Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
|
|
- Ingeborg Arvidsson
- för 6 år sedan
- Visningar:
Transkript
1 TENTAMEN 9 jan 01, HF1006 och HF1008 Moment: TEN1 (Lnjär algebra), hp, skrftlg tentamen Kurser: Analys och lnjär algebra, HF1008, Lnjär algebra och analys HF1006 Klasser: TIELA1, TIMEL1, TIDAA1 Td: , Plats: Campus Hannge Lärare: Rchard Erksson, Inge Jovk och Armn Hallovc Examnator: Armn Hallovc Betygsgränser: Maxpoäng = För betyg A, B, C, D, E, Fx krävs, 19, 16, 1, 10 respektve 9 poäng Hjälpmedel på tentamen TEN1: Utdelad formelblad Mnräknare ej tllåten Kompletterng: 9 poäng på tentamen ger rätt tll kompletterng (betyg Fx) Skrv endast på en sda av papperet Skrv namn och personnummer på varje blad Inlämnade uppgfter skall markeras med kryss på omslaget Denna tentamenslapp får ej behållas utan lämnas n tllsammans med lösnngar Fullständga lösnngar skall presenteras tll alla uppgfter Uppgft 1 (p) a) Beräkna volymen av den parallellepped som spänns upp av vektorerna (1, 1, 1), (1,, ) och (1,, 5) b) Beräkna även volymen av den parallellepped som spänns upp av (1,, ), (, 1, ) och (1, 1, -7) c) Tolka svaret du får b Uppgft (1p) Bestäm k så att vektorerna (, 5, ) och (, 7k+1, 6) blr parallella Uppgft (p) Lös följande ekvatonssystem genom Gausselmnerng: z = 6 x y z = 8 x + 6y + 8z = 5 Uppgft (p) x + Lös olkheterna a) > 0 och b) x x + < 0
2 Uppgft 5 (p) Antag att vektorn är summan av de två vektorerna och a) (1p) Beräkna om =(1,5,9) och =( 1,, 1) b) (1p) Bestäm en vektor som är vnkelrät mot och har en negatv z-komponent Uppgft 6 (p) a) (1p) Bestäm ekvatonen för den lnje som går genom punkterna (0,1,5) och (1,1,6) b) (1p) Bestäm skärnngspunkten mellan denna lnje och planet x + y = 5 c) (p) Bestäm vnkeln mellan lnjen och planet Uppgft 7(p) Bestäm avståndet mellan de två parallella planen x + y z = 7 och x + y z = 0 Uppgft 8 (p) Låt (1 + ) z = 1 Bestäm z och arg(z) Uppgft 9 (p) Ekvatonen z z z + 6 = 0 har en lösnng z = 1+ Bestäm alla lösnngar 1 Uppgft 10 (p) Bestäm alla lösnngar tll ekvatonen z = 1 Uppgft 11 (p) x Låt A = V betraktar ekvatonen A v = k v med avseende på v = 1 Talet k är en y konstant Det är uppenbart att en lösnng ( den trvala lösnngen) tll ekvatonen är nollvektorn 0 v = 0 0 a) Bestäm de värden för k, för vlka ekvatonen har lösnngar v som nte är nollvektorn ( v ) 0 0 b) Bestäm alla lösnngar v för vart och ett av dessa k värden 0 Lycka tll
3 FACIT Uppgft 1 (p) a) Beräkna volymen av den parallellepped som spänns upp av vektorerna (1, 1, 1), (1,, ) och (1,, 5) b) Beräkna även volymen av den parallellepped som spänns upp av (1,, ), (, 1, ) och (1, 1, -7) c) Tolka svaret du får b a) 1 = ( ) ( 5 + ) + ( ) = Volymen V1 = 7 1 = 7 ve b) 1 = ( 7 ) ( 1 + ) + ( 1) = "Volymen" V=0 c)de tre vektorerna är lnjärt beroende ( lgger samma plan) Svar: a) V1 = 7 ve b) V=0, c) de tre vektorerna är lnjärt beroende ( lgger samma plan) Rättnngsmall: +1p för varje del Uppgft (1p)Bestäm k så att vektorerna (, 5, ) och (, 7k+1, 6) blr parallella Vektorerna (, 5, ) och (, 7k+1, 6) är parallella om det fnns ett tal t så att (, 7k+1, 6) = t (, 5, ) Härav får v tre skalära ekvatoner = t 7k + 1 = 5t 6 = t Från första (eller tredje) ekvatonen har v t = / Substtutonen den andra ekvatonen ger 7k + 1 = 15 / 7k = 17 / k = 17 /1 Svar: k = 17 / 1 Rättnngsmall: Allt korrekt=1p
4 Uppgft (p) Lös följande ekvatonssystem genom Gausselmnerng: z = 6 x y z = 8 x + 6y + 8z = 5 z = 6 x y z = 8 x + 6y + 8z = 5 R = R - R1 R = R+ R1 z = y + z = 0 + z = 1 z = y + z = R = R+ R z = 1 z = z = sätts n R ger y = Från R1 får v slutlgen x = 1 Svar: x = 1, y =, z = Rättnngsmall: +1p för korrekt Gaussmetoden med mndre räknefel +1p för korrekt svar Uppgft (p) x + Lös olkheterna a) > 0 och b) x x + < 0 a) Teckentabell: 1 x x ej + def x + Alltså > 0 om x < eller x > 1 b) Först x x + = 0 x = 1, x = V kan faktorsera olkheten ( )( x ) < 0 1 och gen använda teckentabell
5 x 0 x x ej + def Alltså: x x + < 0 om 1 < x < Alternatv för b delen: V kan skssera grafen tll f ( x) = x x + Från grafen har v att x x + < 0 om 1 < x < Svar: a) De reella tal som uppfyller x < eller x > 1 dvs x (, ) (1, ) b) 1 < x < Rättnngsmall: a) allt korrekt =1p, b) allt korrekt =1p Uppgft 5 (p) Antag att vektorn är summan av de två vektorerna och a) (1p) Beräkna om =(1,5,9) och =( 1,, 1) b) (1p) Bestäm en vektor som är vnkelrät mot och har en negatv z-komponent a) = + = = (1,5,9) ( 1,, 1) = (,,10) Svar a) = (,,10) b) En vektor =(,, ) är vnkelrät mot om skalärprodukten =0 (1,5,9) (,, ) = =0 Det fnns oändlgt många lösnngar (även då z-komponenten <0) T ex = (,1, 1) Svar b) Oändlgt många lösnngar T ex = (,1, 1) Rättnngsmall: a) allt korrekt =1p, b) allt korrekt =1p
6 Uppgft 6 (p) a) (1p) Bestäm ekvatonen för den lnje som går genom punkterna (0,1,5) och (1,1,6) b) (1p) Bestäm skärnngspunkten mellan denna lnje och planet x + y = 5 c) (p) Bestäm vnkeln mellan lnjen och planet a) Lnjens rktnngsvektor ges av vektorn = (1,0,1) Om v väljer P som punkt på Lnjen blr lnjens ekvaton på vektorform (,, ) = (0,1,5) + (1,0,1) Svar a) (,, ) = (0,1,5) + (1,0,1) = b)lnjens ekvaton på parameterform: =1 =5+ planets ekvaton x + y = 5 Gemensam punkt (=gemensamt x,y,z) fås då t + 1 = 5 t = x =, y = 1, z = 9 Svar b) Skärnngspunkten är (,1, 9) c) Vnkeln mellan lnjen och planet fås med hjälp av skalärprodukten mellan lnjens rktnngsvektor och planets normalvektor Om v kallar vnkeln mellan dessa vektorer för u fås sedan den sökta vnkeln v som 90 cos =, där = = (1,1,0) och = = (1,0,1) (1,1,0) (1,0,1) cos = = 1 = 60 = = 0 Svar c) (eller o 0 ) 6 Rättnngsmall: a) allt korrekt =1p, b) allt korrekt =1p c) Korrekt vnkeln mellan lnjens rktnngsvekor och planets normal =1p Allt korrekt=p Uppgft 7(p) Bestäm avståndet mellan de två parallella planen x + y z = 7 och x + y z = 0
7 Plan 1: x + y z 7 = 0 Plan : x + y z = 0 Metod 1 Välj en godtycklg punkt plan 1, tll ex P1 = (7,0,0) av formeln (fnns på formelblad): Ax1 + By1 + Cz1 + D d = = = A + B + C ( 1) och beräkna avståndet tll plan med hjälp Svar: 7 Metod Välj en godtycklg punkt plan 1, ex (7,0,0) och en punkt plan, ex (1,0,1) Blda = (6,0, 1) Normera plan :s normalvektor: = (1,1, 1) = (,, ) Då blr avstånden mellan planen s projekton på, dvs = (6,0, 1) (1,1, 1) = Svar: Rättnngsmall: Allt korrekt=p Korrekt metod med mndre räkne fel =1p Uppgft 8 (p) Låt (1 + ) z = 1 Bestäm z och arg(z) 1+ 1 ( ) ) z = = = = 1 ) V kan ange varje faktor uttrycket på exponentalformen
