Tentamen i matematik. f(x) = 1 + e x.
|
|
- Elsa Pettersson
- för 5 år sedan
- Visningar:
Transkript
1 Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: kl Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej räknedosa. Tentamen bedöms med betyg 3, 4, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg (3) krävs minst 4 poäng från uppgifterna 9, varav minst 3 poäng från uppgifterna 7 9. Var och en av dessa nio uppgifter kan ge maximalt 3 poäng. För var och en av uppgifterna 6 kan man välja att i stället för att lämna svar utnyttja sitt resultat från motsvarande dugga (duggaresultatlista bifogas). Markera detta genom att skriva ett D istället för ett kryss i uppgiftsrutan på omslaget. För betyg 4 krävs utöver godkänt resultat från 9 minst 50% (2 poäng) från uppgift 0 3, för betyg 5 minst 75% (8 poäng). Lämna fullständiga lösningar till alla uppgifter (Skriv inte mer än en uppgift på varje blad.). Numeriska värden kan anges som uttryck där faktorer som π och logaritmer ingår, om så behövs. Del I. (D.). Uppgift 9 räknas för godkänt betyg. Varje uppgift kan ge upp till 3 poäng. För godkänt (betyg 3 5) krävs minst 4 poäng, varav minst 3 poäng på uppgift 7 9. Uppgift 6 kan en och en ersättas av duggapoäng. Funktionen f definieras på intervallet (, ) genom f(x) = + e x. Den är strängt avtagande och därför inverterbar, med en invers funktion f. Ge ett uttryck för f (x) och ange också definitionsmängden (domain) för f. Lösningsförslag: Notera att, eftersom e x > 0, så är f(x) >, för alla x. Notera också att f är en kontinuerlig funktion, lim f(x) = och lim f(x) = 0 så pga kontinuitet x x är värdemängden till f, och därmed definitionsmängden till f intervallet (, ). Vi har sedan att y = f (x) x = f(y) x = + e y e y = x y = ln(x ) y = ln(x ), så f (x) = ln(x ) (som också är lika med ln(/(x )). 2
2 (D.2) 2. Funktionen f definieras på (, ) genom (x ) 2, om x 2 f(x) = ax + b om x < 2. Bestäm värden på a och b så att f blir kontinuerlig och deriverbar överallt. Lösningsförslag: Vi noterar att f är kontinuerlig och deriverbar överallt utom möjligen för argumentet 2, med f (x) = 2(x ) för x 2 och f (x) = a för x < 2. Med differenskvoten från derivatans definition, har vi vänster- och högergränsvärden f(2 + h) f(2) a(2 + h) + b lim h 0 h h 0 h h 0 f(2 + h) f(2) lim h 0+ h h 0+ ah + 2a + b h a + 2a + b h 0 h h 0+ h 0+ h 0+ h + 2 = 2. (2 + h ) 2 h (h + ) 2 h h 2 + 2h h och För att f (2) ska existera ska både vänster- och högergränsvärdena båda existera och dessutom stämma överens. Så är fallet om 2a+b = 0, vilket ger att lim h 0 h f(2+h) f(2) = a och dessutom a = 2. De här två villkoren är uppfyllda om a = 2 och b = 3, och då är f (2) = 2. Alternativt, lim x 2 x 2 f(x) ax + b = 2a + b, lim f(x) x 2 + x 2 +(x )2 =, så om 2a + b = så blir f kontinuerlig överallt. Notera vidare att lim f (x) a = a x 2 x 2 och lim f (x) 2(x ) = 2, x 2 + x 2 + så om dessutom a = 2 så har f (x) ett (dubbelsidigt) gränsvärde i 2, vilket som föjd, om f är kontinuerlig, har att f också är deriverbar i 2. Alltså, om a = 2 och b = 2a = 3 så är f kontinuerlig och deriverbar överallt. 3
