MA2018 Tillämpad Matematik III-ODE, 4.0hp,
|
|
- Robert Strömberg
- för 6 år sedan
- Visningar:
Transkript
1 MA2018 Tillämpad Matematik III-ODE,.0hp, Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 20 frågor! Endast Svarsblanketten ska lämnas in! Inget tentamensomslag! Svarsalternativ i Bold Courier New ska tolkas som text i en Input Cell. Övrig text som i en Text Cell. Beteckningar enligt konventionen i kompendieserien "Något om...". För bedömning och betygsgränser se kursens hemsida. Lösningsförslag anslås på kursens hemsida efter tentamen. Lycka till! Bertil 1. Separera 1 x yy' 2. (1p) Del A 10 poäng med fokus på räknefärdighet för hand, samt grundläggande färdighet i Mathematica. Lösningsförslag: Ok! a 2 y y x 1 1 x C 1 b y 1 y 2 x x C 1 c y y 2 1 x 1 x C 1 d 2y 1 y 1 x 1 x C 1 2. Lös differentialekvationen y' y x 2 y. (1p) Lösningsförslag: Denna är separabel, ty vi har att y' y x 2 y y' y 1 x2 1 y y 1 x 2 x C 1 ln y x 1 3 x3 C 1 y x x 1 3 x3 C 1 y x C 1 x 1 3 x3, men det går också bra att betrakta den som linjär y' y x 2 y y' 1 x 2 y 0 med 1 x2 x x 1 3 x3 så x x 1 3 x3 y x 1 3 x2 0 y x C 1 x 1 3 x3. DSolve y' x y x x 2 y x, y x, x Simplify y x c 1 x3 3 x a y x C 1 x x2 b y x C 1 x x c y x C 1 x x2 d y x C 1 x x 3. Lös differentialekvationen cos 2 x y' y 2. (1p) Lösningsförslag: Separabel; cos 2 x y' y 2 y' 1 y 2 1 y x C y 2 cos 2 x cos 2 1 y x 1 tan x C x 1. DSolve Cos x 2 y' x y x 2,y x, x y x 1 c 1 tan x a y x 1 tan x C 1 b y x ln sin x C 1 c y x 1 tan x C 1 d y x ln cos x C 1. Lös differentialekvationen y' y 2. (1p) Lösningsförslag: Exempelvis linjär med 1 x x så x x y x 2 Separabel x y 2 x x C 1 x y 2 x C 1 y 2 C 1 x. Naturligtvis är den också separabel y' y 2 ln 2 y x C 1 2 y x C 1 y C 1 x 2. DSolve y' x y x 2, y x, x 1 2 y y x C 1 y x c 1 x 2 a y x 1 2 x C 1 b y x 1 2 C 1 x c y x C 1 x 1 2 Rätt svarsalternativ: d d y x 2 C 1 x 5. Lös differentialekvationen y' 1 y x. (1p) x Lösningsförslag: Linjär; 1 x x ln x x 1 så x 1 y x 1 1 x C 1 x 1 y x0 1 C 1 y x x 2 C 1 x. 1
2 DSolve y' x 1 y x x, y x, x x y x c 1 x x 2 Rätt svarsalternativ: a a y x C 1 x x 2 b y x C 1 x x 2 c y x C 1 x 2 x d y x C 1 x 2 x 6. Lös differentialekvationen y' y x. (1p) Lösningsförslag: Linjär; 1 x x så x y x x x C 1 x y 1 2 2x C 1 y x 1 2 x C 1 x. DSolve y' x y x x,y x, x Simplify y x c 1 x x 2 a y x 1 2 x C 1 x b y x 1 2 2x C 1 x c y x 1 2 x C 1 x d y x 2x C 1 x 7. Lös differentialekvationen y' 2 y 2x. (1p) Lösningsförslag: Linjär; 2 x 2x så 2x y 1 x C 1 2x y x C 1 y 2x x C 1. DSolve y' x 2y x 2x,y x, x FullSimplify y x 2 x c 1 x a y x C 1 2x x b y x 2x C 1 x c y x C 1 x 2x d y x C 1 2x 1 2 x2 8. Lös differentialekvationen y'' y' 0. (1p) Lösningsförslag: Karakteristiska ekvationen r 2 r 0 har rötterna r 1 0 och r 2 1 så vi har homogena lösningen enligt "Fall 1": y h x C 1 0 x C 2 1 x. Men y p x 0, så y x y h x y p x C 1 C 2 x. DSolve y'' x y' x 0, y x, x y x c 1 x c 2 Rätt svarsalternativ: d a y x x C 1 cos x C 2 sin x b y x x C 1 C 2 x c y x C 1 x C 2 x d y x C 1 C 2 x 9. Ansätt en partikulärlösning till y'' 2y ' 5 y cos 2x. (1p) Lösningsförslag: Karakteristiska ekvationen r 2 2r 5 0 har rötterna r 1,2 1 2 så vi har homogena lösningen enligt "Fall 3": y h x x C 1 cos 2x C 2 sin 2x. Sedan y p x Acos 2x Bsin 2x y h x. Så hela sagan DSolve y'' x 2y' x 5y x Cos 2 x, y x, x FullSimplify y x x c 1 sin 2 x c 2 cos 2 x 1 sin 2 x cos 2 x 17 Rätt svarsalternativ: a a y p x Acos 2x Bsin 2x b y p x Acos 2x c y p x x Acos 2x Bsin 2x d y p x Axcos 2x 10. Lös differentialekvationen y'' y' y x. (1p) Lösningsförslag: Karakteristiska ekvationen r 2 r 0 har dubbelroten r 1,2 2 så vi har homogena lösningen enligt Fall 2 : y h x 2x C 1 x C 2. Eftersom högerledet är ett polynom av grad ett ansätter vi y p x Ax B y h x. Sätt in i (ODE) och identifiera koefficienter; 0 A Ax B x x 0 :A B, x 1 :A A 1, B 0. Så lösningen till (ODE) y x y h x y p x 2x C 1 x C 2 x. En sista ängslig test DSolve y'' x y' x y x x, y x, x FullSimplify y x 2 x c 2 x c 1 x 2
3 a y x 2x C 1 x C 2 x 1 b y x 2x C 1 x C 2 x c y x C 1 x C 2 2x x 1 d y x 2x C 1 cos x C 2 sin x x Antalet bakterier på ett julbord tillväxer vid varje tidpunkt med en hastighet som är omvänt proportionell mot antalet bakterier med proportionalitetskonstanten k. Låt b t vara antalet bakterier vid tiden t. Formulera och lös BVP om b 10 då t 0. 1p Del B 10 poäng med fokus på modellering och Mathematica. Lösningsförslag: Det är bara att översätta beskrivningen i texten bavt DSolve b' t k,b 0 10, b t, t b t b t 2 kt 50 a bavt DSolve b' t k b t, b 0 10, b t, t b bavt DSolve b' t 1 k b t, b 0 10, b t, t c bavt DSolve b' t k b t, b 0 10, b t, t d bavt DSolve b' t kb t, b 0 10, b t, t Rätt svarsalternativ: a En patient tillförs glukos blodsocker till blodet genom så kallat dropp med konstant flöde 20 mg dag. Glukosen omsätts ut i kroppen med en hastighet som är proportionell mot aktuell mängd glukos i blodet med proportionalitetskonstanten k dag 1. Läkaren är intresserad av mängden glukos i blodet som funktion av tiden, s t. 12. Formulera och lös (BVP) om mängden glukos var 1 mg från början. (1p) Lösningsförslag: Det är bara att översätta beskrivningen i texten med sockermassans oförstörbarhet. savt DSolve s' t 20 s t, s 0 1, s t, t Simplify s t 5 t a savt DSolve s' t 20 s t, s 0 1, s t, t b savt DSolve s' t 20 s t, s 0 1, s t, t c savt DSolve s' t 20 s t, s 0 1, s t, t d savt DSolve s' t 20 s t, s 0 1, s t, t 13. Hur stor är glukosmängden efter 1 dag? (1p) Lösningsförslag: Vi söker tydligen s 1. savt. t 1 s 1 5 a savt 1 b savt ; t 1 c savt. t 1 d savt 1 1. Hur länge dröjer det innan glukosmängden har ökat till 3 mg? (1p) 3
4 Lösningsförslag: Restiden t till 3 mg bestäms av ekvationen s t 3. Solve s t 3. savt, t, Reals t log 2 a Solve s t 3, t. savt b Solve s t. savt 3, t c Solve savt 3, t d Solve savt t 3, t 15. Vilken är den högsta mängd glukos patienten kan ha i blodet enligt denna modell? (1p) Lösningsförslag: Gränsvärdet blir lim t s t. Inses också direkt av (ODE) eftersom i gräns gäller s' 0 savt. t s 5 a savt. t b Limit savt, t c savt ; t Limit d savt Rätt svarsalternativ: a 16. Rita s t, t 0, 2 i rött. Pynta axlarna. (1p) Lösningsförslag: Rita på! Plot s t. savt, t, 0, 2, PlotStyle Red, PlotRange All, s t mg t dagar a Plot savt, t, 0, 2, PlotStyle