b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y

Storlek: px
Starta visningen från sidan:

Download "b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y"

Transkript

1 TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ som helst Lärare: Armin Halilovic Poängfördelning och betygsgränser: Tentamen består av 8 uppgifter och ger maimalt poäng Betygsgränser: För betyg A, B, C, D, E krävs 0, 4, 0, 6 respektive poäng Komplettering: 0 poäng på tentamen ger rätt till komplettering (betyg F Vem som har rätt till komplettering framgår av betyget F på MINA SIDOR Komplettering sker c:a två veckor efter att tentamen är rättad Om komplettering är godkänd rapporteras betyg E, annars rapporteras F Börja varje ny uppgift på ett nytt blad, detta gör att rättningen blir säkrare Skriv endast på en sida av papperet Skriv namn och personnummer på varje blad Inlämnade uppgifter skall markeras med kryss på omslaget Denna tentamenslapp får ej behållas efter tentamenstillfället utan lämnas in tillsammans med läsningar Uppgift (4 poäng) a) (p) Bestäm den reella delen Re(w) om w = 4i 40 + ( + i)( i) b) (p) Bestäm alla lösningar med avseende på z till ekvationen z + 00 i =, där z är ett komplet tal 6 ( + i) c) (p) Bestäm u om u = ( i) Uppgift ( 4 poäng) Bestäm alla lösningar då 5z + z + z + = 0 z = + i är en lösning till ekvationen Uppgift ( 4 poäng) a ) (p) Lös följande differentialekvation ( y 4) y = ( y 4)( y + )(4 + 4) b) (p) Ange lösningen på eplicit form c) (p) Bestäm även eventuella singulära lösningar och motivera svaret Uppgift 4 ( 4 poäng)bestäm den lösning till följande differentialekvation y ( y( =, > 0 som satisfierar villkoret y ( ) = Var god vänd

2 Uppgift 5 ( 4 poäng) Lös följande differentialekvationer med avseende på y ( a) (p) y 4 y + y = 0 b) (p) y 6y + 8y = 6 c) (p) y y = e (resonansfall ) Uppgift 6 (4 poäng) Bestäm strömmen i( och laddningen q( i nedanstående LRC krets om L= henry, R= 6 ohm, C= 8 farad och u(=4 volt då i(0)=0 ampere och q(0)= 0 coulomb Uppgift 7 ( 4 poäng) Ställ upp ett ekvationssystem med fyra ekvationer för nedanstående nät, med avseende på strömmarna i, i (, och i ( ) and laddningen q( ( den fjärde ekvationen är ett ( t q (t och i ( t ) ) samband mellan ) Du behöver inte lösa systemet! Uppgift 8 ( 4 poäng) Använd substitutionen z ( = ln( y( ) för att lösa följande (icke-linjära) ekvation y ln( y) y y + = 0 med avseende på y( Vi antar att >0 och y ( > 0 Lycka till!

3 Facit: Uppgift (4 poäng) a) (p) Bestäm den reella delen Re(w) om w = 4i 40 + ( + i)( i) b) (p) Bestäm alla lösningar med avseende på z till ekvationen z + 00 i =, där z är ett komplet tal 6 ( + i) c) (p) Bestäm u om u = ( i) 40 a) w = 4i + ( + i)( i) = 4i + + i 6i = i + 6 = + i, Därför Re(w) = Svar a: Re(w) = π i π ( + kπ ) i b) z = e z = e k = 0,,,, 99 k π ( + kπ ) i 4 00 Svar b: z = e k = 0,,,, 99 k i ( 0) 4 c) < u = = = ( 0) = 0 = 00 i ( 0) Svar c: 00 Uppgift ( 4 poäng) Bestäm alla lösningar då 5z + z + z + = 0 z = + i är en lösning till ekvationen (Ekvationen har reella koefficienter och z = + i är en lösning ) z = i är också en lösning till ekvationen och därför är ekvationen delbart med ( z z )( z z ) = ( z + i)( z + + i) = ( z + ) i = z + z + Polynomdivisionen ger (5z + z + z + ) /( z + z + ) = 5z + En ny lösningar får vi ur 5z + = 0 z = Svar: 5 z = + i, z = i, z = 5

4 Uppgift ( 4 poäng) a ) (p) Lös följande differentialekvation ( y 4) y = ( y 4)( y + )(4 + 4) b) (p) Ange lösningen på eplicit form c) (p) Bestäm även eventuella singulära lösningar och motivera svaret a) ( y 4) y = ( y 4)( y + )(4 + 4) ( Anmärkning: Vi delar ekvationen med ( y 4)( y + ) om uttrycket är skilt från 0 Eftersom y + > 0 får vi att ( y 4)( y + ) = 0 om y = 4 Substitutionen y = 4, y = 0 i ekvationen visar att den konstanta funktionen y = 4 är också en lösning En sådan lösning kallas singulär om den inte kan fås ur den allmänna lösningen Därför måste vi först bestämma den allmänna lösningen och därefter kolla om y=4 är en singulär lösning) y dy = = (4 + 4) d y + y + dy = y + (4 + 4) d arctan y = C ( den allmänna lösningen på implicit form ) y = tan( C) ( den allmänna lösningen på eplicit form ) Eftersom y=4 kan inte fås från den allmänna lösningen oavsett hur vi väljer C ser vi att y=4 är en singulär lösning Svar a) arctan y = C är den allmänna lösningen på implicit form b) y = tan( C) är den allmänna lösningen på eplicit form c) y=4 är en singulär lösning Uppgift 4 ( 4 poäng)bestäm den lösning till följande differentialekvation y ( y( =, > 0 som satisfierar villkoret y ( ) = Vi normaliserar ekvationen ( delar med och får y ( y( = Därefter använder vi formeln y( = e P( d ( C + Q( e P( d d där P( = och Q ( = Först beräknar vi P( d = d = ln = ln ( antagande >0)

5 Formeln ger y( = e ln ln [ C + ( ) e d] = C + ( ) d = C + ( antagande >0 ger att = ) = C + ( ) d ln = C + ln Villkoret y ( ) = ger C=/ och därför y( = + ln Svar: y( = + ln Uppgift 5 ( 4 poäng) Lös följande differentialekvationer med avseende på y ( a) (p) y 4 y + y = 0 b) (p) y 6y + 8y = 6 c) (p) y y = e (resonansfall ) Svar a: y( = C e sin + Ce cos 4 Svar b: y( = C e + Ce + Lösning c: Den karakteristiska ekvationen: r = 0 r = och därför har vi homogena delen: Y H = ce Ansats ( resonans fall) : y = Ae = Ae y = Ae + Ae p Substitutionen i ekvationen Ae och efter förenkling Ae = e Härav A=, y p = e + Ae Ae = e, Svar c: y( = C e + p y y = e ger e Uppgift 6 (4 poäng) Bestäm strömmen i( och laddningen q( i nedanstående LRC krets om L= henry, R= 6 ohm, C= 8 farad och u(=4 volt då i(0)=0 ampere och q(0)= 0 coulomb

6 Från kretsen får vi följande diff ekv di( L + R i( + q( = u( dt C Vi substituerar L=, R= 6, C=, u(=4 och får 8 i ( + 6i( + 8q( = 4 (ekv ) Vi deriverar ekvationen och (eftersom i ( = q ( ) får i ( + 6i ( + 8i( = 0 (ekv ) t Härav i( = C e + C e ( *) Begynnelsevillkor: Vi har i(0)=0 och q(0)= 0 Vi behöver ett villkor till för strömmen i( och därför substituerar vi t=0, i(0)=0 och q(0)= 0 in i (ekv ) i ( 0) + 6i(0) + 8q(0) = 4 i (0) = 4 Från (*) och villkoret i(0)=0 har vi C + C = 0 ( ekv a) t Från i ( = C e C e och i ( 0) = 4 får vi = 4 C 4C 4 ( ekv b) Vi löser system med ( ekv a) och ( ekv b) och får C = och + C = Därför från (*) t i( = e e t Eftersom i ( = q ( har vi q ( = i( dt + C = 6 e + e + C Slutligen q ( 0) = 0 C = och t q ( = 6e + e + ( Anmärkning: Vi kunde först bestämma q( genom att lösa ekvationen L q ( + R q ( + q( = u( C och därefter beräkna i ( = q ( ) t Svar: i( = e e t q ( = 6e + e +

7 Uppgift 7 ( 4 poäng) Ställ upp ett ekvationssystem med fyra ekvationer för nedanstående nät, med avseende på strömmarna i, i (, och i ( ) and laddningen q( ( den fjärde ekvationen är ett ( t q (t och i ( t ) ) samband mellan ) Du behöver inte lösa systemet! Svar a: ekv: i = i ( + i ( ) ( t q( C ekv: L i ( + R i( + R i( + + Li ( = u( t ekv: L i( Ri ( ) = 0 ekv4: q ( ) ( t ) Uppgift 8 ( 4 poäng) Använd substitutionen z ( = ln( y( ) för att lösa följande (icke-linjära) ekvation y ln( y) y y + = 0 med avseende på y( Vi antar att >0 och y ( > 0 z ( = ln( y( ) z = y y Om vi dividerar DE med y får vi y ln( y) + = 0 (*) y Substitution i ekvationen (*) ger en linjär DE med avseende på z z z + = 0 eller z z + = (**)

8 P( d P( d Vi använder formeln z( = e ( C + Q( e d och får ln ln z( = e ( C + e d = 4 ( C d C + ) = ( C + ) = 4 z( Eftersom z ( = ln( y( ) har vi y = e dvs y = e Svar: C + 4 y = e C

TENTAMEN TEN2 i HF1006 och HF1008

TENTAMEN TEN2 i HF1006 och HF1008 TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 0 aug 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A, B,

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär

Läs mer

TENTAMEN TEN2 i HF1006 och HF1008

TENTAMEN TEN2 i HF1006 och HF1008 TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,

Läs mer

MATEMATIK OCH MAT. STATISTIK 6H3000, 6L3000, 6H3011 TEN

MATEMATIK OCH MAT. STATISTIK 6H3000, 6L3000, 6H3011 TEN TENTAMEN Datum: 0 maj 007 Kurs: MATEMATIK OCH MAT STATISTIK 6H000, 6L000, 6H0 TEN (Differential ekvationer, komplexa tal) Skrivtid: :5-7:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ som

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 9 jan 07 Tid -8 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,

Läs mer

TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014

TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014 TENTAMEN HF00 och HF008 TEN jan 04 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Richard Eriksson Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och anals,

Läs mer

Program: DATA, ELEKTRO

Program: DATA, ELEKTRO Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012

TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012 TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och

Läs mer

Tentamen i Linjär algebra, HF1904 exempel 3 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Linjär algebra, HF1904 exempel 3 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Linjär algebra, HF1904 exempel Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic För godkänt betyg krävs 10 av max 24 poäng Betygsgränser: För betyg A, B, C, D, E krävs 22, 19, 16,

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2016 Skrivtid 9:00-13:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2016 Skrivtid 9:00-13:00 TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) Datum: 9 okt 6 Skrivtid 9:-: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betyg krävs av ma 4 poäng

Läs mer

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng

Läs mer

TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic

TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic TENTAMEN 8 jan 0 Tid: 08.5-.5 Kurs: Matematik HF90 (6H90) 7.5p Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras

Läs mer

Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic

Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic Tentamen i Matematik HF70 6 aug 0 Tid: 3. 7. Lärare: Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic

Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic Tentamen i Linjär algebra, HF194 Datum: 17 dec 18 Skrivtid: 14:-18: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs 1 av max 4 poäng Betygsgränser: För betyg A,

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN jan 0 Ti -7 Analys och linjär algebra, HF008 (Meicinsk teknik), lärare: Jonas Stenholm Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär

Läs mer

TENTAMEN Datum: 11 feb 08

TENTAMEN Datum: 11 feb 08 TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic

Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)

Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x) Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För

Läs mer

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd. Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,

Läs mer

Betygsgränser: För. Skriv endast på en. Denna. Uppgift. 1. (2p) 2. (2p) Uppgift. Uppgift 1) 4. Var god. vänd.

Betygsgränser: För. Skriv endast på en. Denna. Uppgift. 1. (2p) 2. (2p) Uppgift. Uppgift 1) 4. Var god. vänd. Tentamen i Matematik, HF93 7 dec 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng. Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, 3 respektive poäng. Komplettering:

Läs mer

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,

Läs mer

a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.

a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen. TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) atum: okt 8 Skrivtid 4:-8: Eaminator: Armin Halilovic För godkänt betyg krävs av ma 4 poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive

Läs mer

DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN SUBSTITUTIONER I DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Innehåll: I) Allmänt om substitutioner i förstaordningens DE II) Ekvationer av tpen ( ) F( ) ------------------------------------------------------------------------------------

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matematik, moment TEN (anals) Datum: okt Skrivtid :-7: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:

Läs mer

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så Kurs: HF90 Matematik, Moment TEN (Linjär Algebra) ) Datum: 4 augusti 08 Skrivtid 08:00 :000 Examinator: Armin Halilovic För godkänt betyg krävss 0 av maxx 4 poäng. Betygsgränser: För betyg A, B, C, D,

Läs mer

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid:

Tentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid: Tentamen i Matematik HF9 (6H9) 4 juni 8 Tid: 85 5 Lärare: Agneta Ivarson, Armin Halilovic, Bengt Mattiasson, Taras Kentrschynskyj, Ulf Djupedal Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat

Läs mer

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) TILLÄMPNINGA AV DIFFEENTIAL EKVATIONE L KETSA Låt vara strömmen i nedanstående L krets (som innehåller element en sole med induktansen L henry, en motstånd med resistansen ohm, en kondensator med kaacitansen

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Tentamen i Linjär algebra, HF1904 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Linjär algebra, HF1904 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Linjär algebra, HF94 eempel Datum: Skrivtid: 4 timmar Eaminator: Armin Halilovic För godkänt betg krävs av ma 4 poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, respektive poäng. Komplettering:

Läs mer

vinkelräta (1p) då a r = (0,1,0), b r =(0,1,2k) och c r =(1,0,1)? b) Beräkna arean av triangeln ABC då (2p) A= ( 3,2,1), B=(4,3,2) och C=(3,3,3)

vinkelräta (1p) då a r = (0,1,0), b r =(0,1,2k) och c r =(1,0,1)? b) Beräkna arean av triangeln ABC då (2p) A= ( 3,2,1), B=(4,3,2) och C=(3,3,3) Tentamen i Matematik HF H 8 okt Tid:. 7. Lärare:Armin Halilovic Hjälpmedel: Formelblad Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter. Betgsgränser:

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4). TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:

Läs mer

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF90 Torsdag augusti Skrivtid: 4:00-8:00 Examinator: Armin Halilovic För godkänt betyg krävs 0 av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive 0 poäng

Läs mer

Lösningsförslag. Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik

Lösningsförslag. Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik Lösningsförslag Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 9-3-7 kl 8.3-1.3 Hjälpmedel : Inga hjälpmedel

Läs mer

y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.

y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

Lösningsförslag obs. preliminärt, reservation för fel

Lösningsförslag obs. preliminärt, reservation för fel Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

Uppgift Planen 2x + 4y + 2z 3=0 och x + 2y + z 1=0 är givna. b) Bestäm ( kortaste) avståndet mellan planen. (2p)

Uppgift Planen 2x + 4y + 2z 3=0 och x + 2y + z 1=0 är givna. b) Bestäm ( kortaste) avståndet mellan planen. (2p) Tentamen i Matematik HF9 (6H9 jan Tid:.5 7.5 Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

TENTAMEN I MATEMATISK STATISTIK 19 nov 07

TENTAMEN I MATEMATISK STATISTIK 19 nov 07 TENTAMEN I MATEMATISK STATISTIK 9 nov 7 Ten i kursen HF ( Tidigare kn 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Ten i kursen 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: 3:5-7:5 Lärare: Armin Halilovic

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) TENTAMEN 7-Okt-4, HF6 och HF8 Moment: TEN (Linjär algebra, 4 hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats: Campus

Läs mer

Betygsgränser: För betyg. Vem som har är. Hjälpmedel: av papperet. Uppgift. 1. (4p) (2p) lim. (1p) cos( x 1) lim x 1. (1p) 2. (4p) Uppgift.

Betygsgränser: För betyg. Vem som har är. Hjälpmedel: av papperet. Uppgift. 1. (4p) (2p) lim. (1p) cos( x 1) lim x 1. (1p) 2. (4p) Uppgift. Kurs: HF9 Matematik, Moment TEN (Anals) atum: augusti 8 Skrivtid 8: : Eaminator: Armin Halilovic För godkänt betg krävss av ma poäng. Betgsgränser: För betg A, B, C,, E krävs, 9, 6, respektive poäng. Komplettering:

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2016 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2016 Skrivtid 8:15 12:15 Kurs: HF9 Matematik Moment TN Linjär lgebra Datum: 5 augusti 6 Skrivtid 8:5 :5 aminator: rmin Halilovic Undervisande lärare: lias Said För godkänt betg krävs av ma poäng. Betgsgränser: För betg B C D krävs

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 21 dec 2017 Skrivtid 8:00-12:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 21 dec 2017 Skrivtid 8:00-12:00 TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) Datum: dec 7 Skrivtid 8:-: Examinator: Armin Halilovic Rättande lärare: Jonas Stenholm, Elias Said, Nils Dalarsson För odkänt bety krävs av max poän. Betysränser:

Läs mer

UPPSALA UNIVERSITET Envariabelanalys IP1/Hösten L.Höglund, P.Winkler, S. Zibara Ingenjörsprogrammen Tel: , ,

UPPSALA UNIVERSITET Envariabelanalys IP1/Hösten L.Höglund, P.Winkler, S. Zibara Ingenjörsprogrammen Tel: , , UPPSALA UNIVERSITET Envariabelanalys IP/Hösten 00 Matematiska institutionen Sluttentamen LHöglund, PWinkler, S Zibara Ingenjörsprogrammen Tel: 7, 789, 70 00 6 Tid : 0800 00 Hjälpmedel : godkänd miniräknare

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera

Läs mer

Tentamen i matematik. f(x) = 1 + e x.

Tentamen i matematik. f(x) = 1 + e x. Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

TENTAMEN Datum: 14 feb 2011

TENTAMEN Datum: 14 feb 2011 TENTAMEN Datum: 14 feb 011 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF1001 TEN 1 (Matematisk statistik ) Ten1 i kursen HF1001 ( Tidigare kn 6H301), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 13:15-17:15

Läs mer

Lösning : Substitution

Lösning : Substitution INTEGRALER AV RATIONELLA FUNKTIONER Viktiga grundeempel: Eempel. (aa 0) aaaabb aaaabb = tt = aa aa = aa llll tt CC llll aaaa bb CC aaaa bb = tt aaaaaa = = aa Eempel. (aaaabb) nn (nn, 0) (aaaa bb) nn =

Läs mer

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 = MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna

Läs mer

Tentamen i Matematik 1 DD-DP08

Tentamen i Matematik 1 DD-DP08 Tentamen i Matematik DD-DP08 (Kursnummer HF90) 2009-03-2, kl. 3:5-7:00 Hjälpmedel: endast bifogat formelblad. Till samtliga inlämnade uppgifter fordras fullständiga lösningar. Svaren ska alltid förkortas

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera

Läs mer

Studietips info r kommande tentamen TEN1 inom kursen TNIU23

Studietips info r kommande tentamen TEN1 inom kursen TNIU23 Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x. Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15 TENTMEN Kurs: HF9 Matematik moment TEN anals Datum: 9 okt 5 Skrivtid 8:5 :5 Eaminator: rmin Halilovic Rättande lärare: Fredrik Bergholm Elias Said Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Preliminärt lösningsförslag till del I, v1.0

Preliminärt lösningsförslag till del I, v1.0 Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter.

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. 401. (A) Bestäm de allmänna lösningarna till följande differentialekvationer: a. y 3y = 0 b. y 2y 3y = 0 c. y 2y = 0 d. y 4y +

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal. OLIKHETER Egenskaper:.Om a < b då gäller a+ c < b +c. Om a < b < c då gäller a+d < b+d < c+d. Om a < b och k > 0 då gäller ka < kb. 4. Om a < b och k < 0 då gäller ka > kb. Notera att tecknet < ändras

Läs mer

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 14 april 09 TEN1: Omfattar: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Daum: 4 arl 09 TEN: Omfaar: Dfferenalekvaoner, komlea al och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrvd: 8:5-:5 Hjälmedel: Bfoga formelblad och mnräknare av vlken y som hels.

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook

Läs mer

Crash Course Envarre2- Differentialekvationer

Crash Course Envarre2- Differentialekvationer Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2017 Skrivtid 8:00 12:00

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2017 Skrivtid 8:00 12:00 Kurs: HF9 Matemati Moment TEN Linjär lgebra Datum: augusti 7 Srivtid 8: : Eaminator: rmin Halilovic För godänt betyg rävs av ma poäng. etygsgränser: För betyg D E rävs 9 6 respetive poäng. Komplettering:

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: 115-1715,

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0. UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Skriv väl, motivera och förklara vad du gör. Betygsgränser: p. ger betyget 3, p. ger betyget 4 och 40 p. eller mer ger betyget

Skriv väl, motivera och förklara vad du gör. Betygsgränser: p. ger betyget 3, p. ger betyget 4 och 40 p. eller mer ger betyget Matematik Chalmers tekniska högskola 0-08-7 kl. :00-8:00. Tentamen TMV036 Analys och linjär algebra K, Kf, Bt, del B Telefonvakt: Hossein Raufi, telefon 0703-08830 Inga hjälpmedel. Kalkylator ej tillåten.

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:

Läs mer

Uppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B

Uppgift 2. För två händelser A och B gäller P(A B)=0.5, P ( A ) = 0. 4 och P ( B TENTAMEN I MATEMATISK STATISTIK Datum: 3 juni 8 Ten i ursen HF3, 6H3, 6L3 MATEMATIK OH MATEMATISK STATISTIK, Ten i ursen HF ( Tidigare n 6H3), KÖTEORI OH MATEMATISK STATISTIK, Ten i ursen HF4, (Tidigare

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 5, HF6 och HF8 Moment: TEN (Linjär algebra), hp, Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8.5-.5, Plats: Campus Haninge Eaminator:

Läs mer

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p) Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn

Läs mer