3 (D2.) 3. Bestäm en ekvation för tangenten till kurvan 4x 2 y 2 = 2xy + i punkten (x, y) = (, 3). Lösningsförslag: Genom implicit derivering av ekvationen för kurvan får vi för varifrån vi kan lösa ut dy/ som 4x 2 y 2 = 2xy + 8x 2y dy dy = 2y + 2x. dy 8x 2y = 2x + 2y = 4x y x + y. tangentlinjen i punkten (x, y) = (, 3) har ekvationen y ( 3) = k(x ), där k är värdet av dy/ då (x, y) = (, 3), dvs k = 4x y x + y = 7 (x,y)=(, 3) 2 = 7 2. Tangentlinjen ekvation är alltså eller ekvivalent y + 3 = 7 (x ) 2 y = 7 2 x + 2 eller 7x + 2y =. (D2.2) 4. Vilket är det största respektive minsta värde funktionen f(x) = 4 x x antar på intervallet [0, 9]? Lösningsförslag: Funktionen f är kontinuerlig på hela det slutna intervallet [0, 9]. Det betyder (eftersom intervallet är begränsat och slutet, dvs innehåller sina ändpunkter) att funktionen måste anta ett största och ett minsta värde. Det kan ske antingen i intervallets ändpunkter, där funktionen inte är deriverbar, eller där derivatan är noll. Vi undersöker derivatan. f (x) = 2x /2 4
4 är definierad för x > 0, men inte för x = 0. Vi noterar att f (x) = 2x /2 = 2 x x = 4 x (2 + x) x (notera förlängning med 2 + x och användning av konjugatregeln) så f (x) > 0 för 0 < x < 4, f (x) = 0 för x = 4, och f (x) < 0 för x > 4. f(x) måste alltså vara maximal för x = 4, f(4) = 4 och minimal på intervallet i någon av ändpunkterna; värdena är där f(0) = 0 respektive f(9) = 3. Slutsats: Funktionen f har på intervallet [0, 9] som största värde f(4) = 4 och som minsta värde f(0) = 0. (D3.) 5. Bestäm värdet av integralen π/2 0 cos x + sin x. Lösningsförslag: Vi använder variabelsubstitutionen u = +sin x som ger du/ = cos x och = π/2 0 2 cos x + sin x u du = [ln u ] u=2 u= = ln 2 ln = ln 2. (D3.2) 6. Vid en inbromsning av ett fordon antar vi att hastigheten v kan beskrivas som en funktion av tiden t enligt formeln där c = /3 s (sekund). v = c 00 m/s, t + c Sträckan s fordonet förflyttar sig sig mellan t = a och t = b ges av integralen s = b a Hur långt har fordonet rört sig från inbromsningens början (t = 0 sekunder) tills farten är nere i 0 m/s? v dt. 5
5 Lösningsförslag: Vi har att s = b a v dt = c 00 m/s t + c = [c ln t + c ] b a 00 m/s = c (ln b + c ln a + c ) 00 m/s = c ln b + c a + c 00 m/s. Om b är tiden från inbromsningens början tills farten är nere i 0 m/s så gäller ekvationen Vi löser ut b. c 00 m/s = 0 m/s. c + b c 00 m/s = 0 m/s c + b c 0 c + b = 0 c = c + b b = 9c Den sökta sträckan är alltså, med a = 0 s, b = 9c och c = /3 s s = 3 s ln 0c c 00 m/s = ln 0 00 m ( 76 m) Låt k vara en konstant parameter. Bestäm (för y > 0) lösningen till differentialekvationen dy = kxy2, som uppfyller begynnelsevärdet y = då x = 0. Lösningsförslag: Vi har dy y 2 = y 2 dy = dy = kxy2 kx kx y = 2 kx2 + C y = kx C där C är en allmän konstant. Begynnelsevillkoret ger ekvationen C = 6
6 som löses av C =. Vår sökta lösning är alltså y = kx 2 2 =. kx Bestäm, för x > 0, den allmänna lösningen till differentialekvationen Lösningsförslag: Vi har, för x 0 att x dy + 2y = sin x. x dy + 2y = sin x () dy + 2 x y = sin x x, (2) är en linjär första ordningens differentialekvation som kan lösas genom integration efter att man multiplicerat med en integrerande faktor 2 ( exp x = exp(2 ln x + C) = ec e ln x ) 2) = e C x 2. Vi multiplicerar (2) med x 2 och får d ( x 2 y ) = x sin x (3) x 2 y = x sin x. (4) Vi utvecklar integralen genom partiell integration av sin x = d( cos x): x sin x = x( cos x) ( cos x) = x cos x + sin x + C, där C är en allmän konstant. Den allmänna lösningen till (), för x > 0, är alltså där C är en allmän konstant. y = sin x ( x cos x + sin x + C) = x2 x 2 cos x x + C x 2, 9. Låt y = dy dt och y = d2 y dt 2. Bestäm lösningen till differentialekvationen som uppfyller begynnelsevillkoren y + 4y + 3y = 2e 2t y t=0 = y t=0 = 0. Lösningsförslag: Vi vill först hitta den allmänna lösningen till y + 4y + 3y = 2e 2t. (5) 7
