= y(0) för vilka lim y(t) är ändligt.
|
|
- Stefan Lindberg
- för 8 år sedan
- Visningar:
Transkript
1 Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta att följa Svaren skall ges på reell form Del är avsedd för betyg E och omfattar 3 uppgifter För betyg E krävs 3 godkända moduler Del är avsedd för högre betyg, A, B, C och D, och omfattar totalt poäng För betyg A krävs förutom 3 godkända moduler även 5 poäng på del För betyg B krävs förutom 3 godkända moduler även poäng på del För betyg C krävs förutom 3 godkända moduler även 7 poäng på del För betyg D krävs förutom 3 godkända moduler även 3 poäng på del Uppgifterna -5 ger 4 poäng vardera Del Modul Bestäm de stationära lösningarna till differentialekvationen dy dt = y 9 samt ange om de är stabila eller instabila Bestäm de startvärden y = y() för vilka lim y(t) är ändligt För de stationära lösningarna gäller att dy dt = Det ger lösningarna = 3 och y = 3 En teckenstudie av derivatan ger information rörande stabiliteten För y < 3 och y > 3 är derivatan positiv och y(t) är växande För 3 < y < 3 är derivatan negativ och y(t) är avtagande Vi ritar upp faslinjen -3 3 Den stationära lösningen = 3 är instabil och den stationära lösningen y = 3 är asymptotiskt stabil lim y(t) är ändligt för startvärden y = y() 3 För y = y() < 3 är lim y(t) SVAR: De stationära lösningarna är = 3 och y = 3 = 3 och för y = y() = 3 är lim y(t) = 3 är instabil och y = 3 är asymptotiskt stabil lim y(t) är ändligt för startvärden y = y() 3 = 3
2 Modul = 3x y dt Bestäm först den allmänna lösningen till det homogena systemet och bestäm dy dt = x dt därefter den allmänna lösningen till det inhomogena systemet dy = 3 x y + e t dt Vi bestämmer egenvärden och tillhörande egenvektorer till matrisen A = 3 Egenvärdena erhålles ur ekvationen = det(a I) = 3 = 3 + = ( )( ) Vi får =och = Nu bestämmer vi tillhörande egenvektorer vilka erhålles ur ekvationen (A I)K = = ger K = och K = = ger K = och K = Den allmänna homogena lösningen är X h = c e t + c e t = e t e t c e t e t c En partikulärlösning till den inhomogena differentialekvationen fås av X p =Φ Φ Fdt Här är Φ en fundamentalmatris och i vårt fall är Φ = et e t e t e t Inversen Φ = e t e t t = e e t och F = e t e 3 t e t e t e t e t Insättning ger en partikulärlösning X p = e t e t e t e t et e t e t dt e t e t e t e t e t dt = e t e t dt = t och X e t e t p = e t e t t = tet + e t e t e t e t te t + e t Den allmänna lösningen till det inhomogena systemet ges av X = X h + X p Vi får X = et e t c e t e t c + tet + e t eller X = c te t + e t 3 e t + c et + tet + e t te t SVAR: Den allmänna lösningen till det homogena systemet är X h = c e t + c e t = e t e t c e t e t c Den allmänna lösningen till det inhomogena systemet är X = c 3 e t + c et + tet + e t te t
3 Modul 3 Bestäm fourierserien för funktionen som är π -periodisk och definieras av f (t) = cos t för π < t < π Den givna funktionen är en jämn funktion och dess fourierserie är på formen f ~ a + a nπt n cos π = a n= + a cosnt n n= Här är fourierkoefficienterna a = π cos tdt = π a n = π π π π (+ cost)dt = π π = cosnt cos tdt = cos nt( + cost)dt π = π ( + π ) = π SVAR: Funktionen f (t) = cos t tilldelas fourierserien + cos t Anmärkning: Fourierserien kan skrivas upp direkt cos t = + cost Del En partikel rör sig längs en x-axel så att dess hastighet i axelns riktning är proportionell mot kvadraten på x-koordinaten x (t ) Proportionalitetskonstanten antas vara (dimension m - s - om längd och tid mäts i m respektive s) Vid tiden t = har partikeln koordinaten p a) Bestäm x (t ) för t b) Undersök om partikeln för lämpliga val av p kan nå origo eller försvinna obegränsat bort från origo inom ändlig tid