Red, PlotRange All, b Plot s t. savt, t, 0, 2, PlotStyle Red, PlotRange All, c Plot savt t, t, 0, 2, PlotStyle Red, PlotRange All, d Plot savt t, t, 0, 2, PlotStyle Red, PlotRange All, För att välja rätt skidvalla genomför många skidåkare glidprov, vilket innebär uppmätning av glidsträcka med känd utgångshastighet. Vid ett prov gav utgångshastigheten 6 m s glidsträckan 30 m. Antag att den enda kraften som verkar i rörelseriktningen är den bromsande friktionskraften som är proportionell mot både friktionskoefficienten Μ och ekipagets tyngd. Använd Newtons accelerationslag mx F med g 10 m s 2 för att bestämma Μ. 17. Formulera och lös (BVP) som beskriver rörelsen. (1p) Lösningsförslag: Newton och problemtexten möblerar (BVP). xavt DSolve m x'' t Μm 10, x 0 0, x' 0 6, x t, t First x t 6 t 5 Μ t 2
5 a xavt DSolve 10 m x'' t Μm, x' 0 6, x t, t First b xavt DSolve m x'' t Μm10, x' 0 6, x t, t First c xavt DSolve m x'' t m10 1 Μ,x' 0 6, x t, t First d xavt DSolve m x'' t m10 1 Μ,x' 0 6, x t, t First 18. Bestäm såväl Μ som restid t för glidsträckan. (1p) Lösningsförslag: Vid tiden t är x t 30 och x' t 0. Detta ekvationssystem gör hela jobbet. Solve x t 30, x' t 0. xavt. D xavt, t, t, Μ t 10, Μ 3 50 Rätt svarsalternativ: d a Solve x t 30, x' t 0. xavt. D xavt, t, t, Μ b Solve x t. xavt 30, x' t.d xavt, t 0, t, Μ c Solve xavt 30, D xavt, t 0, t, Μ d Solve x t 30, x' t 0. xavt. D xavt, t, t, Μ Sankta Lucia ror över en 20 m bred, rak å för att hämta stjärngossarna. Lägg in ett koordinatsystem med origo vid åkanten där Lucia startar, x axeln pekande rakt mot andra sidan och y axeln längs åkanten pekande nedströms. Vattnets parabelformade hastighetsprofil har maximala värdet 1 m s mitt i ån. 19. Lucia ror hela tiden rakt mot andra sidan med farten 1 m s. Formulera och lös (BVP) som beskriver banan på parameterform x t, y t. (1p) Lösningsförslag: Först hastighetsparabeln, sedan (BVP) och dess lösning med banan på parameterform x t, y t. xyavt DSolve x' t 1, x 0 0, y' t 1 x t 20 x t, y 0 0, x t, y t, t x t t, y t t2 t 3 a xyavt DSolve x' t 1, x 0 0, y' t 1 x t 20 x t, y 0 0, x t, y t, t First b xyavt DSolve x' t 1, x 0 0, y' t 1 x t 20 x t, y 0 0, x t, y t, t First c xyavt DSolve x' t 1, x 0 0, y' t 1 x t 20 x t, y 0 0, x t, y t, t First d xyavt DSolve x' t 1, x 0 0, y' t 1 x t 20 x t, y 0 0, x t, y t, t First 20. Rita hennes resväg över ån x t, y x, t 0, 20 i rött. (1p) Lösningsförslag: Äntligen en liten reseberättelse vilken tur att restiden är precis 20 s ;-). ParametricPlot x t, y t. xyavt, t, 0, 20, PlotStyle Red, AxesLabel x, y 5
6 y x a ParametricPlot Evaluate y x t. xyavt, t, 0, 20, PlotStyle Red b ParametricPlot Evaluate x t, y t. xyavt, t, 0, 20, PlotStyle Red c ParametricPlot Evaluate x t. xyavt, y t. xyavt, t, 0, 20, PlotStyle Red d ParametricPlot Evaluate xyavt, t, 0, 20, PlotStyle Red 6
MA2018 Tillämpad Matematik III-ODE, 4.0hp,
MA208 Tillämpad Matematik III-ODE, 4.0hp, 208-05-28 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 20 frågor! Endast Svarsblanketten
MA2004 Tillämpad Matematik II, 7.5hp,
MA004 Tillämpad Matematik II, 7.5hp, 09-06-07 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas
MA2004 Tillämpad Matematik II, 7.5hp,
MA00 Tillämpad Matematik II, 7hp, 09-0-6 Hjälpmedel: Penna, radergummi och rak linjal Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas in!
Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp
Övningstentamen i MA00 Tillämpad Matematik II, 7hp Tentamen består av 30 frågor! Endast Svarsblanketten ska lämnas in! Inget tentamensomslag! Hjälpmedel: Penna, radergummi och linjal Varken räknedosa eller
Tillämpad Matematik III Övning ODE
HH/ITE/BN Tillämpad Matematik III, Övning ODE 1 20 10 10 20 5 10 15 20 25 Tillämpad Matematik III Övning ODE Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är eempel på uppgifter du
MA2004 Tillämpad Matematik II, 7.5hp,
MA004 Tillämpad Matematik II, 7.hp, 08-0- Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas
MA2004 Tillämpad Matematik II, 7.5hp,
MA00 Tillämpad Matematik II, 7.5hp, 09-0-6 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas
Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp
Övningstentamen i MA Tillämpad Matematik I,.hp Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas
Tillämpad Matematik III Övning ODE
HH/IDE/BN Tillämpad Matematik III, Övning ODE 0 0-0 -0 5 0 5 0 5 Tillämpad Matematik III Övning ODE Allmänt Övningsuppgifterna, speciellt Tpuppgifter i första hand, är exempel på uppgifter du kommer att
MA2004 Tillämpad Matematik II, 7.5hp,
MA00 Tillämpad Matematik II, 7.5hp, 08-0-06 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas
MA2003 Tillämpad Matematik I, 7.5hp,
MA Tillämpad Matematik I, 7.hp, 9-6- Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas in! Inget
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
MA2003 Tillämpad Matematik I, 7.5hp,
MA Tillämpad Matematik I, 7.hp, 9--8 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas in! Inget
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =
MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna
MA2018 Tillämpad Matematik III Övning ODE, vt08, lp3
HH/SET/BN Tillämpad Matematik III, Övning ODE 0 0-0 -0 5 0 5 0 5 MA08 Tillämpad Matematik III Övning ODE, vt08, lp3 Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
dy dx = ex 2y 2x e y.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,
(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.
UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,
2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.
HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
Sammanfattning av ordinära differentialekvationer
Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:
HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
MA2003 Tillämpad Matematik I, 7.5hp,
MA Tillämpad Matematik I, 7.5hp, 7--7 Hjälpmedel: Penna, radergummi och rak linjal. arken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast varsblanketten ska lämnas in! Inget
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter.
Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. 401. (A) Bestäm de allmänna lösningarna till följande differentialekvationer: a. y 3y = 0 b. y 2y 3y = 0 c. y 2y = 0 d. y 4y +
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.
Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00. Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Bonus
= x 2 y, med y(e) = e/2. Ange även existens-
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:
Skriv väl, motivera och förklara vad du gör. Betygsgränser: p. ger betyget 3, p. ger betyget 4 och 40 p. eller mer ger betyget
Matematik Chalmers tekniska högskola 0-08-7 kl. :00-8:00. Tentamen TMV036 Analys och linjär algebra K, Kf, Bt, del B Telefonvakt: Hossein Raufi, telefon 0703-08830 Inga hjälpmedel. Kalkylator ej tillåten.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:
Tillämpad Matematik I Övning 1
HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen
Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område
TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012
TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och
Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standard LMA515 Matematik KI, del B.
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 343 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standard 73 88 34 LMA55 Matematik KI, del B Tentan rättas och bedöms anonymt. Skriv tentamenskoden
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Lösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Tentamen i Matematisk analys MVE045, Lösningsförslag
Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar
( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ).
KTH matematik Tentamen i SF66 Flervariabelanalys den 7 juni kl 8.3. Tillåtet hjälpmedel: Endast Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga motiveringar krävs för
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Studietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
MA2004 Tillämpad Matematik II, 7.5hp, 2013-03-27
MA00 Tillämpad Matematik II,.hp, 0-0- Hjälpmedel: Räknedosa! Tänk på att dina lösningar ska utformas så att det blir lätt för läsaren att följa dina tankegångar. Ofullständiga lösningar, eller lösningar
Studietips info r kommande tentamen TEN1 inom kursen TNIU23
Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Något om (ODE) och Mathematica
HH/ITE/BN Ordinära differentialekvationer och Mathematica 1 Något om (ODE) och Mathematica Bertil Nilsson 2016-01-01 2 Ordinära differentialekvationer och Mathematica HH/ITE/BN Förord På följande sidor
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
6.2 Partikelns kinetik - Tillämpningar Ledningar
6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste
Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim
Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in
x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =
SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e
MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12
MA003 Tillämpad Matematik I, 7.5hp, 03-08- Hjälpmedel: Räknedosa! Tänk på att dina lösningar ska utformas så att det blir lätt för läsaren att följa dina tankegångar. Ofullständiga lösningar, eller lösningar
Teori för linjära ordinära differentialkvationer med konstanta koefficienter
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016/2017 Teori för linjära ordinära differentialkvationer med konstanta koefficienter 1. FÖRSTA ORDNINGEN Homogena fallet. En homogen linjär
4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),
Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska
MA4021 Vektorgeometri, Projekt 2
HH/IDE/BN Projekt 2 1 MA4021 Vektorgeometri, Projekt 2 Allmänt Skriv klart och tydligt. Motivera väl! Tänk på att skriva så att fler än ni själva förstår vad ni menar. Rita alltid tydliga figurer där variabler
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop
SF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Program: DATA, ELEKTRO
Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Matematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy
Matematik 5 svar Kapitel 3... 1 Test 3... 26 Blandade uppgifter... 29 Kapitel 3 3101. a) y (x) = 2x y(x) = x 2 + C b) y (x) = x 2 x + 1 y(x) = x3 x2 + x + C 3 2 c) y x 2 + 2 = 0 y = x 2 2 y(x) = x3 2x
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
Något om Taylors formel och Mathematica
HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700
y(0) = e + C e 1 = 1
KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs
1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller
Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.
Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
SF1625 Envariabelanalys
Föreläsning 9 Institutionen för matematik KTH 16 september 2016 Homogena injära ODE m konst koeff Sist: homogena linjära ODE med konstanta koefficienter. Första ordningens sådan ekvation kan skrivas y
Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE ht1997 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E ht1997 2 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig
UPPSALA UNIVERSITET Envariabelanalys IP1/Hösten L.Höglund, P.Winkler, S. Zibara Ingenjörsprogrammen Tel: , ,
UPPSALA UNIVERSITET Envariabelanalys IP/Hösten 00 Matematiska institutionen Sluttentamen LHöglund, PWinkler, S Zibara Ingenjörsprogrammen Tel: 7, 789, 70 00 6 Tid : 0800 00 Hjälpmedel : godkänd miniräknare
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y
TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ
2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen
Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
IV, SF1636(5B1210,5B1230).
Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
Crash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS A3/B2 26 3 7 kl. 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna a) x+4 x 3 +4x dx.5)