Program: DATA, ELEKTRO
|
|
- Erik Vikström
- för 6 år sedan
- Visningar:
Transkript
1 Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic Eaminator: Armin Halilovic Hjälpmedel: Bifogat formelblad och miniräknare av vilken tp som helst Poängfördelning och betgsgränser: För betg 3, 4, 5 krävs, 7 respektive poäng För komplettering krävs 0 poäng Till samtliga uppgifter ska lämnas fullständiga lösningar Denna tentamenlapp får ej behållas utan lämnas in Uppgift ) ( 4p) + ai a) (p) Bestäm talet a så att z blir reellt a + 4i b) (p) Lös ekvationen z 3 i Ange lösningar på eponentialform c) (p) Lös följande ekvation med avseende på u ( där u+i är ett komplet tal) u + 4u Uppgift ) ( 4p) z och z iär lösningar till ekvationen z + z + 8z Bestäm ekvationens övriga lösningar Uppgift 3) ( 4p) Lös differentialekvationen + Bestäm sedan den partikulärlösning med egenskapen att () e Var god vänd!
2 Uppgift 4) ( 4p) Lös följande differentialekvationer a) (p) b) (p) c) (p) 3 sin 3cos d) (p) + + (tips: resonansfall) Uppgift 5) ( 4p) Enligt Newtons avsvalningslag ändras temperaturen, T, hos ett föremål enligt differentialekvationen dt k ( T T0 ), där t är tiden, k en konstant och T 0 omgivningens temperatur Om tiden mäts i minuter och temperaturerna i C får k det numeriska värdet 0,0 En kopp te har från början temperaturen 90 C Rumstemperaturen är 0 C Ange hur dess temperatur ändras som funktion av tiden Uppgift 6) ( 4p) Bestäm den allmänna lösningen för strömmen i( i nedanstående LRC krets om induktansen L H, resistansen R 7 Ω, kapacitansen C F och spänningen V Lcka till!
3 Uppgift ) ( 4p) + ai a) (p) Bestäm talet a så att z blir reellt a + 4i b) (p) Lös ekvationen z 3 i Ange lösningar på eponentialform c) (p) Lös följande ekvation med avseende på u ( där u+i är ett komplet tal) u + 4u a) + ai ( + ai)( a 4 i) z 5a+ a i 4i a+ 4i ( a+ 4 i)( a 4 i) a + 6 z är reellt om imaginärdelen i täljaren är noll Alltså, a 4 0 a± b) ( 3 3 ( n ) i n ) i 6 3 z i z e π + π z e π + π n0,, c) Vi substituerar u + i och u i i nedanstående ekvation u + 4u ( + i) + 4( i) 6 och u i Svar c: u i Uppgift ) ( 4p) z och z iär lösningar till ekvationen z + z + 8z Bestäm ekvationens övriga lösningar Ekvationen har reella koefficienter Alltså, om z i är en lösning så är även z i en lösning 3 Enligt Faktorteoremet är då vänstra ledet delbart med ( z+ )( z i)( z+ i) z + z + z+ z z z z z z + z + z+ Ekvationens övriga lösningar erhålls genom att man löser ekvationen z Härav z ± i 3 Svar : De övriga lösningarna är z3 i, z 4,5 ± i 3 z+ 4 0
4 Uppgift 3) ( 4p) Lös differentialekvationen + Bestäm sedan den partikulärlösning med egenskapen att () e Lösning + ln C + ± e + D e () e e + D e D Alltså, partikulärlösningen är Svar + e Uppgift 4) ( 4p) Lös följande differentialekvationer + C + e a) (p) b) (p) c) (p) 3 sin 3cos d) (p) + + (tips: resonansfall) a) Vi separerar och integrerar ekvationen d d d Svar a) arcsin + C sin( + C) d arcsin + C 3 Endast svar b) ( ) C e + Ce + 3 Svar c) ( ) C + C e + sin Svar d) ( ) C + C e +
5 Uppgift 5) ( 4p) Enligt Newtons avsvalningslag ändras temperaturen, T, hos ett föremål enligt differentialekvationen dt k ( T T0 ), där t är tiden, k en konstant och T 0 omgivningens temperatur Om tiden mäts i minuter och temperaturerna i C får k det numeriska värdet 0,0 En kopp te har från början temperaturen 90 C Rumstemperaturen är 0 C Ange hur dess temperatur ändras som funktion av tiden dt 0,0 ( T 0) dt + 0,0T 4 0,0t TH C e T a ansatt partikulärlösning dt 0 Insättning i ekv ger 0 + 0,0a 4 a 0 T P 0 0,0t T T + T C e + 0 A H P 0,0 0 (0) ,0t T 70 e + 0 T C e + C Alltså: Uppgift 6) ( 4p) Bestäm den allmänna lösningen för strömmen i( i nedanstående LRC krets om induktansen L H, resistansen R 7 Ω, kapacitansen C F och spänningen V Från kretsen får vi följande diff ekv di( L + R i( + q( U (ekv) C (efter subst L, R och C) i ( + 7i( + q( (ekv ) Derivering av ( ekv ) ger: i ( + 7i ( + i( 0 (ekv 3) 3t 4t Härav i( Ce + Ce 3t 4t Svar: i( C e + C e
MATEMATIK OCH MAT. STATISTIK 6H3000, 6L3000, 6H3011 TEN
TENTAMEN Datum: 0 maj 007 Kurs: MATEMATIK OCH MAT STATISTIK 6H000, 6L000, 6H0 TEN (Differential ekvationer, komplexa tal) Skrivtid: :5-7:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ som
b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y
TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ
TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014
TENTAMEN HF00 och HF008 TEN jan 04 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Richard Eriksson Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och anals,
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012
TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 0 aug 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A, B,
1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 9 jan 07 Tid -8 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008
TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)
Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim
Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in
Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)
TILLÄMPNINGA AV DIFFEENTIAL EKVATIONE L KETSA Låt vara strömmen i nedanstående L krets (som innehåller element en sole med induktansen L henry, en motstånd med resistansen ohm, en kondensator med kaacitansen
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).
TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matematik, moment TEN (anals) Datum: okt Skrivtid :-7: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =
MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna
a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) atum: okt 8 Skrivtid 4:-8: Eaminator: Armin Halilovic För godkänt betyg krävs av ma 4 poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive
Tentamen i Linjär algebra, HF1904 exempel 3 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF1904 exempel Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic För godkänt betyg krävs 10 av max 24 poäng Betygsgränser: För betyg A, B, C, D, E krävs 22, 19, 16,
Betygsgränser: För betyg. Vem som har är. Hjälpmedel: av papperet. Uppgift. 1. (4p) (2p) lim. (1p) cos( x 1) lim x 1. (1p) 2. (4p) Uppgift.
Kurs: HF9 Matematik, Moment TEN (Anals) atum: augusti 8 Skrivtid 8: : Eaminator: Armin Halilovic För godkänt betg krävss av ma poäng. Betgsgränser: För betg A, B, C,, E krävs, 9, 6, respektive poäng. Komplettering:
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 0 Ti -7 Analys och linjär algebra, HF008 (Meicinsk teknik), lärare: Jonas Stenholm Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)
Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För
Tentamen i Linjär algebra, HF1904 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF94 eempel Datum: Skrivtid: 4 timmar Eaminator: Armin Halilovic För godkänt betg krävs av ma 4 poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, respektive poäng. Komplettering:
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:
Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)
TENTAMEN 7-Okt-4, HF6 och HF8 Moment: TEN (Linjär algebra, 4 hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats: Campus
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2016 Skrivtid 9:00-13:00
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) Datum: 9 okt 6 Skrivtid 9:-: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betyg krävs av ma 4 poäng
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.
Planering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
Examinator: Armin Halilovic Undervisande lärare: Bengt Andersson, Elias Said, Jonas Stenholm
Tentamen i Matematik, HF93, 9 oktober, kl 8.5.5 Hjälpmedel: Endast ormelblad miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, 3
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
Armin Halilovic: EXTRA ÖVNINGAR, SF676 OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uttrck används ofta i olika problem som leder till differentialekvationer: Text Formell beskrivning A är proportionell
TENTAMEN I MATEMATISK STATISTIK 19 nov 07
TENTAMEN I MATEMATISK STATISTIK 9 nov 7 Ten i kursen HF ( Tidigare kn 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Ten i kursen 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: 3:5-7:5 Lärare: Armin Halilovic
Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2016 Skrivtid 8:15 12:15
Kurs: HF9 Matematik Moment TN Linjär lgebra Datum: 5 augusti 6 Skrivtid 8:5 :5 aminator: rmin Halilovic Undervisande lärare: lias Said För godkänt betg krävs av ma poäng. Betgsgränser: För betg B C D krävs
vinkelräta (1p) då a r = (0,1,0), b r =(0,1,2k) och c r =(1,0,1)? b) Beräkna arean av triangeln ABC då (2p) A= ( 3,2,1), B=(4,3,2) och C=(3,3,3)
Tentamen i Matematik HF H 8 okt Tid:. 7. Lärare:Armin Halilovic Hjälpmedel: Formelblad Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter. Betgsgränser:
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15
TENTMEN Kurs: HF9 Matematik moment TEN anals Datum: 9 okt 5 Skrivtid 8:5 :5 Eaminator: rmin Halilovic Rättande lärare: Fredrik Bergholm Elias Said Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:
TENTAMEN Datum: 11 feb 08
TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Tentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid:
Tentamen i Matematik HF9 (6H9) 4 juni 8 Tid: 85 5 Lärare: Agneta Ivarson, Armin Halilovic, Bengt Mattiasson, Taras Kentrschynskyj, Ulf Djupedal Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat
Studietips info r kommande tentamen TEN1 inom kursen TNIU23
Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:
Studietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
SF1625 Envariabelanalys
Föreläsning 9 Institutionen för matematik KTH 16 september 2016 Homogena injära ODE m konst koeff Sist: homogena linjära ODE med konstanta koefficienter. Första ordningens sådan ekvation kan skrivas y
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Uppgifter 9 och 10 är för de som studerar byggteknik
INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Tentamen i Envariabelanalys 1
Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Hjälpmedel: Endast bifogade formelblad (miniräknare är inte tillåten) Inga toabesök eller andra raster under den här kontrollskrivningen.
Kontrollskrivning i Matematik 1, HF1903, oktober 017, kl 815 1000 Version A Hjälpmedel: Endast bifogade formelblad (miniräknare är inte tillåten Inga toabesök eller andra raster under den här kontrollskrivningen
Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2
7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm
INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER)
INLÄMNINGSPPGIFT MATEMATIK, HF000 ( DIFFERENTIAL EKVATIONER) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av tre uppgifter. Individuellt arbete. Du väljer tre av nedanstående
Lösningsförslag. Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik
Lösningsförslag Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 9-3-7 kl 8.3-1.3 Hjälpmedel : Inga hjälpmedel
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.
UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,
TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic
TENTAMEN 8 jan 0 Tid: 08.5-.5 Kurs: Matematik HF90 (6H90) 7.5p Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 9 jan 5, HF6 och HF8 Moment: TEN (Linjär algebra), hp, Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8.5-.5, Plats: Campus Haninge Eaminator:
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
dy dx = ex 2y 2x e y.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,
y(0) = e + C e 1 = 1
KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs
Skriv väl, motivera och förklara vad du gör. Betygsgränser: p. ger betyget 3, p. ger betyget 4 och 40 p. eller mer ger betyget
Matematik Chalmers tekniska högskola 0-08-7 kl. :00-8:00. Tentamen TMV036 Analys och linjär algebra K, Kf, Bt, del B Telefonvakt: Hossein Raufi, telefon 0703-08830 Inga hjälpmedel. Kalkylator ej tillåten.
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.
Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,
UPPSALA UNIVERSITET Envariabelanalys IP1/Hösten L.Höglund, P.Winkler, S. Zibara Ingenjörsprogrammen Tel: , ,
UPPSALA UNIVERSITET Envariabelanalys IP/Hösten 00 Matematiska institutionen Sluttentamen LHöglund, PWinkler, S Zibara Ingenjörsprogrammen Tel: 7, 789, 70 00 6 Tid : 0800 00 Hjälpmedel : godkänd miniräknare
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera
Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic
Tentamen i Matematik HF70 6 aug 0 Tid: 3. 7. Lärare: Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,
Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna
1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Crash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x
Institutionen för matematik, KTH Serguei Shimorin SF6, Differential- och integralkalkyl I, del Tentamen, den 9 mars 9 Lösningsförslag Funktionen y = fx definieras för x >, x som x + x fx = x a Definiera
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot