212 HT2005 NADA november 2005 2D1212 NumProg för BD2, Bio2 & K2 Laboration 7 PROJEKTUPPGIFT - HT2005 A I detta projekt ska du tillämpa de metoder som du lärt dig under kursens gång för att lösa ett
Läs mer6.4 Svängningsrörelse Ledningar
6.4 Svängningsrörelse Ledningar 6.166 b) Krafterna i de båda fjädrarna är lia stora och lia med raften på roppen (inses genom att man frilägger roppen och de två fjädrarna var för sig). Kroppens förflyttning
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Läs merLÖSNINGAR TENTAMEN MEKANIK II 1FA102
LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera
Läs merJämförelse av ventilsystems dynamiska egenskaper
Jämförelse av ventilsystems dynamiska egenskaper Bo R. ndersson Fluida och Mekatroniska System, Institutionen för ekonomisk och industriell utveckling, Linköping, Sverige E-mail: bo.andersson@liu.se Sammanfattning
Läs merLösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
Läs merKOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,
KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------
Läs merTENTAMEN I VIBRATIONSANALYS 7,5 hp
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Högskoleingenjörsprogrammet i maskinteknik 2013 TENTAMEN I VIBRATIONSANALYS 7,5 hp Tentamensdatum: 2 maj 2013 Skrivtid: 9 00-15 00 Skrivsal: Östra Paviljongen,
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merLaboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Läs merÖvningar till datorintroduktion
Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)
Läs merSG1140, Mekanik del II, för P2 och CL3MAFY
Tentaen 101218 Lcka till! Tillåtna hjälpedel är penna och suddgui. Rita tdliga figurer, skriv grundekvationer och glö inte att sätta ut vektorstreck. Definiera införda beteckningar och otivera uppställda
Läs merBose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin
Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
Läs merSvar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Läs merLAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Läs merKOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi
KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,
Läs merLaboration 2 Ordinära differentialekvationer
Matematisk analys i en variabel, AT1 TMV13-1/13 Matematiska vetenskaper Laboration Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u =
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Läs merTENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Läs merTentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med
Läs meruniversity-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11
Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Läs merVar i en nöjespark får man uppleva de starkaste krafterna? Enligt
Ann-Marie Pendrill & David Eager Studsmattematte fritt fall och harmonisk svängningsrörelse Studsmattor finns i många trädgårdar och lekplatser. Under studsandet rör man sig huvudsakligen i vertikalled
Läs merTentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten
Läs merMatematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Läs merSDOF Enfrihetsgradssystemet
SDOF / Ljud i byggnad och samhälle / VTAF SDOF Enfrihetsgradssystemet Det enkla massa-fjäder-systemet, eller sdof-systemet (single degree of freedom, enfrihetsgradssytem) är ett grundläggande begrepp inom
Läs merSF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
Läs merMatlab övningsuppgifter
CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till
Läs merJustera bara en sak i taget!
Stötdämpare Justeringsrattarna/skruvarna påverkar inte dämpningskaraktären Justeringen höjer eller sänker bara kurvorna Justeringen påverkar bara den lågfrekventa dämpningen Justera bara en sak i taget!
Läs merf(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER, TER 2, TER E TID: 4 mars 208, klockan 8-3 KURS: TSRT2, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merIntroduktion till Biomekanik, Dynamik - kinetik VT 2006
Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,
Läs mer9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
Läs merLösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Läs merLösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse
Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en
Läs mer