7 Om a och b är konstanter och det karakteristiska polynomet r 2 + ar + b har två olika nollställen r = r och r = r 2, så är y = C e rt + C 2 e r 2t den allmänna lösningen till den homogena linjära differentialekvationen y + ay + by = 0 och den linjära differentialekvationen y + ay + by = g(t) (6) har den allmänna lösningen y = y p + C e r t + C 2 e r 2t där y = y p är en partikulärlösning till (6). I vårt fall har vi att r 2 + 4r + 3 = (r + 2) 2 = (r + 3)(r + ), så den homogena hjälpekvationen y + 4y + 3y = 0 har allmän lösning y = C e 3t + C 2 e t. För att hitta en partikuklärlösning till (6) ansätter vi y = y p = ae 2t. Då är så dy p dt = 2ae 2t och d2 y p dt 2 = 4ae 2t, y p + 4y p + 3y p = 4ae 2t + 4( 2ae 2t ) + 3ae 2t = ae 2t. Vi har alltså att y = y p = ae 2t löser (5) om a = 2. Den allmänna lösningen till (5) är alltså y = 2e 2t + C e 3t + C 2 e t. (7) För att bestämma C och C 2 så att begynnelsevillkoren stämmer konstaterar vi att y t=0 = 2 + C + C 2 och att y t=0 = 4e 2t 3C e 3t C 2 e t t=0 = 4 3C C 2, vilket för begynnelsevillkoren ger det linjära ekvationssystemet 2 + C + C 2 = 0 C + C 2 = 2 3C C = C C 2 = 0 3C + C 2 = 4 3C 2 C 2 = Den sökta lösningen är alltså y = 2e 2t + e 3t + e t. C = C 2 =. 8
8 Del II. Följande uppgifter räknas för betyg 4 och 5. Varje uppgift kan ge upp till 6 poäng, totalt 24. Även presentationen bedöms. 0. Låt f(x) = x2 x 2 2x. a) Vad är definitionsmängden (domain) för f? (Dvs den största möjliga inom den reella tallinjen.) b) Vad har f för nollställen (zeros)? c) Har kurvan y = f(x) några asymptoter, och i så fall vilka? d) På vilka intervall är f växande (increasing) respektive avtagande (decreasing)? e) Har f(x) några lokala extrema (maxima eller minima), och i så fall vilka?. Bestäm volymen (uttryckt i kubikenheter utifrån i koordinatssystemets enheter) av en tredimensionell kropp som beskrivs genom att låta området mellan kurvorna x =, x = e, y =, y = ln x rotera kring y-axeln. 2. Vilka av följande generaliserade integraler är konvergenta respektive divergenta. För eventuella konvergenta integraler, bestäm värdet. a) 2 x(x ), b) 2 x(x ), c) x(x ). 3. Bestäm en lösning till differentialekvationen d 2 y 2 = + ( ) dy 2 som uppfyller begynnelsevillkoren y t=0 = och dy x=0 = 0. Tips: Sätt z = dy. Notera att z + + z 2 > 0 för alla z och att d dz ln(z + + z 2 ) = + z 2. Lycka till! /SK&JS 9
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Lösningsförslag. Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik
Lösningsförslag Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 9-3-7 kl 8.3-1.3 Hjälpmedel : Inga hjälpmedel
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =
SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7
TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,
Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 443 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standar 73 88 34 LMA33a Matematik BI Tentan rättas och bedöms anonymt. Skriv tentamenskoden
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic
Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
Lösningsförslag, version 1.0, 13 september 2016
Lösningsförslag, version.0, 3 september 06 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 06-08-7 kl 8.30-3.30 Hjälpmedel : Inga
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:
HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)
Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning
Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 1715 kl. 14. - 18. Tentamen Telefonvakt: Jonny Lindström 733 674 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standard LMA515 Matematik KI, del B.
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 343 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standard 73 88 34 LMA55 Matematik KI, del B Tentan rättas och bedöms anonymt. Skriv tentamenskoden
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
a) Ange alla eventuella punkter där f är diskontinuerlig. b) Ange alla eventuella punkter där f är kontinuerlig men inte deriverbar.
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer MA712A Matematik för lärare C, delkurs Matematisk analys Tentamensdag:
TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim 0. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.
TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att
10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1
TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 0 aug 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A, B,
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x
Institutionen för matematik, KTH Serguei Shimorin SF6, Differential- och integralkalkyl I, del Tentamen, den 9 mars 9 Lösningsförslag Funktionen y = fx definieras för x >, x som x + x fx = x a Definiera
2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen
Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen
Blandade A-uppgifter Matematisk analys
TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:
TENTAMEN HF1006 och HF1008
TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Studietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Tentamen Matematisk grundkurs, MAGA60
MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast
1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
Lösningsförslag: Preliminär version 8 juni 2016, reservation för fel! Högskolan i Skövde. Tentamen i matematik
Lösningsförslag, v.5 Preliminär version 8 juni 26, reservation för fel! Högskolan i Skövde Tentamen i matematik Kurs: MA52G Matematisk analys MA23G Matematisk analys för ingenjörer Tentamensdag: 26-5-2
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 9 jan 07 Tid -8 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2016 Skrivtid 9:00-13:00
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) Datum: 9 okt 6 Skrivtid 9:-: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betyg krävs av ma 4 poäng
Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 6825 kl. 8.3 2.3 Tentamen Telefonvakt: Carl Lundholm 5325 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Studietips info r kommande tentamen TEN1 inom kursen TNIU23
Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim
Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in
TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012
TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och
4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),
Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
Tentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic
TENTAMEN 8 jan 0 Tid: 08.5-.5 Kurs: Matematik HF90 (6H90) 7.5p Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras
Lösningsförslag, preliminär version 0.3, 29 december 2017
Lösningsförslag, preinär version 0.3, 9 december 07 Reservation för fel. Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 07-08-
Uppsala Universitet Matematiska Institutionen Bo Styf. Lösningar till kryssproblemen 1-5. Uppgifter till lektion 1: = 10 x. = x 10.
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 2010-10-27 Uppgifter till lektion 1: 1. Lös olikheten 2x + 1 > 3. Lösningar till kryssproblemen 1-5. Lösning. Olikheten
SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm
VECKANS UPPGIFTER MENY FÖR HELA MOMENT 3 5B3 Amelia fr P och T ht 004 Uppgifter till Vecka 4. Förklara hur ett induktionsbevis fungerar.. Bevisa att 4 n är jämnt delbart med 3 för n =,, 3,... 3. Bevisa
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,
UPPSALA UNIVERSITET Envariabelanalys IP1/Hösten L.Höglund, P.Winkler, S. Zibara Ingenjörsprogrammen Tel: , ,
UPPSALA UNIVERSITET Envariabelanalys IP/Hösten 00 Matematiska institutionen Sluttentamen LHöglund, PWinkler, S Zibara Ingenjörsprogrammen Tel: 7, 789, 70 00 6 Tid : 0800 00 Hjälpmedel : godkänd miniräknare
x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.
Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4
Tentamen i Matematisk analys MVE045, Lösningsförslag
Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar
Mälardalens högskola Akademin för utbildning, kultur och kommunikation
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.06. 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b
Lösningsförslag till Tentamen i Inledande matematik för E, (TMV57), 203-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) För vilka tal gäller 2 + > cos2 ()? Lösning:
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Dugga 2 i Matematisk grundkurs
Linköpings tekniska högskola Matematiska institutionen Tillämpad matematik Kurskod: TATA68 Provkod: TEN Inga hjälpmedel är tillåtna. Dugga i Matematisk grundkurs 013 16 kl 8.00 1.00 Lösningarna skall vara
SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013
SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Mälardalens högskola Akademin för utbildning, kultur och kommunikation
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.06.5 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook