INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER)
|
|
- Björn Lindgren
- för 5 år sedan
- Visningar:
Transkript
1 INLÄMNINGSPPGIFT MATEMATIK, HF000 ( DIFFERENTIAL EKVATIONER) armin@sth.kth.se tel Inlämningsuppgift består av tre uppgifter. Individuellt arbete. Du väljer tre av nedanstående uppgifter enligt följande : A-G Om ditt efternamn börjar med en av bokstäverna A-G då gör du uppgifterna, och ( som finns nedan på sidan ). H-N Om ditt efternamn börjar med en av bokstäverna H-N då gör du uppgifterna, 5 och 6 ( som finns nedan på sidan ). O- Om ditt efternamn börjar med en av bokstäverna O- då gör du uppgifterna 7, 8 och 9 ( som finns nedan på sidan ). V-Ö Om ditt efternamn börjar med en av bokstäverna V-Ö då gör du uppgifterna 0, och ( som finns nedan på sidan 5). Låt a, b, c och d beteckna de sista fyra siffrorna i ditt personnummer. Har du t ex pn så är a=, b=, c= och d=8 som du substituerar i dina uppgifter och därefter löser dem. Använd Maple (eller Mathematica) för att lösa dina uppgifter.
2 ppgift. A-G Magnetiskt kopplade spolar: Ovanstående modell kan beskrivas med följande differentialekvationer: ( = Ri ( + Li ( + Mi ( ( = Ri( + Li ( + Mi ( Beräkna och plotta strömmarna i ( t ) och i ( då L= H, L= H, R= Ω, R = Ω, M=(+a) H i (0) = 0 A, i (0) = 0 A, ( = 6sin(0 + 0cos(0 + 0( + a)cos(0 volt ( sin(0 + 0cos(0 + 0( + a)cos(0 volt = ppgift. A-G I nedanstående elektrisk krets betecknas: induktansen med L, L resistansen med R,R,R strömmen med i () t, i () t och spänningen med u( a) Ställ upp ett system med diff: ekvationer för strömmarna i () t samt i () t och i () t då, L=H, L=H, R= Ω, R = Ω, R= Ω, R=6 Ω, i (0) = 0a + 0, i (0) = 0a + 0 och i (0) = 0 u( = (a+)(0cos0t 78sin0 V b) Använd Maple för att lösa systemet m a p i () t, i () t. c) Plotta lösningen. ppgift. A-G I tankar A och B finns (0 +a) liter respektive (00+0c+d) liter saltvatten som innehåller, 0g, respektive 50 g salt. Tanken A tillförs 8 liter vatten per minut som innehåller 5 gram salt per liter. Vatten blandas ordentlig och liter förs till B och därefter liter från B förs till A och 8 liter rinner ut, enligt bilden nedan. Låt x(,y( beteckna saltmängden (i gram) i A, B vid tidsmoment t i) Ställ upp ett ekvationssystem för x( och y( och lös systemet med Maple
3 ii)bestäm stationärtillstånd d v s lim x( och lim y( ppgift. H-N Magnetiskt kopplade spolar: Ovanstående modell kan beskrivas med följande differentialekvationer: ( = Ri ( + Li ( + Mi ( ( = Ri( + Li ( + Mi ( Beräkna och plotta strömmarna i ( t ) och i ( då L= H, L= H, R= Ω, R = Ω, M=(+a) H i (0) = 0 A, i (0) = 0 A, ( = 9sin(0 + 0cos(0 + 0( + a)cos(0 volt ( sin(0 + 0cos(0 + 0( + a)cos(0 volt = ppgift 5. H-N I tankar A och B finns (0 +a) liter respektive (00+0c+d) liter saltvatten som innehåller, 0g, respektive 50 g salt. Tanken A tillförs 8 liter vatten per minut som innehåller 5 gram salt per liter. Vatten blandas ordentlig och liter förs till B och därefter liter från B förs till A och 8 liter rinner ut, enligt bilden nedan. Låt x(,y( beteckna saltmängden (i gram) i A, B vid tidsmoment t i) Ställ upp ett ekvationssystem för x( och y( och lös systemet med Maple ii)bestäm stationärtillstånd d v s lim x( och lim y(
4 ppgift 6. H-N I nedanstående elektrisk krets betecknas: induktansen med L, L resistansen med R,R,R strömmen med i () t, i () t och spänningen med u( a) Ställ upp ett system med diff: ekvationer för strömmarna i () t samt i () t och i () t då, L= H, L=5 H, R=5 Ω, R = Ω, R= Ω, i (0) = b +, i (0) = b + och i (0) = 0 och u( = (b+)(6cost 70sin V b) Använd Maple för att lösa systemet m a p i () t, i () t. c) Plotta lösningen. 7. O- Ett mekaniskt system med en fjäder och en dämpare kan beskrivas med följande ekvationen m y + ay + ky = F. Bestäm y( då a) m=, a=, k=, F=5 b) m=, a=, k=, F=sin5t c) m=, a= 0, k=, då y(0)=, y ( 0) = 0 F = e t
5 5 Plotta lösningarna. ppgift 8. O- I nedanstående elektrisk krets betecknas: induktansen med L, L resistansen med R,R,R strömmen med i () t, i () t och spänningen med u( a) Ställ upp ett system med diff: ekvationer för strömmarna i () t samt i () t och i () t då, L= H, L=5 H, R=5 Ω, R = Ω, R= Ω, i (0) = b +, i (0) = b + och i (0) = 0 och u( = (b+)(6cost 70sin V b) Använd Maple för att lösa systemet m a p i () t, i () t. c) Plotta lösningen. ppgift 9. O- Bestäm strömmen i( i nedanstående LCR-krets då u( =(0+a)cos(8 V, L=(+a+c) H, R=(+b) Ω, R=(d+) Ω, C=F, i(0)= A, i ( 0) = a) Ställ upp en differential ekvation för strömmen i( b) Lös ekvationen m a p i( dvs beräkna strömmen i( (använd Maple) c) Plotta lösningen ppgift 0. V-Ö I en tank finns (50 +a+b) liter saltvatten som innehåller 50g salt. Tanken A tillförs 8 liter vatten per minut som innehåller (5+c) gram salt per liter. Vatten blandas 5
6 6 ordentlig och 8 liter rinner ut, enligt bilden nedan. Låt y( beteckna saltmängden (i gram) i tanken vid tidsmoment t i) Ställ upp en ekvation för y( och lös ekvationen (använd Maple för att lösa ekvationen) ii)bestäm stationärtillstånd d v s lim y( ppgift. V-Ö Bestäm strömmen i( i nedanstående LCR-krets då u( =(0+a)cos(8 V, L=(+a+c) H, R=(+b) Ω, R=(d+) Ω, C=F, i(0)= A, i ( 0) = a) Ställ upp en differential ekvation för strömmen i( b) Lös ekvationen m a p i( dvs beräkna strömmen i( (använd Maple) c) Plotta lösningen ppgift. V-Ö I nedanstående elektrisk krets betecknas: induktansen med L, L resistansen med R,R,R strömmen med i () t, i () t och spänningen med u( a) Ställ upp ett system med diff: ekvationer för strömmarna i () t samt i () t och i () t då, L= H, L=5 H, R=5 Ω, R = Ω, R= Ω, i (0) = b +, i (0) = b + och i (0) = 0 och u( = (b+)(6cost 70sin V b) Använd Maple för att lösa systemet m a p i () t, i () t. c) Plotta lösningen. 6
7 7 ppgift ) (Bygg) d y w( x) En balk med belastning w(x) är fast i båda änder satisfierar + = 0. Om ett dx EI koordinatsystem med origo i den första punkten inläggs som i ovanstående figuren, satisfierarkoordinaterna (x,y) för en godtycklig punkt på balken följande differentialekvation d y w( x) + = 0. dx EI a) Bestäm y(x) då w( x) = b + x, EI y ( 0) = 0, y ( ) = 0 y ( 0) = 0 och y ( ) = 0 b) Använd grafen för att approximativt bestämma funktionens minimivärde ( y min ) ppgift ) (Bygg) I tankar A, B och C finns (00 +a), liter (00+b) liter respektive (00+c) liter saltvatten som vid tiden t=0 innehåller, 0g, 0 respektive 50 g salt. Tanken A tillförs 9 liter vatten per minut som innehåller 0 gram salt per liter. Vatten blandas ordentlig och liter förs till B och därefter 5 liter från B förs till A. På liknande sätt blandas vatten i B och C, enligt bilden nedan. Låt x(,y( och z( beteckna saltmängden (i gram) i A, B, C vid tidsmoment t i) Ställ upp ett ekvationssystem för x(, y( och z( och lös systemet med Maple ii)bestäm stationärtillstånd d v s lim x(, lim y(, lim z( 7
8 8 8
Uppgifter 9 och 10 är för de som studerar byggteknik
INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt
Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006
INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter
Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.
INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:
Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)
Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
MATEMATIK OCH MAT. STATISTIK 6H3000, 6L3000, 6H3011 TEN
TENTAMEN Datum: 0 maj 007 Kurs: MATEMATIK OCH MAT STATISTIK 6H000, 6L000, 6H0 TEN (Differential ekvationer, komplexa tal) Skrivtid: :5-7:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ som
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6
Inlämningsuppgift 2, HF1006.. (MATLAB) INLÄMNINGSUPPGIFT 2 (MATLAB) Kurs: Linjär algebra och analys Del2, analys Kurskod: HF1006 Skolår: 2018/19 Redovisas under en av de tre schemalaggs gda redovisningstillfällen
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,
TENTAMEN HF1006 och HF1008
TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 0 aug 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A, B,
Program: DATA, ELEKTRO
Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 9 jan 07 Tid -8 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)
TILLÄMPNINGA AV DIFFEENTIAL EKVATIONE L KETSA Låt vara strömmen i nedanstående L krets (som innehåller element en sole med induktansen L henry, en motstånd med resistansen ohm, en kondensator med kaacitansen
TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012
TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av
b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y
TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014
TENTAMEN HF00 och HF008 TEN jan 04 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Richard Eriksson Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och anals,
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen
Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område
Föreläsning 3/12. Transienter. Hambley avsnitt
1 Föreläsning 3/1 Hambley avsnitt 4.1 4.4 Transienter Inom elektroniken betecknar transienter signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar
Tentamen i Elektronik för E (del 2), ESS010, 5 april 2013
Tentamen i Elektronik för E (del ), ESS00, 5 april 03 Tillåtna hjälpmedel: Formelsamling i kretsteori. Spänningen mv och strömmen µa mäts upp på ingången till en linjär förstärkare. Tomgångsspänningen
4. Elektromagnetisk svängningskrets
4. Elektromagnetisk svängningskrets L 15 4.1 Resonans, resonansfrekvens En RLC krets kan betraktas som en harmonisk oscillator; den har en egenfrekvens. Då energi tillförs kretsen med denna egenfrekvens
Tentamen Elektromagnetism
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm 93FY51/STN1: Fysik (61 75 hp) Tentamen Elektromagnetism 8 juni 2017 8:00 12:00 U14 Tentamen består av 6 uppgifter som vardera kan ge upp till
Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2
7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm
varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.
PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät
IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Föreläsning 29/11. Transienter. Hambley avsnitt
1 Föreläsning 9/11 Hambley avsnitt 4.1 4.4 Transienter Transienter inom elektroniken är signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 0 Ti -7 Analys och linjär algebra, HF008 (Meicinsk teknik), lärare: Jonas Stenholm Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar
Svängningar Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande... 3 Det dämpade men odrivna systemet... 3 Det drivna systemet... 4 Några praktiska tips...
1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.
1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):
Alltså är {e 3t, e t } en bas för lösningsrummet, och den allmänna lösningen kan därmed skrivas
ektion 7, Envariabelanalys den 8 oktober 1999 Visa att funktionerna y 1 = e r 1t och y = e r t, där r 1 r, är linjärt oberoende. 17.7. Finn den allmänna lösningen till y 3y = 0. Vi ska visa implikationen
Blandade A-uppgifter Matematisk analys
TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x
Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
Envariabelanalys 5B Matlablaboration
Mariana Dalarsson, ME & Johan Svenonius, IT Envariabelanalys 5B47 - Matlablaboration 7-- Kurs: 5B47 Handledare: Karim Daho Uppgift Situationen kan illustreras med följande figur: Följande krafter verkar
1 Grundläggande Ellära
1 Grundläggande Ellära 1.1 Elektriska begrepp 1.1.1 Ange för nedanstående figur om de markerade delarna av kretsen är en nod, gren, maska eller slinga. 1.2 Kretslagar 1.2.1 Beräknar spänningarna U 1 och
, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
Tentamen i Elektronik för E, 8 januari 2010
Tentamen i Elektronik för E, 8 januari 200 Tillåtna hjälpmedel: Formelsamling i kretsteori Tvåpol C A I V Du har tillgång till en multimeter som kan ställas in som voltmeter eller amperemeter. Voltmeter
Andra ordningens kretsar
Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter.
Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. 401. (A) Bestäm de allmänna lösningarna till följande differentialekvationer: a. y 3y = 0 b. y 2y 3y = 0 c. y 2y = 0 d. y 4y +
Elektriska komponenter och kretsar. Emma Björk
Elektriska komponenter och kretsar Emma Björk Elektromotorisk kraft Den mekanism som alstrar det E-fält som driver runt laddningarna i en sluten krets kallas emf(electro Motoric Force trots att det ej
Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1
1 Föreläsning 4, Ht Hambley avsnitt 14.1, 4.1 Aktiva filter 1 I första läsperioden behandlades passiva filter. Dessa har nackdelen att lastens resistans påverkar filtrets prestanda. Om signalen tas ut
SF1626 Flervariabelanalys
1 / 15 SF1626 Flervariabelanalys Föreläsning 6 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 15 SF1626 Flervariabelanalys Dagens Lektion För funktioner från R n till R ska
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)
Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För
= 0 vara en given ekvation där F ( x,
DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering
EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM
EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM Vi betraktar ett begnnelsevärdesproblem IVP, initial-value problem) av första ordningen som är skrivet på normal form IVP1) Man
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder
MA2018 Tillämpad Matematik III-ODE, 4.0hp,
MA2018 Tillämpad Matematik III-ODE,.0hp, 2018-08-13 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 20 frågor! Endast Svarsblanketten
Analys av elektriska nät med numeriska metoder i MATLAB
Analys av elektriska nät med numeriska metoder i MATLAB Joel Nilsson Martin Axelsson Fredrik Lundgren 28-2-12 Kurs DN1215 - Numeriska metoder för ME Moment Laboration 1 - Bli bekväm med MATLAB Handledare
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
ETE115 Ellära och elektronik, tentamen oktober 2006
(2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen DEL A
SF1664 Tillämpad envariabelanalys med numeriska metoder Lösningsförslag till tentamen 015-01-1 DEL A 1. Låt f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
Kontrollskrivning 1A
Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen
M0038M Differentialkalkyl, Lekt 10, H15
M0038M Differentialkalkyl, Lekt 10, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 31 Repetition Lekt 9 Bestäm största värdet av 5 sin v + 12 cos v. Staffan Lundberg M0038M
( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ).
KTH matematik Tentamen i SF66 Flervariabelanalys den 7 juni kl 8.3. Tillåtet hjälpmedel: Endast Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga motiveringar krävs för
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Laboration i Maple, kurs HF1905, Matematisk analys Skolår: 2018/19. Laboration i Maple, Matematisk analys HF1905.
Laboration i Maple, kurs HF1905, Matematisk analys Skolår: 018/19 Laboration i Maple, Matematisk analys HF1905. Matematisk analys, Kurskod: HF1905 Skolår: 018/19 Lärare: Klass A: Jonas Stenholm Klass B:
Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare
Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med
Matematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy
Matematik 5 svar Kapitel 3... 1 Test 3... 26 Blandade uppgifter... 29 Kapitel 3 3101. a) y (x) = 2x y(x) = x 2 + C b) y (x) = x 2 x + 1 y(x) = x3 x2 + x + C 3 2 c) y x 2 + 2 = 0 y = x 2 2 y(x) = x3 2x
Reglerteknik. Kurskod: IE1304. Datum: 12/ Tid: Examinator: Leif Lindbäck ( )
Tentamen i Reglerteknik (IE1304) 12/3-2012 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 12/3-2012 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,
Repetitionsuppgifter
MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T
Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet
2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.
2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Introduktion till modifierad nodanalys
Introduktion till modifierad nodanalys Michael Hanke 12 november 213 1 Den modifierade nodanalysen (MNA) Den numeriska simuleringen av elektriska nätverk är nära besläktad med nätverksmodellering. En väletablerad
Del I. Modul 1. Betrakta differentialekvationen
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För
1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller
Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som
Matematiska Institutionen, K T H. B. Krakus. Differential- och integralkalkyl, del 2. Maplelaboration 1.
Matematiska Institutionen, K T H. B. Krakus Differential- och integralkalkyl, del. Maplelaboration 1. Exempel 1. Vart tog den lilla sträckan vägen? Maple är utrustad med ett avanserat ritprogram. Programet
Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic
Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
Några viktiga satser om deriverbara funktioner.
Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma
(4x 3 + y)y + x(x 3 + 2y) dy dx = 0
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:
Tentamen eem076 Elektriska Kretsar och Fält, D1
Tentamen eem076 Elektriska Kretsar och Fält, D1 Examinator: Ants R. Silberberg 21 maj 2012 kl. 08.30-12.30, sal: M Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås tisdagen den 22 maj på institutionens
Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)
Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
Armin Halilovic: EXTRA ÖVNINGAR, SF676 OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uttrck används ofta i olika problem som leder till differentialekvationer: Text Formell beskrivning A är proportionell
3.4 RLC kretsen. 3.4.1 Impedans, Z
3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
isolerande skikt positiv laddning Q=CV negativ laddning -Q V V
1 Föreläsning 5 Hambley avsnitt 3.1 3.6 Kondensatorn och spolen [3.1 3.6] Kondensatorn och spolen är två mycket viktiga kretskomponenter. Kondensatorn kan lagra elektrisk energi och spolen magnetisk energi.
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är