Föreläsning 3/12. Transienter. Hambley avsnitt
|
|
- Rolf Nils Öberg
- för 6 år sedan
- Visningar:
Transkript
1 1 Föreläsning 3/1 Hambley avsnitt Transienter Inom elektroniken betecknar transienter signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi de transienter som uppstår då en kondensator, eller spole, ansluts till en krets eller kopplas bort från en krets. Transienter kan ibland ge upphov till oönskade högfrekventa störningar. Spolen L = L d = 1 L vt ) i) Upplagrad energi: w = 1 Li Kondensatorn = d = 1 it ) v) Upplagrad energi: w = 1 v Lkretsen Vi antar här en krets där en spole som vid tiden t = har en ström I. Den har alltså en upplagrad energi 1 LI. Vid t = kopplas till en en resistans, enligt figur. Strömmen går genom resistansen och avger då energi. Det gör att strömmen genom spolen avtar med tiden. För att få fram tidsförloppet för strömmen är det enklast att ställa upp och lösa den differentialekvation som strömmen satisfierar.
2 I L t eferensriktningen på strömmen är satt så att vid spolen går strömmen in vid och ut vid. Därmed gäller = L d. Ohms lag säger att v =, eftersom strömmen vid resistansen går in vid och ut vid. Det ger följande differentialekvation för strömmen och tillhörande begynnelsevillkor: L di i = i) = I Metoden med integrerande faktor ger: = I e t/ där = L/. Notera att spänningen = I e t/ kan bli mycket stor om är stor. kretsen Vi antar här en krets där en kondensator vid tiden t = har spänningen. Den har alltså en upplagrad energi 1 V. För t > är kondensatorn kopplad till en resistans. Då strömmen går genom resistansen avges energi till resistorn. Det gör att kondensatorns spänningen avtar med tiden. För att få fram tidsförloppet för spänningen är det enklast att ställa upp och lösa den differentialekvation som spänningen satisfierar. t
3 3 eferensriktningen på strömmen är satt så att vid kondensatorn går strömmen in vid och ut vid. Därmed gäller = d. Ohms lag säger att v =, eftersom strömmen genom resistansen går in vid och ut vid. Det ger följande differentialekvation och tillhörande begynnelsevillkor: dv v = v) = Metoden med integrerande faktor ger: = e t/ där = Tidskonstanten För en exponentiellt dämpad signal = v)e t/ är =tidskonstanten. Det betyder att v) = e 1 v).37v). I en L krets är tidskonstanten = L/ och för en krets är den =. Vi noterar att 1/ är líka med brytvinkelfrekvensen för L och näten vi tidigare använt som lågpass och högpassfilter. Exempel: Inkoppling av spänningskälla t = v t) s v t) r v t) c En spänningskälla v s t) kopplas vid t = in mot en krets där v c ) =. Bestäm spänningen över kondensatorn som funktion av tiden. För t ger KVL v s t) = v c t). Eftersom = v c t) fås den ordinära differentialekvationen v ct) 1 v ct) = 1 v st) där =. Metoden med integrerande faktor ger lösningen för t > v c t) = e t/ v c ) 1 ) v s t )e t / Om kondensatorn är oladdad för t gäller v c ) = och därmed v c t) = 1 v s t )e t t)/ Ht)
4 4 där Ht) är enhetssteget Ht) = { t < 1 t > Integralen går att lösa explicit för några av de vanligaste typerna av källor. Steg v s t) = v Ht) ger v c t) = v 1 e t/ ) Ht), se övere grafen i figur 1. Fyrkantpuls v s t) = v Ht) Ht t )) ger, se undre grafen i figur 1, t v c t) = v ) 1 e t/ < t t v ) 1 e t / e t t)/ t > t v r t) v c t) 1ms ms v c t) v r t) 1ms ms Figur 1: Övre grafen visar v c t) och v r t) då v s är ett steg, v s t) = Ht). Undre grafen visar v c t) och v r t) då v s är en fyrkantpuls, v s t) = Ht) Ht t ) där t = 1 ms. För båda graferna gäller = 1 ms.
5 5 Tidsharmonisk källa v s t) = sin ωt ger, v c t) = e t/ sinarctanω)) sinωt arctanω)) ) Ht) 1 ω) = ωe t/ 1 ω) Ht) sinωt arctanω)) Ht) 1 ω) = ωe t/ 1 ω) Ht) sinωt) ω cosωt)) Ht) 1 ω) ).1) Från lösningen ser vi att lösningen är en summa av en transient, d.v.s. en del som dör ut efter en tid och en stationär del. Den stationära delen är den som finns kvar efter lång tid. Matematiskt sett är transienten den homogena lösningen och den stationära delen partikulärlösningen till differentialekvationen. I läsperiod Ht 1 användes jωmetoden för att få fram den stationära lösningen och det är enkelt att se att den överensstämmer med lösningen ovan. I frekvensplanet ger spänningsdelning V c = 1 jω = 1 ω) e jarctanω) I tidsplanet är då amplituden 1 ω) och fasen arctanω), mätt relativt sinωt). Den stationära spänningen är då v cstat t) = sinωt arctanω)) 1 ω) Man kan konstatera att även i detta enkla fall är jωmetoden en bra metod för att snabbt få fram den stationära lösningen. Tips Gå till Wolfram Alpha på nätet. Där kan ni få lösningen till matematiska problem, och även andra problem. Skriv in solve dv/v/tau=sinwt)/tau*ht), v)= så får ni lösningen.1). Wolfram Alpha är ganska okänslig för hur man skriver sina uttryck. Även t.ex. solve v v/tau=sinwt Ht)/tau, v)= fungerar bra. Vill man ha en graf kan man sätta in värden på tau och w. Skriver man t.ex. v v/.=sin1t) Ht)/., v)=, from t= to 1 fås lösningen och dess graf för <t<1.
Föreläsning 29/11. Transienter. Hambley avsnitt
1 Föreläsning 9/11 Hambley avsnitt 4.1 4.4 Transienter Transienter inom elektroniken är signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi
Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1
1 Föreläsning 4, Ht Hambley avsnitt 14.1, 4.1 Aktiva filter 1 I första läsperioden behandlades passiva filter. Dessa har nackdelen att lastens resistans påverkar filtrets prestanda. Om signalen tas ut
Tentamen i Elektronik för E, 8 januari 2010
Tentamen i Elektronik för E, 8 januari 200 Tillåtna hjälpmedel: Formelsamling i kretsteori Tvåpol C A I V Du har tillgång till en multimeter som kan ställas in som voltmeter eller amperemeter. Voltmeter
Tentamen i Elektronik för E, ESS010, 12 april 2010
Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0
2. DC (direct current, likström): Kretsar med tidskonstanta spänningar och strömmar.
Introduktion till elektronik Introduktionen är riktad till studenter på Pi-programmet på Lund universitet och består av följande avsnitt: 1. Grundläggande begrepp: Potential, spänning, ström, resistans,
Tentamen i Elektronik, ESS010, del 1 den 18 oktober, 2010, kl
Institutionen för Elektro och informationsteknik, LTH Tentamen i Elektronik, ESS00, del den 8 oktober, 00, kl. 08.00.00 Ansvariga lärare: Anders Karlsson, tel. 40 89, 07 98 (kursexp. 90 0). arje uppgift
Växelström i frekvensdomän [5.2]
Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer
isolerande skikt positiv laddning Q=CV negativ laddning -Q V V
1 Föreläsning 5 Hambley avsnitt 3.1 3.6 Kondensatorn och spolen [3.1 3.6] Kondensatorn och spolen är två mycket viktiga kretskomponenter. Kondensatorn kan lagra elektrisk energi och spolen magnetisk energi.
Växelström i frekvensdomän [5.2]
Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer
Tentamen i Elektronik för E (del 2), ESS010, 5 april 2013
Tentamen i Elektronik för E (del ), ESS00, 5 april 03 Tillåtna hjälpmedel: Formelsamling i kretsteori. Spänningen mv och strömmen µa mäts upp på ingången till en linjär förstärkare. Tomgångsspänningen
Andra ordningens kretsar
Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar
Tentamen i Elektronik för E (del 2), ESS010, 11 januari 2013
Tentamen i Elektronik för E (del ), ESS00, januari 03 Tillåtna hjälpmedel: Formelsamling i kretsteori. Du har en mikrofon som kan modelleras som en spänningskälla i serie med en resistans. Du vill driva
Tentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07
Tentamen i Elektronik, ESS00, del 4,5hp den 9 oktober 007 klockan 8:00 :00 För de som är inskrivna hösten 007, E07 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00,
10. Kretsar med långsamt varierande ström
1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera
Elektronik 2017 EITA35
Elektronik 2017 EITA35 Föreläsning 15 Repetition Information inför tentamen 1 Resistornätverk: Definition av potential, spänning och ström. Ohms lag, KCL och KVL Parallell och seriekoppling av resistanser
Hambley avsnitt
Föreläsning 0 Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Vid kommunikation används tidsharmoniska signaler. Dessa har ett visst frekvensband centrerad kring en bärfrekvens. Som exempel kan en sändare
Komplexa tal. j 2 = 1
Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den definieras
Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01
Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att
Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)
Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,
Tentamen i Elektronik, ESS010, del 2 den 16 dec 2008 klockan 8:00 13:00.
Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 16 dec 2008 klockan 8:00 13:00. Uppgifterna i tentamen ger totalt 60p. Uppgifterna är inte ordnade
Hambley avsnitt
Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.
Komplexa tal. j 2 = 1
1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den
1 Grundläggande Ellära
1 Grundläggande Ellära 1.1 Elektriska begrepp 1.1.1 Ange för nedanstående figur om de markerade delarna av kretsen är en nod, gren, maska eller slinga. 1.2 Kretslagar 1.2.1 Beräknar spänningarna U 1 och
Tentamen ETE115 Ellära och elektronik för F och N,
Tentamen ETE5 Ellära och elektronik för F och N, 2009 0602 Tillåtna hjälpmedel: formelsamling i kretsteori och elektronik. Observera att uppgifterna inte är ordnade i svårighetsordning. Alla lösningar
Tentamen i Elektronik för F, 13 januari 2006
Tentamen i Elektronik för F, 3 januari 006 Tillåtna hjälpmedel: Formelsamling i kretsteori, miniräknare Du har fått tag på 6 st glödlampor från USA. Tre av dem visar 60 W och tre 40 W. Du skall nu koppla
IF1330 Ellära KK1 LAB1 KK2 LAB2 KK4 LAB4. tentamen
F330 Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8 F/Ö9
10. Kretsar med långsamt varierande ström
10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar
10. Kretsar med långsamt varierande ström
. Kretsar med långsamt varierande ström För en normalstor krets kan vi med andra ord använda drivande spänningar med frekvenser upp till 7 Hz, förutsatt att analysen sker med de metoder som vi nu kommer
10. Kretsar med långsamt varierande ström
1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar
Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.
Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Uppgifterna i tentamen ger totalt
Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00
Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna
Ellära och Elektronik Moment AC-nät Föreläsning 5
Ellära och Elektronik Moment A-nät Föreläsning 5 Visardiagram Impendans jω-metoden Komplex effekt, effekttriangeln Visardiagram Om man tar projektionen på y- axeln av en roterande visare får man en sinusformad
ETE115 Ellära och elektronik, tentamen oktober 2006
(2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är
Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska
Svar och ösningar Grundläggande Ellära. Elektriska begrepp.. Svar: a) Gren b) Nod c) Slinga d) Maska e) Slinga f) Maska g) Nod h) Gren. Kretslagar.. Svar: U V och U 4 V... Svar: a) U /, A b) U / Ω..3 Svar:
Ellära och Elektronik Moment Filter och OP Föreläsning 8
Ellära och Elektronik Moment Filter och OP Föreläsning 8 Mer om bandpassfilter och bandspärrfilter esonanskretsar Copyright 008 Börje Norlin Bandpassfilter För att konstruera denna typ av filter krävs
Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2
7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm
Lab nr Elinstallation, begränsad behörighet ET1013 Likströmskretsar
Laborationsrapport Kurs Elinstallation, begränsad behörighet ET1013 Lab nr 1 version 2.1 Laborationens namn Likströmskretsar Namn Kommentarer Utförd den Godkänd den Sign 1 Noggrannhet vid beräkningar Anvisningar
ETE115 Ellära och elektronik, tentamen april 2006
24 april 2006 (9) Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen april 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. OBS! Ny version av formelsamlingen finns
Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015
Extra kursmaterial om Elektriska Kretsar asse lfredsson inköpings universitet asse.lfredsson@liu.se November 205 Får kopieras fritt av ith-studenter för användning i kurserna TSDT8 Signaler & System och
Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)
Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts
Alltså är {e 3t, e t } en bas för lösningsrummet, och den allmänna lösningen kan därmed skrivas
ektion 7, Envariabelanalys den 8 oktober 1999 Visa att funktionerna y 1 = e r 1t och y = e r t, där r 1 r, är linjärt oberoende. 17.7. Finn den allmänna lösningen till y 3y = 0. Vi ska visa implikationen
Uppgifter 9 och 10 är för de som studerar byggteknik
INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Elektronik grundkurs Laboration 1 Mätteknik
Elektronik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter: Uppgifterna skall lösas före laborationen med papper och penna och vara snyggt uppställda med figurer. a) Gör beräkningarna till uppgifterna
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
Tentamen i Elektronik, ESS010, den 15 december 2005 klockan 8:00 13:00
Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, den 5 december 005 klockan 8:00 3:00 Uppgifterna i tentamen ger totalt 60p. Uppgifterna är inte ordnade på något
MATEMATIK OCH MAT. STATISTIK 6H3000, 6L3000, 6H3011 TEN
TENTAMEN Datum: 0 maj 007 Kurs: MATEMATIK OCH MAT STATISTIK 6H000, 6L000, 6H0 TEN (Differential ekvationer, komplexa tal) Skrivtid: :5-7:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ som
VÄXELSTRÖM SPÄNNINGSDELNING
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Agneta Bränberg 1996-06-12 VÄXELSTRÖM SPÄNNINGSDELNING Laboration E10 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer
Introduktion till modifierad nodanalys
Introduktion till modifierad nodanalys Michael Hanke 12 november 213 1 Den modifierade nodanalysen (MNA) Den numeriska simuleringen av elektriska nätverk är nära besläktad med nätverksmodellering. En väletablerad
Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans
Inst. för fysik och astronomi 2017-11-26 1 Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 2017 (3.1) En plattkondensator har
IE1206 Inbyggd Elektronik
IE1206 Inbyggd Elektronik F1 F3 F4 F2 Ö1 Ö2 PIC-block Dokumentation, Seriecom Pulsgivare I, U, R, P, serie och parallell KK1 LAB1 Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchhoffs
TENTAMEN HF1006 och HF1008
TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
3.4 RLC kretsen. 3.4.1 Impedans, Z
3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna
Ellära och Elektronik Moment AC-nät Föreläsning 4
Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer
Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik
Laborationsrapport Kurs Lab nr Elektroteknik grundkurs ET1002 1 Laborationens namn Mätteknik Namn Kommentarer Utförd den Godkänd den Sign 1 Elektroteknik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter:
IE1206 Inbyggd Elektronik
IE1206 Inbyggd Elektronik F1 F3 F4 F2 Ö1 Ö2 PIC-block Dokumentation, Seriecom Pulsgivare I, U, R, P, serie och parallell KK1 LAB1 Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchoffs
Tentamen i Elektronik, ESS010, och Elektronik för D, ETI190 den 10 jan 2006 klockan 14:00 19:00
Tentamen i Elektronik, ESS00, och Elektronik för D, ETI90 den 0 jan 006 klockan 4:00 9:00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, och Elektronik för D,
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER)
INLÄMNINGSPPGIFT MATEMATIK, HF000 ( DIFFERENTIAL EKVATIONER) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av tre uppgifter. Individuellt arbete. Du väljer tre av nedanstående
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
Elektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
Tentamen Elektronik för F (ETE022)
Tentamen Elektronik för F (ETE022) 2008-08-28 Tillåtna hjälpmedel: formelsamling i kretsteori, ellära och elektronik. Tal 1 En motor är kopplad till en spänningsgenerator som ger spänningen V 0 = 325 V
Tentamen i Elektronik för F, 2 juni 2005
Tentamen i Elektronik för F, juni 005 Tid: 83 Tillåtna hjälpmedel: Formelsamling i kretsteori, miniräknare CEQ: Fyll i enkäten efter det att du lämnat in tentan. Det går bra att stanna kvar efter 3.00
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,
Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D
Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ET 013 för D1 1999-04-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet hjälpmedel är
Elektroakustik Något lite om analogier
Elektroakustik 2003-09-02 10.13 Något lite om analogier Svante Granqvist 2002 Något lite om analogier När man räknar på mekaniska system behöver man ofta lösa differentialekvationer och dessutom tänka
VÄXELSTRÖM SPÄNNINGSDELNING
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Agneta Bränberg Patrik Eriksson (uppdatering) 1996-06-12 uppdaterad 2005-04-13 VÄXELSTRÖM SPÄNNINGSDELNING Laboration E10 ELEKTRO Personalia: Namn: Kurs:
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET
Lars-Erik Cederlöf Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET1013 2012-05-04 Del Tentamen omfattar 33 poäng. För godkänd tentamen krävs 16 poäng. Tillåtna hjälpmedel är räknedosa
Sammanfattning av likströmsläran
Innehåll Sammanfattning av likströmsläran... Testa-dig-själv-likströmsläran...9 Felsökning.11 Mätinstrument...13 Varför har vi växelström..17 Växelspännings- och växelströmsbegrepp..18 Vektorräknig..0
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET
Lars-Erik Cederlöf Tentamen på elläradelen i kursen Elinstallation, begränsad behörighet ET1013 2012-03-27 Del Tentamen omfattar 33 poäng. För godkänd tentamen krävs 16 poäng. Tillåtna hjälpmedel är räknedosa
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,
Övningsuppgifter i Elektronik
1 Svara på följande frågor om halvledarkomponenter. Övningsuppgifter i Elektronik a) Vad är utmärkande för ett halvledarmaterial? b) Vad innebär egenledning och hur kan den förhindras? c) edogör för dopning
Föreläsnng Sal alfa
LE1460 Föreläsnng 2 20051107 Sal alfa. 13.15 17.00 Från förra gången Ström laddningar i rörelse laddningar per tidsenhet Spännig är relaterat till ett arbet. Arbete per laddningsenhet. Spänning är potetntialskillnad.
Spolen och Kondensatorn motverkar förändringar
Spolen och Kondensatorn motverkar förändringar Spolen och kondensatorn motverkar förändringar, tex vid inkoppling eller urkoppling av en källa till en krets. Hur går det då om källan avger en sinusformad
IDE-sektionen. Laboration 5 Växelströmsmätningar
9428 IDEsektionen Laboration 5 Växelströmsmätningar 1 Förberedelseuppgifter laboration 4 1. Antag att vi mäter spänningen över en okänd komponent resultatet blir u(t)= 3sin(ωt) [V]. Motsvarande ström är
Kretsteori Exempelsamling 2007
Kretsteori Exempelsamling 007 Mats Gustafsson, Anders Karlsson och ichard Lundin Elektro och informationsteknik Lunds tekniska högskola P.O. Box 8, S 00 Lund Förord Kretsteorin ger de matematiska metoderna
Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D
Lars-Erik ederlöf Tentamen i Grundläggande ellära och digitalteknik ET 03 för D 000-03-3 Tentamen omfattar 40 poäng, poäng för varje uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa.
Föreläsning 4/11. Lite om logiska operationer. Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar)
1 Föreläsning 4/11 Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar) Lite om logiska operationer Logiska variabler är storheter som kan anta två värden; sann 1 falsk 0 De logiska
Lektion 1: Automation. 5MT001: Lektion 1 p. 1
Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.
Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet
Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
Genom att kombinera ekvationer (1) och (3) fås ett samband mellan strömmens och spänningens amplitud (eller effektivvärden) C, (4)
VÄXELSTRÖMSKRETSEN 1 Inledning Behandlandet av växelströmskretsar baserar sig på tre grundkomponenters, motståndets (resistans R), spolens (induktans L) och kondensatorns (kapacitans C) funktionsprinciper.
Tentamen i Elektronik grundkurs ETA007 för E
Lars-Erik Cederlöf Tentamen i Elektronik grundkurs ETA007 för E 003-0-4 Tentamen omfattar poäng. 3 poäng per uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa. För full poäng krävs
IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen
F330 Ellära F/Ö F/Ö4 F/Ö2 F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av U och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK2 LAB2 Tvåpol mät och sim F/Ö8
Elektriska och elektroniska fordonskomponenter. Föreläsning 4 & 5
Elektriska och elektroniska fordonskomponenter Föreläsning 4 & 5 Kondensatorn För att lagra elektrisk laddning Användning Att skydda brytarspetsarna (laddas upp istället för att gnistan bildas) I datorminnen
Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar
Svängningar Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande... 3 Det dämpade men odrivna systemet... 3 Det drivna systemet... 4 Några praktiska tips...
IDE-sektionen. Laboration 6 Växelströmsmätningar
090508 IDE-sektionen Laboration 6 Växelströmsmätningar 1 Förberedelseuppgifter laboration 5 1. Antag att L=250 mh och resistansen i spolen är ca: 150 Ω i figur 3. Skissa på spänningen över resistansen
Tentamen i Elektronik - ETIA01
Tentamen i Elektronik - ETIA01 Institutionen för elektro- och informationsteknik LTH, Lund University 2015-10-21 8.00-13.00 Uppgifterna i tentamen ger totalt 60 poäng. Uppgifterna är inte ordnade på något
Lektion 2: Automation. 5MT042: Automation - Lektion 2 p. 1
Lektion 2: Automation 5MT042: Automation - Lektion 2 p. 1 Lektion 2: Dagens innehåll Repetition av Ohms lag 5MT042: Automation - Lektion 2 p. 2 Lektion 2: Dagens innehåll Repetition av Ohms lag Repetition
IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen
F1330 Ellära F/Ö1 F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK1 LAB1 Mätning av och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8
IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------
IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen
F1330 Ellära F/Ö1 F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK1 LAB1 Mätning av U och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8
RC-kretsar, transienta förlopp
13 maj 2013 Labinstruktion: RC-kretsar, magnetiska fält och induktion Ellära, 92FY21/27 1(5) RC-kretsar, transienta förlopp I den här laborationen kommer du att titta på urladdning av en RC-krets och hur
IE1206 Inbyggd Elektronik
E06 nbyggd Elektronik F F3 F4 F Ö Ö P-block Dokumentation, Seriecom Pulsgivare,,, P, serie och parallell KK AB Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchhoffs lagar Nodanalys Tvåpolsatsen
Laborationsrapport. Kurs Elinstallation, begränsad behörighet. Lab nr 2. Laborationens namn Växelströmskretsar. Kommentarer. Utförd den.
Laborationsrapport Kurs Elinstallation, begränsad behörighet Lab nr 2 version 3.1 Laborationens namn Växelströmskretsar Namn Kommentarer Utförd den Godkänd den Sign 1 Inledning I denna laboration skall