8 e = 1, Därför e 1+ =, = e 1 e e 7 (1 + ) e e z = = = = e 1 Härav ser v att arg(z) Svar: z =, arg(z) e e 7 = ( + k ) ( V ser gen att z = ) 7 = ( alternatvt svar, arg(z) = ) Rättnngsmall: Allt korrekt=p Korrekt metod med mndre räkne fel =1p Uppgft 9 (p) Ekvatonen z z z + 6 = 0 har en lösnng z = 1+ Bestäm alla lösnngar 1 Ekvatonen har reella koeffcenter och en komplex rot z = 1+ 1 Därför är z = 1 också en rot tll ekvatonen Ekvatonen är delbart med ( z z1 )( z z) = ( z 1 )( z 1 + ) = ( z 1) = z z = z z + Polynomdvson ger (z z z + 6) /( z z + ) = z + Från z + = 0 får v den tredje lösnngen z = / Svar: z 1 = 1+, z = 1, z = / Rättnngsmall: Allt korrekt=p Korrekt metod med mndre räkne fel =1p Uppgft 10 (p) Bestäm alla lösnngar tll ekvatonen z = 1 ( + k ) z 1 z = e z = e =, k=0, 1,, Svar: ( + k ) z e =, k=0, 1,,
9 Rättnngsmall: Allt korrekt=p Korrekt metod med mndre räkne fel =1p Uppgft 11 (p) x Låt A = V betraktar ekvatonen A v = k v med avseende på v = 1 Talet k är en y konstant Det är uppenbart att en lösnng ( den trvala lösnngen) tll ekvatonen är nollvektorn 0 v = 0 0 a) Bestäm de värden för k, för vlka ekvatonen har lösnngar v som nte är nollvektorn ( v ) 0 0 b) Bestäm alla lösnngar v för vart och ett av dessa k värden 0 a) Ekvatonen A v = k v ger 1 x x x + y kx = k = y y x + y ky Detta kan v skrva som två skalära ekvatoner + y = kx eller x + y = ky ( k) x + y = 0 x + ( k) y = 0 (sys1) Anmärknng: Systemet (sys1) är homogent och därför är alltd lösbart, det kan ha exakt en lösnng (om D 0 ) eller oändlgt många lösnngar om D = 0 ( k) Systemets determnant är D = = k 5k + 1 ( k) D = = k 5k + = 0 k = 1, k = 0 1 Om D 0, dvs om k 1 1 och k y=0 ( V söker cke-trvala lösnngar), har systemet exakt en lösnng, den trvala lösnngen x=0, Det homogena systemet (sys1) har oändlgt många lösnngar om D = 0 dvs om k 1 och k b) V löser systemet k = 1 1 och k = Om k 1 blr systemet ( v substtuerar k 1 sys 1): 1 = 1 = 1 = =
10 + y = 0 + y = 0 x + y = 0 0 = 0 V har en fr varabel y = t Från x + y = 0 har v en fr varabel, y=t, och därmed x = t Därmed blr lösnngen) x t v = = y t, där t är ett godtycklgt reellt tal, t 0 ( För t=0 får v den trvala Om k = får v systemet x + y = 0 x + y = 0 x + y = 0 x y = 0 x y = 0 0 = 0 Härav y = t och x = t Därför x t v = =, t 0 y t Svar: a) Icke-trvala lösnngar (oändlgt många) fnns om k = 1 1 och k = b) För k = 1 1 får v t v =, t 0 För t k = har v t v =, t 0 t Rättnngsmall: Allt korrekt=p Korrekt metod med mndre räkne fel =1p
TENTAMEN Datum: 11 feb 08
TENTAMEN Datum: feb 8 Kurs: MATEMATIK OCH MAT. STATISTIK (TEN: Dfferentalekvatoner, komplea tal och Taylors formel ) Kurskod 6H, 6H, 6L Skrvtd: :5-7:5 Hjälpmedel: Bfogat formelblad och mnräknare av vlken
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.
Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna
TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:
saknar reella lösningar. Om vi försöker formellt lösa ekvationen x 1 skriver vi x 1
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL Inlednng Ekvatonen x 1 har två reella lösnngar, x 1, dvs x 1, medan ekvatonen x 1 saknar reella lösnngar Om v försöker formellt lösa ekvatonen x 1 skrver v x 1
Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så
Kurs: HF90 Matematik, Moment TEN (Linjär Algebra) ) Datum: 4 augusti 08 Skrivtid 08:00 :000 Examinator: Armin Halilovic För godkänt betyg krävss 0 av maxx 4 poäng. Betygsgränser: För betyg A, B, C, D,
Tentamen i Linjär algebra, HF1904 exempel 3 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF1904 exempel Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic För godkänt betyg krävs 10 av max 24 poäng Betygsgränser: För betyg A, B, C, D, E krävs 22, 19, 16,
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).
TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:
Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic
Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)
TENTAMEN 7 e 8, HF oh HF8 Moment: TEN Lnjär lger, hp, skrftlg tentmen Kurser: Lnjär lger oh nlys HF oh Anlys oh lnjär lger, HF8, Klsser: TIELA, TIMEL, TIDAA T: 8-, Plts: Cmpus Flemngserg Lärre: Mr Shmoun
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)
TENTAMEN 7-Okt-4, HF6 och HF8 Moment: TEN (Linjär algebra, 4 hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats: Campus
Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF194 Datum: 17 dec 18 Skrivtid: 14:-18: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs 1 av max 4 poäng Betygsgränser: För betyg A,
Betygsgränser: För. Skriv endast på en. Denna. Uppgift. 1. (2p) 2. (2p) Uppgift. Uppgift 1) 4. Var god. vänd.
Tentamen i Matematik, HF93 7 dec 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng. Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, 3 respektive poäng. Komplettering:
TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic
TENTAMEN 8 jan 0 Tid: 08.5-.5 Kurs: Matematik HF90 (6H90) 7.5p Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,
Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic
Tentamen i Matematik HF70 6 aug 0 Tid: 3. 7. Lärare: Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.
TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:
TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor
TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF90 Torsdag augusti Skrivtid: 4:00-8:00 Examinator: Armin Halilovic För godkänt betyg krävs 0 av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive 0 poäng
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 17 dec 010 Moment: TEN (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys, HF1006 (Program: Datateknik),
Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl
entamen i Matematik, HF9, för D onsdag september, kl 8.. Hjälpmedel: Endast formelblad (miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng (betygsskala är,,,d,e,fx,f). Den som uppnått
b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y
TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN april 07 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 9 jan 5, HF6 och HF8 Moment: TEN (Linjär algebra), hp, Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8.5-.5, Plats: Campus Haninge Eaminator:
på två sätt och därför resultat måste vara lika: ) eller ekvivalent
Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2016 Skrivtid 9:00-13:00
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) Datum: 9 okt 6 Skrivtid 9:-: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betyg krävs av ma 4 poäng
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Tentamen i MATEMATISK STATISTIK Datum: 8 Juni 07
Tentamen MATEMATISK STATISTIK Datum: 8 Jun 0 Kurser: MATEMATIK OCH MATEMATISK STATISTIK 6H3000 (TEN2), 6L3000 (TEN2), MATEMATIK2 MED MATEMATISK STATISTIK 6H2208 (TEN2) MATEMATISK STATISTIK 6A2111 (TEN1);
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF00 TEN 0-0- Hjälpmedel: Formelblad och ränedosa Fullständga lösnngar erfordras tll samtlga uppgfter Lösnngarna sall vara väl motverade och så utförlga att
Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med
RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN okt, HF6 och HF8 Moment: TEN (Lnjä lgeb), 4 hp, skftlg tentmen Kuse: Anls och lnjä lgeb, HF8, Klsse: TIELA, TIMEL, TIDAA Td: 5-75, Plts: Cmpus Hnnge Läe: Rchd Eksson, Inge Jovk och Amn Hllovc
TENTAMEN HF1006 och HF1008
TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
lösningar! ger 0 poäng.) i partiella bråk. och deras typ.
TENTAMEN Introduktionskurs i Matematik H1009 Datum: augg 018 Tid: 8:15-10 (1.5 hp) Tentamen ger maimalt 1p. För godkändd tentamen krävs 6p. Till samtliga uppgifter krävs fullständiga lösningar! Inga hjälpmedel
Tentamen i Linjär algebra, HF1904 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF94 eempel Datum: Skrivtid: 4 timmar Eaminator: Armin Halilovic För godkänt betg krävs av ma 4 poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, respektive poäng. Komplettering:
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär
Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)
Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För
TENTAMEN TEN2 i HF1006 och HF1008
TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 0 aug 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A, B,
TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012
TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och
Använd Maple (eller Mathematica) för att lösa dina uppgifter. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Del2: ANALYS Kurskod: HF1006
INLÄMNINGSPPGIFT Lnjär algebra och analys Del: ANALYS Kurskod: HF006 armn@sth.kth.se www.sth.kth.se/armn Inlämnngsuppgft består av tre uppgfter. Indvduellt arbete. Du väljer tre av nedanstående uppgfter
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
EKVATIONER MED KOMPLEXA TAL A) Ekvationer som innehåller både ett obekant komplext tal z och dess konjugat z B) Binomiska ekvationer.
Arm Hallovc: EXTRA ÖVNINGAR Bomska ekvatoer EKVATIONER MED KOMPLEXA TAL A Ekvatoer som ehåller både ett obekat komplext tal och dess kojugat B Bomska ekvatoer. A Ekvatoer som ehåller både och För att lösa
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 9 jan 07 Tid -8 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Fredrik Bergholm, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Uppgift Planen 2x + 4y + 2z 3=0 och x + 2y + z 1=0 är givna. b) Bestäm ( kortaste) avståndet mellan planen. (2p)
Tentamen i Matematik HF9 (6H9 jan Tid:.5 7.5 Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter.
SF1624 Algebra och geometri
SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet
Vektorgeometri och funktionslära
Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),
2+t = 4+s t = 2+s 2 t = s
Extra 1. Ta fram räta linjens ekvation på parameterform då linjen går genom punkterna (1, 1,0) och (2,0,1) (3, 1,4) och ( 1,1,6) (4,3, 1) och (7, 2,5) (11,3, 6) och (9, 1,3) Lösning: (x,y,z) = (1+t, 1+t,t)
Exempeltenta 3 Introduktionskurs i Matematik H1009 (1.5 hp) Datum: xxxxxx
Eempeltenta Introduktionskurs i Matematik H1009 (15 hp) Datum: Tentamen ger maimalt 1p För godkänd tentamen krävs 6p Till samtliga uppgifter krävs fullständiga lösningar! Inga hjälpmedel tillåtna Skriv
Preliminärt lösningsförslag
Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel
a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) atum: okt 8 Skrivtid 4:-8: Eaminator: Armin Halilovic För godkänt betyg krävs av ma 4 poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive
Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1
Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers
Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim
Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in
a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).
TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge
Tentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid:
Tentamen i Matematik HF9 (6H9) 4 juni 8 Tid: 85 5 Lärare: Agneta Ivarson, Armin Halilovic, Bengt Mattiasson, Taras Kentrschynskyj, Ulf Djupedal Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat
Tentamen i Dataanalys och statistik för I den 5 jan 2016
Tentamen Dataanalys och statstk för I den 5 jan 06 Tentamen består av åtta uppgfter om totalt 50 poäng. Det krävs mnst 0 poäng för betyg, mnst 0 poäng för och mnst 0 för 5. Eamnator: Ulla Blomqvst Hjälpmedel:
TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014
TENTAMEN HF00 och HF008 TEN jan 04 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Richard Eriksson Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och anals,
Tentamen (TEN1) TMEL53 Digitalteknik
ISY/Datorteknk Tentamen (TEN) TMEL53 Dgtalteknk Td: 6 8 3, klockan 8 Lokal: TER Lärare: Svert Lundgren, telefon 3 8 5 55 Hjälpmedel: Formelblad som bfogats och mnräknare. Tentan nnehåller 6 uppgfter à
LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B
GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,
Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0
Övningstentammen 1 Här kommer den första av en mängd övningstentor. Lösningarna är exempel på hur du ska formulera dina lösningar på den riktiga tentamen. Lösningarna ska alltså bifogas på papper. Inga
vinkelräta (1p) då a r = (0,1,0), b r =(0,1,2k) och c r =(1,0,1)? b) Beräkna arean av triangeln ABC då (2p) A= ( 3,2,1), B=(4,3,2) och C=(3,3,3)
Tentamen i Matematik HF H 8 okt Tid:. 7. Lärare:Armin Halilovic Hjälpmedel: Formelblad Inga andra hjälpmedel utöver utdelat formelblad. Fullständiga lösningar skall presenteras på alla uppgifter. Betgsgränser:
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
October 9, Innehållsregister
October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................
RÄKNEOPERATIONER MED VEKTORER LINJÄRA KOMBINATIONER AV VEKTORER ----------------------------------------------------------------- Låt u vara en vektor med tre koordinater, u = x, Vi säger att u är tredimensionell
Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi
Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en
Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)
Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).
Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot
Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA1 Grundläggande vektoralgebra, TEN5 alt.
TNK049 Optimeringslära
TNK049 Optmerngslära Clas Rydergren, ITN Föreläsnng 10 Optmaltetsvllkor för cke-lnjära problem Icke-lnjär optmerng med bvllkor Frank Wolfe-metoden Agenda Optmaltetsvllkor för cke-lnjära problem Grafsk
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 26 okt 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matematik, moment TEN (anals) Datum: okt Skrivtid :-7: Eaminator: Armin Halilovic Rättande lärare: Erik Melander, Elias Said, Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:
För teknologer inskrivna H06 eller tidigare. Skriv GAMMAL på omslaget till din anomyna tentamen så att jag kan sortera ut de gamla teknologerna.
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 01 17, f V Telefon: Christoffer Cromvik, 0762 721860 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50
1 Vektorer i koordinatsystem
1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en
Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då
Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:
TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)
Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll
Veckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
6.2 Transitionselement
-- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att
x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.
Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4
x + y + z + 2w = 0 (a) Finn alla lösningar till ekvationssystemet y + z+ 2w = 0 (2p)
Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel
TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,
2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.
SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016
SF624 Algebra och geometri Tentamen Onsdag, 3 januari 206 Skrivtid: 08:00 3:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att
Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010
SF1624 Algebra och geometri Bedömningskriterier till tentamen Fredagen den 22 oktober, 2010 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två
x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2
Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll
2. (a) Skissa grafen till funktionen f(x) = e x 2 x. Ange eventuella extremvärden, inflektionspunkter
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 08 21, f Telefon: Jonatan Vasilis, 0762 721861 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50 poäng.