1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)
|
|
- Leif Ström
- för 8 år sedan
- Visningar:
Transkript
1 TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop och alla elektroniska medel som kan kopplas till internet Fullständiga lösningar erfordras till samtliga uppgifter Lösningarna skall vara väl motiverade och så utförliga att räkningarna och de bakomliggande tankarna är lätta att följa Lösningarna skall renskrivas och avslutas med ett tdligt svar som skall vara så förenklat som möjligt Betgsgränser: F: 8p, E: 9 p, D: p, C: 5p, B: 7 p, A: 9 p ( av ma poäng) Eaminator: Stefan Eriksson Rättande lärare: Armin Halilovic Rita in i det komplea talplanet det område som definieras av följande villkor: (p) z, 5 arg( z ) Ekvationen z z + 8z + 5 har en lösning z i Bestäm alla lösningar (p) Bestäm z ur ekvationen z + z 5 i (p) Använd Newton-Raphsons metod för att bestämma en negativ lösning till ekvationen (p) sin + Svara med korrekta decimaler sin 5 Beräkna gränsvärdet lim med hjälp av > 5 a) Maclaurins utveckling b) L Hospitals regel (p) Lös differentialekvationen + 5, () (p) 7 Lös differentialekvationen ' ' ' + e (p) 8 Förändringshastigheten för en funktion () är proportionell mot och omvänt (p) proportionell mot () Dessutom gäller ( ), ( ) Ställ upp en differentialekvation och bestäm () 9 En partikel rör sig längs -aeln Partikelns position vid tidpunkten t betecknar vi med (p) ( hastigheten med v( och accelerationen med a ( För partikelns rörelse gäller följande: a( (, () och v() (i lämpliga enheter te längden i meter, tiden i sekunder) a) Bestäm partikelns position ( b) Bestäm längden av den totala vägen som partikeln genomlöper under tidintervallet t Lcka till
2 FACIT Rita in i det komplea talplanet det område som definieras av följande villkor: (p) z, 5 arg( z ) Svar: Den blåa tan i nedanstående graf Rättningsmall: Allt korrektp Ekvationen z z + 8z + 5 har en lösning z i Bestäm alla lösningar (p) Ekvationen har reella koefficienter och en lösning z i Därför är z i också en lösning + Polnomet z z + 8z + 5 är delbart med z z )( z z ) [ z ( i)][ z ( + )] ( i [ z + i][ z i] ( z ) i z z + + z z + 5 Polnomdivisionen ger ( z z + 8z + 5) /( z Från z + har vi z z + 5) z + Svar z i, z i, + z Rättningsmall: Korrekt polnomet z z + 5 ger p Allt korrektp Bestäm z ur ekvationen z + z 5 i (p) Låt z + i och därmed z i Substitution i ekvationen ger ( + i) + ( i) 5 i + i 5 i Härav och och därmed z i 5
3 Svar z i Rättningsmall: En koordinat korrekt eller ger p Allt korrektp Använd Newton-Raphsons metod för att bestämma en negativ lösning till ekvationen (p) sin + Svara med korrekta decimaler Först skriver vi om ekvationen på formen f ( ), dvs sin + Från grafen till f ( ) sin + : ser vi att en negativ lösning ligger mellan och För f ( ) sin + har vi f ( ) cos + Vi använder Newton-Raphsons metod f ( n ) n+ n f '( ) n och får sin n + n n+ n cos n + n Lägg märke till att derivatan av sin() är cos() endast om vinkeln är i radianer Därför ska man välja radianer som vinkelmått i miniräknaren för denna uppgift Vi väljer - och beräknar Vi har fått upprepning av tre decimaler i och Eftersom f( 5) 9 och f( +5) har olika tecken har vi fått en approimativ lösning med korrekta decimaler Svar 77
4 sin n + n Rättningsmall: Korrekt uttrck n+ n ger p Allt korrektp cos + n n sin 5 Beräkna gränsvärdet lim med hjälp av > 5 a) Maclaurins utveckling b) L Hospitals regel (p) a) Maclaurins utveckling för sin Antalet termer bestämmer vi så att täljaren sin har minst en icke noll term : f ( ) sin, f ( ) f ( ) cos, f ( ) f ( ) sin, f ( ) f ( ) cos, f ( ) ( Anmärkning: I detta eempel räcker det att utveckla till grad men vi tar flera termer av pedagogiska skäl) () f ( ) sin, () f ( ) (5) f ( ) cos, (5) f ( ) Från f () f () f () f ( ) f () L!!! har vi 5 7 sin( ) + L! 5! 7! Därmed täljaren sin ( + + L) + +! 5! 7! 9!! 5! 7! L sin Nu har vi lim lim! 5! 7! 9! (förkortning med ) > 5 > 5 9 L 9! lim >! + 5! 7! 5 ( Vi ser igen att koefficienten + L 9!! + + L 5 i täljaren framför! går mot ) b) sin " " lim > 5 [L Hospital ] cos " " lim > 5 [L Hospital ] " " > [L Hospital ] cos lim > bidrar till läsningen medan alla andra försviner när
5 Svar / Rättningsmall: Korrekt en del a eller b ger p Allt korrektp Lös differentialekvationen + 5, () (p) Metod Linjär DE (med icke konstanta koefficienter) En integrerande faktor: F P( ) d d e e e Från ( F ( )) F Q( ) har vi F ( ) F Q( ) d + C och ( ) F ( C + F Q( ) d) dvs ( ) e ( C + 5 e ( ) e ( C + 5e ) ( ) Ce + 5 d), Slutligen ( ) ger C och ( ) e + 5 Anmärkning: Integralen 5 e d löser vi med subst t d dt 5e t t 5 e d 5e dt 5e (konstanten C finns redan i formeln) Svar: ( ) e + 5 Metod (Separabla variabel) d d (5 ) (5 ) d d (5 ) d (5 ) ln 5 d + C ln 5 C 5 e C C C 5 ± e e 5 ± e e 5 + De, Slutligen ( ) ger D och därmed ( ) e + 5
6 Svar: ( ) e + 5 Rättningsmall: Metod Korrekt integrerande faktor F e ger p Korrekt ( ) Ce + 5 Allt korrektp Metod Korrekt implicit lösning korrektp ln 5 + C ger p Korrekt ( ) Ce + 5 Allt 7 Lös differentialekvationen ' ' ' + e (p) Homogena delen (som har konstanta koefficienter) ' ' ' + har följande karkt ekv r r + r, r Därför Y Ce + De H En partikulär lösning fås med hjälp ansatsen p Ae ger och p Ae Ae Ae e A / Alltså p e Svar: Ae + Ae e eller Slutligen Y H + ( ) + + Ce De p Ce e p Ae : Insättning i ekvationen ger p Ae + De + e Rättningsmall: Korrekt homogen del Y p Allt korrektp H Ce + De eller korrekt en partikulär lösning p e ger 8 Förändringshastigheten för en funktion () är proportionell mot och omvänt (p) proportionell mot () Dessutom gäller ( ), ( ) Ställ upp en differentialekvation och bestäm () Ekvationen: k ( vi separerar variabler) d d k d kd d kd k + C k + C
7 ( ) ± k + C Villkoret ( ) (positivt tal) visar att vi ska välja tecken "+" i ovanstående uttrcket och att C 9 Alltså ( ) k + 9 Villkoret () k + 9 k Därmed ( ) + 9 Svar: ( ) + 9 Rättningsmall: Korrekt implicit lösning k + C ger p Korrekt C ger p Allt korrektp 9 En partikel rör sig längs -aeln Partikelns position vid tidpunkten t betecknar vi med (p) ( hastigheten med v( och accelerationen med a ( För partikelns rörelse gäller följande: a( (, () och v() (i lämpliga enheter te längden i meter, tiden i sekunder) a) Bestäm partikelns position ( b) Bestäm längden av den totala vägen som partikeln genomlöper under tidintervallet t a)från a( ( har vi ekvationen ( ( ( ( ( + ( Från r + r ± i, Därför ( C cost + D sin t Från villkoret () har vi C + C och därmed ( D sin t Från v() får vi ( ) Nu ( D cos t D D Alltså ( sin( Svar: a) ( sin( b) Om t väer från till då t väer från till Vi betraktar rörelsen ( sin( i två tidintervall t och t, o Motsvarande intervall för t är t och t -
8 i) Intervallet t (motsvarande intervall för t är t ) I detta intervall varierar sin(t ) mellan sin och sin dvs mellan och Partikeln startar i och når sin högsta punkt vid t [eftersom ( ) sin( ) ] Därmed, under tidintervallet t, passerar partikeln sträckan vars längd är L (meter) ii) Intervallet t (motsvarande intervall för t är t ) Partikeln går från punkten mot punkten Därmed, under tidintervallet partikeln sträckan vars längd är L (meter) Totalt blir det LL+L+9 (meter) Svar b: 9 meter Allternativ lösning för b-delen t, passerar Vägen t t v( dt ( dt t t / cos t dt Funktionen cos t är positiv om t och negativ om t cos( om t dvs t Eftersom cos t cos( om t dvs t har vi / / / cos t dt cos tdt + ( cos dt / sin( / ) sin() sin( / ) + sin( / ) 9 Svar: a) Partikelns position vid tiden t är ( sin( / / [ sin t] + [ sin t] / t / b) Vägen v( dt cos t dt 9 t (meter) Rättningsmall: A delen ger p Allt korrektp
TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014
TENTAMEN HF00 och HF008 TEN jan 04 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Richard Eriksson Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och anals,
R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 0 aug 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A, B,
Program: DATA, ELEKTRO
Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
TENTAMEN HF1006 och HF1008
TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2016 Skrivtid 9:00-13:00
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) Datum: 9 okt 6 Skrivtid 9:-: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betyg krävs av ma 4 poäng
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 9 jan 07 Tid -8 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012
TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matematik, moment TEN (anals) Datum: okt Skrivtid :-7: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:
b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y
TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 0 Ti -7 Analys och linjär algebra, HF008 (Meicinsk teknik), lärare: Jonas Stenholm Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
MATEMATIK OCH MAT. STATISTIK 6H3000, 6L3000, 6H3011 TEN
TENTAMEN Datum: 0 maj 007 Kurs: MATEMATIK OCH MAT STATISTIK 6H000, 6L000, 6H0 TEN (Differential ekvationer, komplexa tal) Skrivtid: :5-7:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ som
Kontrollskrivning 25 nov 2013
Kontrollskrivning 5 nov 03 Tid: 3.5-5.00 Kurser: HF008 Analys och linjär algebra (analysdelen) HF006 Linjär algebra och analys (analysdelen) Lärare: Armin Halilovic, Inge Jovik, Richard Eriksson Eaminator:
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) atum: okt 8 Skrivtid 4:-8: Eaminator: Armin Halilovic För godkänt betyg krävs av ma 4 poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive
TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic
TENTAMEN 8 jan 0 Tid: 08.5-.5 Kurs: Matematik HF90 (6H90) 7.5p Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras
DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
SUBSTITUTIONER I DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Innehåll: I) Allmänt om substitutioner i förstaordningens DE II) Ekvationer av tpen ( ) F( ) ------------------------------------------------------------------------------------
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).
TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:
Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim
Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in
Examinator: Armin Halilovic Undervisande lärare: Bengt Andersson, Elias Said, Jonas Stenholm
Tentamen i Matematik, HF93, 9 oktober, kl 8.5.5 Hjälpmedel: Endast ormelblad miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, 3
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera
Tentamen i Linjär algebra, HF1904 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF94 eempel Datum: Skrivtid: 4 timmar Eaminator: Armin Halilovic För godkänt betg krävs av ma 4 poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, respektive poäng. Komplettering:
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)
TENTAMEN 7-Okt-4, HF6 och HF8 Moment: TEN (Linjär algebra, 4 hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats: Campus
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)
Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För
Betygsgränser: För betyg. Vem som har är. Hjälpmedel: av papperet. Uppgift. 1. (4p) (2p) lim. (1p) cos( x 1) lim x 1. (1p) 2. (4p) Uppgift.
Kurs: HF9 Matematik, Moment TEN (Anals) atum: augusti 8 Skrivtid 8: : Eaminator: Armin Halilovic För godkänt betg krävss av ma poäng. Betgsgränser: För betg A, B, C,, E krävs, 9, 6, respektive poäng. Komplettering:
Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic
Tentamen i Matematik HF70 6 aug 0 Tid: 3. 7. Lärare: Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
vinkelräta (1p) då a r = (0,1,0), b r =(0,1,2k) och c r =(1,0,1)? b) Beräkna arean av triangeln ABC då (2p) A= ( 3,2,1), B=(4,3,2) och C=(3,3,3)
Tentamen i Matematik HF H 8 okt Tid:. 7. Lärare:Armin Halilovic Hjälpmedel: Formelblad Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter. Betgsgränser:
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15
TENTMEN Kurs: HF9 Matematik moment TEN anals Datum: 9 okt 5 Skrivtid 8:5 :5 Eaminator: rmin Halilovic Rättande lärare: Fredrik Bergholm Elias Said Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
Armin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt
Hjälpmedel: Endast bifogade formelblad (miniräknare är inte tillåten) Inga toabesök eller andra raster under den här kontrollskrivningen.
Kontrollskrivning i Matematik 1, HF1903, oktober 017, kl 815 1000 Version A Hjälpmedel: Endast bifogade formelblad (miniräknare är inte tillåten Inga toabesök eller andra raster under den här kontrollskrivningen
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic
Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson
Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
dy dx = ex 2y 2x e y.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som
Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Uppgift Planen 2x + 4y + 2z 3=0 och x + 2y + z 1=0 är givna. b) Bestäm ( kortaste) avståndet mellan planen. (2p)
Tentamen i Matematik HF9 (6H9 jan Tid:.5 7.5 Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter.
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Tentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid:
Tentamen i Matematik HF9 (6H9) 4 juni 8 Tid: 85 5 Lärare: Agneta Ivarson, Armin Halilovic, Bengt Mattiasson, Taras Kentrschynskyj, Ulf Djupedal Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
UPPSALA UNIVERSITET Envariabelanalys IP1/Hösten L.Höglund, P.Winkler, S. Zibara Ingenjörsprogrammen Tel: , ,
UPPSALA UNIVERSITET Envariabelanalys IP/Hösten 00 Matematiska institutionen Sluttentamen LHöglund, PWinkler, S Zibara Ingenjörsprogrammen Tel: 7, 789, 70 00 6 Tid : 0800 00 Hjälpmedel : godkänd miniräknare
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:
HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.
Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:
Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8
(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.
UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,
Matematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna
Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,
Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +
y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:
Tentamen i Envariabelanalys 1
Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.
Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,
d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.
Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som
Namn Klass Personnummer (ej fyra sista)
Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Studietips info r kommande tentamen TEN1 inom kursen TNIU23
Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x
Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5
H1009, Introduktionskurs i matematik Armin Halilovic
H009, Introduktionskurs i matematik Armin Halilovic ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) b) 0 =0 c) 5 5 Alltså x Absolutbeloppet av ett tal x är lika med själva talet x om
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Studietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Crash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF00 TEN 0-0- Hjälpmedel: Formelblad och ränedosa Fullständga lösnngar erfordras tll samtlga uppgfter Lösnngarna sall vara väl motverade och så utförlga att
1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3
Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant
Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:
Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
lim 1 x 2 lim lim x x2 = lim
Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att
= x 2 y, med y(e) = e/2. Ange även existens-
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:
+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3
freeleaks NpMaD ht000 för Ma (8) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 000 6 uppgifter med miniräknare 3 Förord Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Tentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
Lösningsförslag till Tentamen: Matematiska metoder för ekonomer
Matematiska Institutionen Tentamensskrivning STOKHOLMS UNIVERSITET kurskod: MM Eaminator: Åsa Ericsson 5-- Lösningsförslag till Tentamen: Matematiska metoder för ekonomer aril 5, kl 9:-: (a) Vi använder
också en lösning: Alla lösningar, i detta fall, ges av
H009, Introduktionskurs i matematik Armin Halilovic TRIGONOMETRISKA EKVATIONER A) Ekvationen sin( x ) = a (och liknande ekvationer) Ekvationen sin( x ) = a har lösningar endast om a (eftersom sin( x )
Lösningsförslag. Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik
Lösningsförslag Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 9-3-7 kl 8.3-1.3 Hjälpmedel : Inga hjälpmedel
Planering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.