Ange i så fall hur lång tid, som funktion av p, detta tar a) Vi ställer först upp differentialekvationen Hastigheten dt = kx, där k är proportionalitetskonstanten I detta fall är k = Vår differentialekvation är då dt = x, vilken är separabel och även autonom Konstantlösningen x = innebär att partikeln förblir i origo hela tiden Partikeln befinner sig inte i origo vid tiden noll Med x omformas differentialekvationen till = Integrera med avseende på t x dt Vi får x = t + C Vilkoret ger oss konstanten C = p Insättning och förenkling ger: x = t p, tp =, x= p x p tp b) Partikeln kan ej nå origo inom ändlig tid Däremot kan den försvinna obegränsat bort från origo inom ändlig tid Partikeln försvinner obegränsat långt bort inom sekunder för p > p SVAR: a) x = p tp b) Partikeln försvinner obegränsat långt bort inom p p > sekunder för
4 Låt och y vara två lösningar till a (x ) y + a (x) y + a (x )y = a) Visa att Wronskianen, W (, y ), till och y satisfierar a (x ) dw + a (x )W = a (x ) b) Härled därefter Abels formel W = Ce a (x ), där C är en konstant c) Låt och y vara två lösningar till ( x ) y x y + n(n +)y =, < x < Bestäm W (, y ) d) Vad krävs för att och y skall bilda en bas för lösningsrummet till den homogena differentialekvationen? a) Wronskianen W(, y ) = y = y y y y Insättning i vänstra ledet av ekvationen ger VL = a (x)( y + y y y ) + a (x)( y y ) Vi omformar så att den givna differentialekvatonen, a (x ) y + a (x) y + a (x )y =, kan användas VL = a (x)( y + y y y ) + a (x)( y y ) VL = (a (x) y + a (x) y ) y (a (x) + a (x) ) Vi adderar och subtraherar a (x)y VL = (a (x) y + a (x) y + a (x)y ) y (a (x) + a (x) + a (x) ) Men och y är två lösningar till a (x ) y + a (x) y + a (x )y = Vi får då VL = y = = HL b) Differentialekvationen a (x ) dw + a (x )W = är linjär ( Även separabel) Vi bestämmer en integrerande faktor Först omformas differentialekvationen: dw + a (x) a (x) W =, a(x) En integrerande faktor är e a (x ) a ( x) a (x ) a ( x) a ( x ) a ( x ) dw Multiplicera + a (x) a a (x) W = (x ) a med e ( x) dw Vi erhåller e + e a (x) a (x) W = vilket kan skrivas d a (x ) We a ( x) = a (x ) a (x ) a Integrera med avseende på x: We ( x) = C vilket ger Abels formel W = Ce a (x ) c) Nu tillämpar vi Abels formel Vi bestämmer först a ( x) och a ( x) a ( x) = x och a ( x) = x C x med C d) För att bilda en bas för lösningsrummet skall och y vara linjärt oberoende x x Den sökta Wronskianen W(, y ) = Ce = Ce ln( x ) = Detta inträffar då Wronskianen är skilt ifrån noll C SVAR: a) och b) se ovan c) W(, y ) = x, C d) och y skall vara linjärt oberoende dvs Wronskianen är skilt ifrån noll
5 3 Låt y = (x) vara en lösning till den homogena differentialekvationen y + P(x)y = Härled en partikulärlösning till differentialekvationen y + P(x)y = f (x) Bestäm därefter en kontinuerlig lösning till begynnelsevärdesproblemet y + xy = f (x) = x, x<, y() =, x För att erhålla en partikulärlösning ansätter vi en partikulärlösning ges av y p = (x )u(x) Insättning i den inhomogena differentialekvationen ger: u + u + P u = f Omformning av differentialekvationen ger: ( + P )u + u = f Nu utnyttjar vi att y = (x) är en lösning till den homogena differentialekvationen dvs + P = Då är u = f, u = f f (x) f (x), u(x) = En partikulärlösning är y (x) p = (x ) vsv (x) Nu över till begynnelsevärdesproblemet y + xy = f (x) = x, x<, y() =, x Först bestämmer vi en lösning till den homogena differentialekvationen y + xy = Denna är separabel och vi söker icke-triviala lösningar y Omformning ger: y = x, ln y = x + ln C, y h = C e x Med beteckningar enligt ovan erhåller vi (x) = e x och e x u (x) = f (x) = x, x<, x Lös ut u (x ): u (x) = xe x, x< Integrera map x : u(x) = e x + C 3, x<, x C 4, x Observera att här bestämmer vi först allmänna lösningen för att sedan bestämma integrationskonstanterna Den allmänna lösningen är y = e x u(x) = + C e x 3, x< C 4 e x, x Begynnelsevillkoret y()= ger = + C 3, C 3 = 3, y = + 3 e x, x< C 4 e x, x Nu återstår det att bestämma konstanten C 4 och då behövs det ytterligare ett villkor Vid en första anblick verkar det som om ett sådant saknas, men vi skall bestämma en kontinuerlig lösning Det enda x -värde för vilket funktionen skulle kunna vara diskontinuerlig är för x = Således kräver vi att vänster- och högergränsvärdet är lika där + 3e x Vi erhåller: + 3 e = C 4 e, C 4 = e + 3,, x< y = e+3 e x, x f (x) SVAR: En partikulärlösning är y p = (x ) (x)
6 + 3e x En kontinuerlig lösning till begynnelsevärdesproblemet är y = e+3 e x, x<, x 4 Betrakta en smal stav, av längden π Låt dess temperatur ges av u(x,t ) Dess ena ände hålles vid den konstanta temperaturen C och dess andra ände är isolerad Vid tiden t = är stavens temperatur u(x,) = sin3 x +5sin7 x u t = u xx, <x<, t> Detta ger upphov till följande problem: u(,t) =, u x (,t) =, t > u(x,) = sin3 x +5sin7 x, <x< Bestäm stavens temperatur som funktion av läget och tiden Vi bestämmer lösningar på formen u(x,t ) = X(x)T(t) Insättning i differentialekvationen ger X(x) T (t) = X (x)t(t) T (t) Dividera med X(x)T(t) : T(t) = X (x) X(x) = konstant = X (x) X(x) = Vi får ett system av ordinära differentialekvationer: T (t) T(t) = Dessa ekvationer är linjära med konstanta koefficienter och löses med karakteristisk ekvation Vi betraktar den första ekvationen och får tre skilda fall att undersöka Dessa är följande: >, = och < =, R = =, R X (x) X(x) = X (x) = X (x) + X(x) = X(x) = A e x + B e x X(x) = A x + B X(x) = A 3 cos x + B 3 sin x Randvillkoren och variabelseparationen ger oss följande villkor: X()T(t) =, X ( )T(t) =, t > Dessa skall gälla för alla t > Detta ger: X()=, X ( ) = Nu över till de tre fallen Vi behöver även derivatan X (x) =, R = =, R X(x) = A e x + B e x X(x) = A x + B X(x) = A 3 cos x + B 3 sin x X (x) = ( A e x B e x ) X (x) = A X (x) = ( A 3 sin x + B 3 cos x) Insättning av villkoren ger =, R = =, R X()= A + B = X()= B = X()= A 3 = X ( ) = ( A e B e ) = X ( ) = A = X ( ) = ( A 3 sin + B 3 cos ) =
7 B = A B = A 3 = A (e + e ) = A = B 3 cos = Den enda icke-triviala lösningen erhålles i fallet =, R Då erhålles = n +, n N och lösningen har formen X(x) = B 3 sin(n +)x Motsvarande t-ekvation har lösningen T(t) = C 3 e t = C 3 e ( n+) t Vi får våra lösningar till den partiella differentialekvationen och som uppfyller de givna randvillkoren på formen u n ( x,t) = X(x)T(t) = B 3 C 3 sin(n +) x e ( n+) t Även linjärkombinationer av sådana lösningar är lösningar Vi erhåller u(x,t) = b n e ( n +) t sin(n +) x n = Det återstår att bestämma koefficienterna Dessa erhålles med hjälp av det givna begynnelsevillkoret u(x,) = sin3 x +5sin7 x Insättning ger: u(x,) = b n sin(n +) x = sin3 x +5sin7 x n = Identifiering ger att alla utom två koefficienter är lika med noll Vi får b = och b 3 = 5 Den sökta lösningen är u(x,t ) = e 9t sin3 x + 5e 49t sin7 x SVAR: Den sökta lösningen är u(x,t ) = e 9t sin3 x + 5e 49t sin7 x 5 Skriv den icke-linjära andra ordningens differentialekvation x + x = x 3 som ett plant autonomt system Klassificera om möjligt systemets kritiska punkter med avseende på stabilitet och typ Vi inför en ny variabel y genom att sätta y = x x = y Vårt system blir då: eller på matrisform x y = x = x 3 x y = y = f x 3 x x Vi bestämmer först de kritiska punkterna för vilka tangentvektorn är lika med nollvektorn y y = ger följande kritiska punkter (,), (,) och (,) x 3 x För att bestämma de kritiska punkternas karaktär betraktar vi det linjariserade systemet Matrisen i det linjariserade systemet är lika med Jacobimatrisen i punkten f Vi bestämmer först Jacobimatrisen J(x,y) = (x, y) = 3x Insättning i Jacobimatrisen av respektive kritiska punkt ger: (,) J(,)= har egenvärdena, = ±i För det linjariserade systemet är den kritiska punkten en centerpunkt, men ingen slutsats kan dras angående det icke-linjära systemet Den kritiska punkten kan vara en stabil spiral, instabil spiral eller en center För att undersöka karaktären hos den kritiska punkten har vi fasplanemetoden till förfogande Vi bildar då dy = y x = x 3 x vilken är separabel Omformning ger: y dy y = x 3 x
8 Integrera med avseende på x : y = ( x4 x + C = x ) Om X()=(x,), där < x <, så är C = x Den lösning som uppfyller villkoret X()=(x,) ges av ( ) y = x ( ) x ( )( x x ) = x x ( ) + C x ( x )( x x ) Observera att y = för x = ±x Vi erhåller y = ±, där x < x < x Den lösning X = X(t) som uppfyller villkoret X()=(x,) är periodisk och den kritiska punkten, (,), är en center och därmed stabil (,) J(,) = har egenvärdena, = ± För det linjariserade systemet är den kritiska punkten en sadelpunkt, ty egenvärdena är reella och har olika tecken Även för det icke-linjära systemet är den kritiska punkten en sadelpunkt och därmed instabil (,) J(, ) = har egenvärdena, = ± För det linjariserade systemet är den kritiska punkten en sadelpunkt, ty egenvärdena är reella och har olika tecken Även för det icke-linjära systemet är den kritiska punkten en sadelpunkt och därmed instabil x SVAR: Det plana autonoma systemet kan skrivas som y = y x 3 x Systemets kritiska punkter är (,), (,) och (,) (,) är center och stabil (,) och (,) är sadelpunkter och därmed instabila
1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3
Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
= 1, fallet x > 0 behandlas pga villkoret. x:x > 1
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz.
Lösningsförslag till tentamensskrivning i Matematik IV, F636(5B0,5B30). Tisdagen den januari 0, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.
Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),
Tentamensskrivning i Matematik IV, 5B110 Måndagen den 1 oktober 005, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa
IV, SF1636(5B1210,5B1230).
Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.
Lösningsförslag till tentamenssrivning i SF633 Differentialevationer I Måndagen den 5 otober 0, l 0800-300 Hjälpmedel: BETA, Mathematics Handboo Redovisa lösningarna på ett sådant sätt att beräningar och
(4 2) vilket ger t f. dy och X = 1 =
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och
ÚÚ dxdy = ( 4 - x 2 - y 2 È Î
Lösningsförslag till tentamensskrivning i Matematik IV, 5B0 Måndagen den 0 oktober 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl
Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden
A dt = 5 2 da dt + A 100 =
Tentamensskrivning i Matematik IV, F1636(5B11,5B13) Tisdagen den 13 november 7, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I, LV, 5B Tisdagen den 3 januari 4, kl 4-9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl
Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs
dy dx = ex 2y 2x e y.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,
Del I. Modul 1. Betrakta differentialekvationen
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För
y(0) = e + C e 1 = 1
KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs
= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt
Tentamensskrivning i Matematik IV, 5B0. Onsdagen den 0 oktober 004, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta att
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.
Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som
(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.
UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y
1 Matematiska Institutionen, KTH Tentamen SF1633, Differentialekvationer I, den 18 december 2017 kl 08.00-13.00. Examinator: Pär Kurlberg. Betygsgränser: A: 85%. B: 75%. C: 65%. D: 55%. E: 45%. Fx: 42%.
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december xy = y2 +1
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december 2017 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära betygsgränser:
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
Sammanfattning av ordinära differentialekvationer
Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus
Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem
Partiella differentialekvationer och randvärdesroblem. 12.1. Searabla PDE 12.2. Klassiska ekvationer och randvärdesroblem. 12.3. Värmeledningsekvationen. 12.4. Vågekvationen. 12.5. alace ekvation. Variabelsearation.
1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).
. (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:
HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget
SF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:
+, C = e4. y = 3 4 e4 e -2 x +
ösningsförslag till tentamensskrivning i Diff & Trans I, 5B och Diff & Trans I för V, 5B Fredagen den augusti 3, kl -9 Hjälmedel: BETA, Mathematics Handbook Redovisa lösningarna å ett sådant sätt att beräkningar
Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER
Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system
1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 30 maj 20, kl 8:00 3:00 Svar, uppgift : i sant, ii sant, iii falskt, iv sant, v falskt, vi sant,
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
Lösningar till tentamen i Transformmetoder okt 2007
Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
KTH Matematik SF1633 Differentialekvationer I, för I1 Kontrollskrivning nr 2, Måndag den 31 mars 2008, kl Version: A Namn:... Personnr:...
KTH Matematik SF1633 Differentialekvationer I, för I1 Kontrollskrivning nr 2, Måndag den 31 mars 2008, kl. 8.00-10.00 Version: A Namn:... Personnr:... Inga hjälpmedel är tillåtna. Kontrollskrivningen har
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),
R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.
Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg
Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1)
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) 1 a). Lös ekvationen 3p. 3y 2 y +16x = 2xy 3. b). Finn en lösning som är begränsad
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3
Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter
( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ).
KTH matematik Tentamen i SF66 Flervariabelanalys den 7 juni kl 8.3. Tillåtet hjälpmedel: Endast Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga motiveringar krävs för
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Crash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
TNA004 Analys II Tentamen Lösningsskisser
TNA004 Analys II Tentamen 20-06-0 Lösningsskisser. a) De båda kurvorna skär varandra i x 0 och x. På intervallet 0 x är x x. Området D är då det skuggade i figuren nedan, där även en tunn rektangel är
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Studietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x
Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.
MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,
Institutionen för Matematik, KTH Tentamen del 2 Analytiska och numeriska metoder för differentialekvationer SF1523 8.-11. 18/8 217 Formelsamlingen BETA är tillåtet hjälpmedel men ej miniräknare. Råd för
1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
BEGREPPSMÄSSIGA PROBLEM
BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med
= y(0) 3. e t =Ce t, y = =±C 1. 4 e t.
Löningförlg till tentmenkrivning i SF16 Differentilekvtioner I Tidgen den 8 jnuri 1, kl 14-19 Hjälpmedel: BETA, Mthemtic Hndbook Redovi löningrn på ett ådnt ätt tt beräkningr och reonemng är lätt tt följ
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Skriv väl, motivera och förklara vad du gör. Betygsgränser: p. ger betyget 3, p. ger betyget 4 och 40 p. eller mer ger betyget
Matematik Chalmers tekniska högskola 0-08-7 kl. :00-8:00. Tentamen TMV036 Analys och linjär algebra K, Kf, Bt, del B Telefonvakt: Hossein Raufi, telefon 0703-08830 Inga hjälpmedel. Kalkylator ej tillåten.
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
SF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder