Matematik D (MA1204)
|
|
- Max Mattsson
- för 9 år sedan
- Visningar:
Transkript
1 Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium
2 Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt för att formulera och lösa problem i ett steg Eleven genomför matematiska resonemang såväl muntligt som skriftligt Eleven använder matematiska termer, symboler och konventioner samt utför beräkningar på ett sådant sätt att det är möjligt att följa, förstå och pröva de tankar som kommer till uttryck Eleven skiljer gissningar och antaganden från givna fakta och härledningar eller bevis Kriterier för betyget Väl godkänd Eleven använder lämpliga matematiska begrepp, metoder, modeller och tillvägagångssätt för att formulera och lösa olika typer av problem Eleven deltar i och genomför matematiska resonemang såväl muntligt som skriftligt Eleven gör matematiska tolkningar av situationer eller händelser sam genomför och redovisar sitt arbete med logiska resonemang såväl muntligt som skriftligt Eleven använder matematiska termer, symboler och konventioner på sådan sätt att det är lätt att följa, förstå och pröva de tankar som kommer till uttryck såväl muntligt som skriftligt Eleven visar säkerhet beträffande beräkningar och lösning av olika typer av problem och använder sina kunskaper från olika delområden av matematiken Eleven ger eempel på hur matematiken utvecklats och använts genom historien och vilken betydelse den har i vår tid inom några olika områden Kriterier för betyget Mycket väl godkänd Eleven formulerar och utvecklar problem, väljer generella metoder och modeller vid problemlösning samt redovisar en klar tankegång med korrekt matematiskt språk Eleven analyserar och tolkar resultat från olika typer av matematisk problemlösning och matematiska resonemang Eleven deltar i matematiska samtal och genomför såväl muntligt som skriftligt matematiska bevis Eleven värderar och jämför olika metoder, drar slutsatser från olika typer av matematiska problem och lösningar samt bedömer slutsatsernas rimlighet och giltighet Eleven redogör för något av det inflytande matematiken har och har haft för utvecklingen av vårt arbets- och samhällsliv samt för vår kultur (1)
3 Lokal tolkning av betygskriterierna, Värmdö Gymnasium GODKÄND Du skall kunna lösa enklare typuppgifter Du skall, med visst stöd, kunna redovisa lösningar så att andra kan följa din tankegång Du skall kunna använda grafritande räknare eller dator som hjälpmedel för att utföra matematiska beräkningar och funktionsritningar VÄL GODKÄND Du skall kunna lösa enklare typuppgifter samt kunna kombinera kunskaper och metoder från flera olika områden för att lösa uppgifter där detta krävs Du skall kunna redovisa din tankegång så tydligt att en oinsatt skall kunna följa den, samt använda nödvändiga och tydligt ritade figurer Du skall kunna använda grafritande räknare eller dator som hjälpmedel för att utföra matematiska beräkningar och funktionsritningar MYCKET VÄL GODKÄND Du skall kunna lösa enklare typuppgifter samt kunna kombinera kunskaper och metoder från flera olika områden för att lösa uppgifter där detta krävs Du skall även kunna lösa uppgifter som kräver att du generaliserar tidigare kunskaper på nya problem Du skall kunna göra självständiga iakttagelser, tolka och värdera dina erhållna resultat och dessutom dra egna, relevanta slutsatser från dina resultat Du skall kunna redovisa din tankegång så tydligt att en oinsatt skall kunna följa den, samt använda nödvändiga och tydligt ritade figurer Du skall även konsekvent kunna använda de korrekta matematiska begreppen och det matematiska språket i sitt rätta sammanhang Du skall kunna använda grafritande räknare eller dator som hjälpmedel för att utföra matematiska beräkningar och funktionsritningar 3 (1)
4 Trigonometri Efter avslutad kurs skall eleven kunna använda enhetscirkeln för att definiera trigonometriska begrepp, visa trigonometriska samband och ge fullständiga lösningar till enkla trigonometriska ekvationer samt kunna utnyttja dessa vid problemlösning kunna rita grafer till trigonometriska funktioner samt använda dessa funktioner som modeller för verkliga periodiska förlopp kunna härleda och använda de formler som behövs för att omforma enkla trigonometriska uttryck och lösa trigonometriska ekvationer kunna beräkna sidor och vinklar i en godtycklig triangel A ENHETSCIRKELN Du ska förstå hur de trigonometriska funktionerna definieras med hjälp av enhetscirkeln Du ska förstå begreppet radianer Du ska kunna ge fullständiga lösningar till ekvationerna sin( a v + b) = k och cos( a v + b) = k, med hjälp av enhetscirkeln Detta gäller både grader och radianer Du ska kunna bevisa och använda de formler som behövs för att omforma enkla trigonometriska uttryck och lösa trigonometriska ekvationer De formler du ska behärska: sin( v), sin(180 v), cos( v), cos(180 v) Trigonometriska ettan B TRIGONOMETRISKA KURVOR (PERIODISKA FÖRLOPP) Du ska kunna rita grafer till de trigonometriska funktionerna f( ) = A sin( a v) och f( ) = A cos( a v) samt förstå begreppen amplitud och period Du ska kunna använda dessa funktioner som modeller för verkliga periodiska förlopp C TRIANGELSATSERNA Du ska kunna beräkna sidor och vinklar i godtyckliga trianglar med hjälp av area-, sinus- och cosinussatsen Med hjälp av enhetscirkeln ska du kunna avgöra om det finns flera lösningar D BEVIS OCH HÄRLEDNINGAR I detta moment ingår att kunna utföra härledningar och enkla bevis Dessa kan indelas i följande nivåer G: Areasatsen för spetsig vinkel Trigonometriska ettan Omformningar av typen sin( v) = sinv och uttryck cos sin i cos Sinussatsen VG: Areasatsen för spetsig och trubbig vinkel Visa formeln för cos( u + v) med hjälp av formeln för cos( u v) och liknande 1 sin cos Visa att -uppgifter av typen = cos 1 + sin 4 (1)
5 MVG: Cosinussatsen Formeln för cos( u v) från grunden Visa att -uppgifter av typen tan sin 3 sin = 1 cos + cos Eempel på uppgifter på olika betygsnivåer GODKÄND Observera att dessa eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa A 1 Rita enhetscirkeln och visa med hjälp av den att sinv = sin(180 v) Motivera! Visa att ( sin )( + sin ) = 3 + cos 3 Visa genom att förenkla vänsterledet att cos( v 70 ) = sin( v) 4 Beräkna medelpunktsvinkeln v i en cirkelsektor som har radien 30 m och båglängden 75 m Svaret ska anges i radianer 5 Ange samtliga lösningar till ekvationen sin = 0, 400 Svara i grader med en decimal 6 Lös fullständigt ekvationen cos( ) = 1 Svara eakt 7 Lös fullständigt ekvationen sin + 1 = 1 Svara i radianer B 8 I figuren nedan är grafen till en funktion av typen y = A cos(k) ritad Bestäm kurvans ekvation C 9 Beräkna längden av sidan i figuren 5 (1)
6 10 Beräkna vinkeln v i figuren Svara i hela grader D Se listan ovanför VÄL GODKÄND Observera att dessa eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa 1 En triangel har sidorna 10 cm, 80 cm och 90 cm Beräkna arean i alla möjliga fall Svara i hela cm Visa formeln för cos( u v) med hjälp av formeln för cos( u + v) Motivera noggrant 3 Ange samtliga lösningar till ekvationen 5 sin 4 = 3 sin 4 Visa att 1 + sin cos 1 cos + 1 sin = 1 1 sin 5 Lös fullständigt ekvationen 4sin = 3 Svara i grader MYCKET VÄL GODKÄND Observera att dessa eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa 1 Visa att tan sin 3 sin = cos sin I en triangel ABC är BC = 4,0 cm och AC = 5,0 cm Vinkeln B är dubbelt så stor som vinkeln A Beräkna triangelns vinklar 6 (1)
7 Derivator Efter avslutad kurs skall eleven kunna förklara deriveringsreglerna och själv i några fall kunna härleda dem för trigonometriska funktioner, logaritmfunktioner, sammansatta funktioner, produkt och kvot av två funktioner samt kunna tillämpa dessa regler vid problemlösning kunna använda andraderivatan i olika tillämpade sammanhang kunna förklara och använda tankegången bakom någon metod för numerisk ekvationslösning samt vid problemlösning kunna använda grafisk, numerisk eller symbolhanterande programvara kunna förklara innebörden av begreppet differentialekvation och kunna ge eempel på några enkla differentialekvationer och redovisa problemsituationer där de kan uppstå A DERIVATA Derivera sin, cos och ln Inse att derivatan av te sin är cos med hjälp av graf Bevis med hjälp av derivatans definition är på MVG-nivå Derivera sammansatta funktioner (kedjeregeln) för potensfunktioner, eponentialfunktioner, sin, cos och ln Derivera en funktion som är en produkt av två funktioner av ovanstående typer B NUMERISK EKVATIONSLÖSNING Du ska kunna lösa ekvationer numeriskt, te med iteration eller Newton-Raphsons metod Du ska kunna lösa ekvationer och derivera numeriskt med hjälp av din grafräknares inbyggda funktioner C DIFFERENTIALEKVATIONER Du ska kunna verifiera en given lösning till en differentialekvation genom prövning Eempel på uppgifter på olika betygsnivåer GODKÄND Observera att dessa eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa A 1 Bestäm f ( ) då f ( ) = ln() Bestäm y då y = sin( + 5) 10 3 Bestäm y () om y ( ) = (3 + 1) sin 4 Bestäm y (π ) om y( ) = 5 En partikels läge beskrivs av formeln s( t) =,0 + 5,0 cos t, där s mäts i meter och t i sekunder Bestäm partikelns hastighet vid tiden t = 10,0s B 6 Lös ekvationen e + = 0 7 (1)
8 3 7 Beräkna med hjälp av din grafräknare y (5) om y( ) = 4cos Beskriv kort vad du gör på räknaren för att lösa uppgiften C 8 Visa att y = Acos + B sin är en lösning till differentialekvationen + 4 y = 0 y VÄL GODKÄND Observera att detta eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa 1 Bestäm (1) f = 1 f då ( ) ( ) 50 MYCKET VÄL GODKÄND Observera att detta eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa 1 Visa med hjälp av derivatans definition att om y = cos() så är y = sin() sin( h) h Ledning: Om h 0 så gäller att 1 cos( h) 1 h och 0 8 (1)
9 Integralkalkyl Efter avslutad kurs skall eleven kunna bestämma primitiva funktioner och använda dessa vid tillämpad problemlösning kunna förklara innebörden av begreppet integral och klargöra sambandet mellan integral och derivata samt kunna ställa upp, tolka och använda integraler i olika typer av grundläggande tillämpningar kunna redogöra för tankegången bakom och kunna använda någon metod för numerisk integration samt vid problemlösning kunna använda grafisk, numerisk eller symbolhanterande programvara för att beräkna integraler INTEGRALER Du ska kunna: Ta fram primitiva funktioner till potensfunktioner, eponentialfunktioner, 1 / och använda dessa vid tillämpad problemlösning Bestämma konstanten för en primitiv funktion med hjälp av begynnelsevillkor sin, cos samt Förstå den geometriska innebörden av integraler, dvs vad som menas geometriskt med f ( ) lim( 0) Kunna tolka innebörden av en tillämpad integral, te vad F ( ) d står för om F () är kraften för att flytta ett föremål som befinner sig vid läget Ställa upp och beräkna integraler: Eakt med hjälp av primitiva funktioner för potensfunktioner, eponentialfunktioner, sin, cos och ln Numeriskt med trapetsformeln (i enklare fall) Numeriskt med räknarens integralfunktioner Kunna beräkna areor mellan kurvor ovanför och under -aeln Kunna skilja på begreppet integral och area och kunna tillämpa detta i praktiska situationer som te befolkningstillvät b a 9 (1)
10 Eempel på uppgifter på olika betygsnivåer GODKÄND Observera att dessa eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa 0,5 1 Bestäm den primitiva funktion F () till f ( ) = e + 1 som uppfyller villkoret F ( 0) =,5 Bestäm samtliga primitiva funktioner F () om a) f( ) = cos3 b) f( ) = c) f( ) = 7 3 Funktionen n(t) beskriver befolkningsökningstakten mätt i personer/år, vid tidpunkten år t 1999 Vad betyder n ( t) dt? Förklara kort hur du resonerar Sambandet mellan energin W och effekten P kan skrivas W = P t, där t är tiden Man kokar mat i ett kök under 1 timme Under uppvärmningen, 10 min, drar plattan 100 W och när man vrider ner värmen för att hålla konstant temperatur drar plattan 500 W under 50 minuter Teckna energiförbrukningen med hjälp av beteckningen för integraler Tiden mäts i timmar 5 En sten, som kastas rakt uppåt med hastigheten 0 m/s, får på grund av tyngdaccelerationen approimativt hastigheten v( t) = 0 10t m/s a) Beräkna med hjälp av en integral den sträcka som stenen färdats i höjdled när t = 3, 0 s b) Förklara svaret i a-uppgiften genom en geometrisk tolkning av integralen i ett koordinatsystem c) Teckna med integralbeteckningen ett uttryck som ger hela den sträcka S m som stenen färdats i luften 6 I figuren är kurvan y = 1000e 0,5 ritad Beräkna arean av det streckade området Redovisa uppställningen 7 Beräkna med hjälp av trapetsformeln ett närmevärde på integralen + 1 d Räkna med tre delintervall och svara med tre gällande siffror (1)
11 8 I figuren är kurvan y = f() ritad Teckna ett uttryck för summan av de två streckade områdenas areor f () behöver ej bestämmas 9 Beräkna med din grafräknares integralfunktion ett numeriskt värde på integralen e d Redovisa hur du gör, och svara med tre decimaler VÄL GODKÄND Observera att dessa eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa 10 Bestäm integralen mv dv v v 1 11 Linjen genom punkterna A och B (se figur) är tangent till kurvan y = 4 Punkten A har -koordinaten 4 Beräkna arean av det skuggade området 1 I figuren till höger är en primitiv funktion y = F() till y = f() ritad Beräkna med hjälp av figuren F (b) om b 0 f ( ) d = (1)
12 MYCKET VÄL GODKÄND Observera att dessa eempel endast visar svårighetsnivån på uppgifter du ska kunna lösa 1 Funktionen f ( ) definieras av f ( ) = ( t 3) 0 3 dt 0 Vilket är det minsta värde som f ( ) kan anta? I en stad anser man att befolkningstätheten f ( ) invånare/kvadratkilometer varierar enligt f ( ) = > 1 3 Hur många personer bor det i cirkelringen från = 1 till = 5? Eget arbete Efter avslutad kurs skall eleven kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning med fördjupad kunskap om sådana begrepp och metoder som ingår i tidigare kurser under eget ansvar analysera, genomföra och redovisa, muntligt och skriftligt, en något mer omfattande uppgift där kunskaper från olika områden av matematiken används 1 (1)
PRÖVNINGSANVISNINGAR
PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.
Läs merBetygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår
Läs merMatematik C (MA1203)
Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven
Läs merMatematik E (MA1205)
Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND
Läs merNpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.
NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar
Läs merHEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
Läs merÄmne - Matematik (Gymnasieskola före ht 2011)
Ämne - Matematik Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen
Läs merG VG MVG Programspecifika mål och kriterier
Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 005. Anvisningar NATIONELLT
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6
freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3
freeleaks NpMaD ht000 för Ma (8) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 000 6 uppgifter med miniräknare 3 Förord Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2007
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med 30 juni 2013. Anvisningar NATIONELLT
Läs merPlanering för Matematik kurs D
Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 2012. Anvisningar NATIONELLT
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN
freeleaks NpMaD vt001 för Ma4 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 001 Förord Utformningen av de nationella proven i matematik har varierat över tid. Uppgifter till den äldre
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10
JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är
Läs merValfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor
Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar NATIONELLT
Läs merÄmne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i
Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2011
Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30. Vid sekretessbedömning
Läs merEkvationer & Funktioner Ekvationer
Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus
Läs mer1. Skollagen 2. Läroplanen Lpo 94 / Lpf Grundskole- / Gymnasieförordningen
Olika styrdokument har olika dignitet 1. Skollagen 2. Läroplanen Lpo 94 / Lpf 94 3. Grundskole- / Gymnasieförordningen Riksdagen Regeringen Utskott SOU Departement (utbildnings-) Statliga verk (Skolverket)
Läs merBetygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2001
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 2011. Anvisningar NATIONELLT
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med 31 december 013. Anvisningar NATIONELLT
Läs merLösning till tentamen i 5B1126 Matematik förberedande kurs för TIMEH1, , kl
Institutionen för Matematik, KTH, Olle Stormark. Lösning till tentamen i 5B116 Matematik förberedande kurs för TIMEH1, 5-1-19, kl. 8 1. Tentamensskrivningen består av 4 moment, svarande mot kursens olika
Läs merMatematik och modeller Övningsuppgifter
Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (
Läs merNpMa3c vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Läs merMatematik B (MA1202)
Matematik B (MA10) 50 p Betygskriterier med exempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt
Läs merMA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.
MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning
Läs mer5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891
KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden
Läs mer5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24 och 24-25 25-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C = (5, 1).
Läs merDenna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som
Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik
Läs merMA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
Läs mer5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005
KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd
Läs merLikvärdig bedömning i matematik med stöd av nationella prov
1 (50) Likvärdig bedömning i matematik med stöd av nationella prov Matematik kurs D, MA1204, 100 poäng Sammanfattning Detta material är framtaget av Timo Hellström och Peter Nyström på Institutionen för
Läs merför Tekniskt/Naturvetenskapligt Basår
Institutionen för Fysik och Astronomi Tentamen i Matematik D 21-8-16 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 8.-12. Hjälpmedel: Miniräknare
Läs merSF1620 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden
KTH Matematik 1 SF162 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden 23-26 27-8-31 1 Geometri med trigonometri Övning 1.1 Rita upp triangeln ABC med A = (1,
Läs mer5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005
KTH Matematik B Matematik modeller Lösningsförslag till tentamen den januari. a) I en triangel är två av sidlängderna 7 respektive 8 längdeneter vinkeln mellan dessa sidor är. Bestäm den tredje sidans
Läs merSF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska
Läs merPlanering för kurs C i Matematik
Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.
Läs mer5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
Läs merMatematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Läs merLMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 2002. Anvisningar NATIONELLT
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Läs merPRÖVNINGSANVISNINGAR
Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av april 999. NATIONELLT KURSPROV
Läs mer5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =
Läs mer5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,
Läs mer5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet
Läs merNp MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
Läs merLösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson
, MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
Läs merKursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6
freeleaks NpMaE vt00 lämpliga för Ma4 1(9) Innehåll Förord 1 Kursprov i matematik, kurs E vt 00 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att
Läs merför Tekniskt/Naturvetenskapligt Basår
Institutionen för Fysik och Astronomi Tentamen i Matematik D 010-03-9 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 9.00-13.00 Hjälpmedel:
Läs mervux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Läs mer5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,
Läs merSKOLFS 2006:xx Skolverkets föreskrifter om kursplaner och betygskriterier i ämnet Matematik i gymnasieskolan den xx xxxxxx 2006
SKOLFS 2006:xx Skolverkets föreskrifter GY07:143 om kursplaner och betygskriterier i ämnet Utkom från trycket Matematik i gymnasieskolan den xx xxxxxx 2006 2006-08-21 Skolverket meddelar med stöd av 1
Läs merA. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.
Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och
Läs merInledning...3. Kravgränser...21. Provsammanställning...22
Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21
Läs merMatematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan
Läs merI den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.
17. Figuren visar en parabel och en rektangel i ett koordinatsystem. Det skuggade området är begränsat av parabeln och x-axeln. Arean av det skuggade området kallas i fortsättningen parabelarean. Vid bedömning
Läs merPROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN
Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter
Läs merUndervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203
Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande
Läs merAttila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Läs merPlanering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merRapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor
Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från
Läs mer1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop
Läs merTEN22 Tekniskt basår. Miniräknare, Slutbetyget på. avklarats med Poäng Lycka till!
Kursnummer: Moment: Program: Rättande lärare: Eaminator: Datum: Tid: Hjälpmedel: Omfattning oc betygsgränser: TENTAMEN HF Matematik för basår I TEN Tekniskt basår Jonass Stenolm Niclas Hjelm 5--6 :5-7:5
Läs merNamn Klass Personnummer (ej fyra sista)
Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Läs merUndervisningsplanering i Matematik Kurs E (Poäng 50)
Undervisningsplanering i Matematik Kurs E (Poäng 50) Kurskod: MA1205 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande
Läs merBedömningsanvisningar
Bedömningsanvisningar NpMab ht 01 Eempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar
Läs merTrigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Läs mery º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32
6 Trigonometri 6. Dagens Teori Vi startar med att repetera lite av det som ingått i tidigare kurser angående trigonometri. Här följer en och samma rätvinkliga triangel tre gånger. Med en sida och en vinkel
Läs merRepetitionsuppgifter. Geometri
Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Del I, 13 uppgifter med miniräknare 3. Del II, breddningsdel 8
freeleaks NpMaD vt1997 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 1997 2 Del I, 13 uppgifter med miniräknare 3 Del II, breddningsdel 8 Förord Kom ihåg Matematik är att
Läs merMina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik:
Behov av förkunskaper i matematik För att du ska kunna följa med i undervisningen i rörelselära (IB4) krävs förkunskaper i grundskolans matematik, samt lite trigonometri. Jag medsänder därför ett förkunskapstest
Läs merKursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE ht999 för Ma4 (7) Innehåll Förord Kursprov i matematik, kurs E ht999 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Läs merMatematik i Gy11. 110912 Susanne Gennow
Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella
Läs merformler Centralt innehåll
Trigonometri och formler Centralt innehåll Trigonometriska uttrck. Bevis och användning av trigonometriska formler. Olika bevismetoder inom matematiken. Algebraiska metoder för att lösa trigonometriska
Läs mergrafer Centralt innehåll
Trigonometri och grafer Centralt innehåll Trigonometriska funktioners grafer och dess egenskaper. Grafiska metoder för att lösa trigonometriska ekvationer. Härledning och användning av deriveringsregler
Läs merBedömingsanvisningar Del II vt 2010
Bedömingsanvisningar Del II vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Bedömningsanvisningar Del II... 4 Kravgränser... 16 Maxpoäng...
Läs mer17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2
17 Trigonometri Övning 17.1 En likbent triangel har arean 10 cm. De båda lika långa sidorna i triangeln är 0 cm. estäm vinkeln mellan dessa sidor. Här är det dags för areasatsen = s1 s sin v där v ligger
Läs mer3.1 Derivator och deriveringsregler
3. Derivator och deriveringsregler Kort om derivator Eempel derivatans definition deriveringsregler numerisk derivering andraderivatan På höjden km kan lufttrcket mbar beskrivas med funktionen = 03 e 0,
Läs merSF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
Läs merStudieanvisning till Matematik 3000 kurs D
Studieanvisning till Matematik 3000 kurs D ISBN 91-27-51028-X Förord Vår ambition med denna studiehandledning är att den skall guida dig genom boken Matematik 3000 kurs D/Komvux av Lars-Eric Björk, Hans
Läs merInstuderingsfrågor för Endimensionell analys kurs B1
Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande
Läs merInstuderingsfrågor för Endimensionell analys kurs B1 2011
Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp
Läs merTorskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
Läs merNär vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1
Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5
freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast
Läs merKan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.
Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera
Läs merHF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng
Kursnummer: Moment: Program: Rättande lärare: Examinator: Datum: Tid: Hjälpmedel: Omfattning och betygsgränser: TENTAMEN HF0021 Matematik för basår I TEN2 Tekniskt basår Marina Arakelyan, Jonass Stenholm
Läs merNATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Läs mer