Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Storlek: px
Starta visningen från sidan:

Download "Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med"

Transkript

1 RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange på vektorform eller med tre skalära ekvationer. Räta linjens ekvation på parameterform (radvektorform) x, y, = ( x, y, z ) + t( v, v, ) ( Vi kan skriva vektorer som kolonner. Räta linjens ekvation på parameterform (kolonnvektorform) x x v y = y + t z z Om vi identifierar koordinater i ovanstående ekvation får vi: Räta linjens ekvationer på parameterform ( 3 skalära ekvationer) = x + t v y = y + t (*) z = z + t Om alla koordinater i linjens riktningsvektor v = ( v,, ) är skilda från 0 dvs v 0, v 0 och v 3 0 kan vi eliminera parameter t [från varje ekv i (*)] och få x x y y z z t = = =. v Därmed kan vi skriva linjens ekvation på följande sätt x x y y z z = = (**) v där P = ( x, y, är en punkt på linjen och v = ( v,, ) är en vektor parallell med linjen. Vi upprepar att formen (**) får användas endast om v, v 0 och v 0, annars blir nämnaren Anmärkning. Var och en av likhetera i (**)

2 dvs x x v y y = v och y y v z z = v 3 är ekvationen för ett plan Π respektive Π. Därmed kan linjen given på formen (**) uppfattas som skärningen mellan två plan Π och Π Räta linjer i xy-planet Räta linjens ekvation i xy- planet ges oftast på en av följande form y = kx + n explicit form [ dvs formen y = f (x) ] ax + by + c = 0 implicit form [ dvs formen F ( x, y) = 0 ] Linjen i xy-planet kan, lika som i 3D-rummet anges på parameterform. För att skriva en linje på parameterform om linjen är given på explicit eller implicit form betecknar vi en variabel ( x eller y) med t och löser ut den andra variabel. Exempel. Ange linjen 4 x + y 3 = 0 i xy-planet på parameterform. Vi väljer en variabel t. ex. x och betecknar x = t. Från 4x + y 3 = 0 4t + y 3 = 0 y = ( 3 4t) /. Därmed blir linjens ekvationer ( ekvationer i xy-planet) på parameterform: = t y = 3/ t Anmärkning. I xy-planet, dvs D- rummet, är ax + by + c = 0 en ekvation för en rät linje. Om vi betraktar 3D rummet med xyz-koordinatsystem då samma ekvation ax + by + c = 0 beskriver ett plan med en normalvektor N = ( a, b, 0). ( Eftersom z saknas i ekvationen är planet parallell med z axeln ) Samma resonemang gäller för ekvationen y = kx + n : I xy-planet beskriver y = kx + n en rät linje. I xyz-koordinatsystem beskriver y = kx + n ett plan parallell med z-axel. ==================================== Plan: P Låt π vara planet genom punkten P = x, y, ) som har normalvektorn N = ( A, B, C) 0. ( z

3 3 Planets ekvation är A ( x x ) + B( y y) + C( z Efter förenkling har vi planets ekvation på allmän form: Ax + By + Cz + D = 0 = 0 ÖVNINGAR: Uppgift. En rät linje går genom punkterna A=(,,3) och B=(3,4,0). Bestäm linjens ekvation. v = AB = (,,7) är en riktningsvektor. Linjens ekvation på parameterform : (x,y,=(,,3)+t(,,7) x y = + t z 3 7 Svar: (x,y,=(,,3)+t(,,7) Uppgift. En rät linje går genom punkterna A=(,,3) och B=(3,4,4). Bestäm linjens ekvation på a) parameterform ( x, y, = ( x, y, + t( v,, ) x x y y z z b) på formen = = ( om möjligt) v v = AB = (,, ) är en riktningsvektor. a) Linjens ekvation på parameterform är (x,y,=(,,3)+t(,,) x x y y z z b) Linjens ekvation på formen = = är v x y z 3 = =. Uppgift 3. En rät linje går genom punkten P(,,3) och har riktningsvektor v = (, 0, 5). a) Ange linjens ekvation på parameterform ( x, y, = ( x, y, + t( v,, ). x x y y z z b) Kan man ange linjens ekvation på formen = = v Svar: a) ( x, y, = (,,3) +t (, 0, 5) är linjens ekv. på parameterform. b) Nej, eftersom v =0 ( uttrycket är inte definierad om nämnaren är 0)

4 4 Uppgift 4. Vi betraktar linjen L: (x,y,=(0,,)+t(,,0) Bestäm a) en riktningsvektor, dvs en vektor (bland ändligt många) parallell med linjen b) en enhetsvektor parallell med linjen ( det finns två sådana enhetsvektorer) c) 3 punkter ( bland oändligt många) som ligger på linjen L. a) En riktningsvektor är v = (,, 0) Notera att varje vektor av typ k v = k (, 0), k 0 är också linjens riktningsvektor. T ex (0, 0, 0) eller ( 0, 0, 0) också är linjens riktningsvektorer. b) En enhets vektor parallell med linjen är e = v = (,,0). v 5 [ Den andra är e = v = (,,0) ] v 5 c) Tre punkter för vi om vi substituerar tre värden ( vilka som helst) på parametern t i ekvationen ( x, y, = ( x, y, + t( v,, ) : T ex. t = 0 (x,y,=(0,,)+0 (,,0) = (0,,) t = (x,y,=(0,,)+ (,,0) = (,4,) t = 0 (x,y,=(0,,)+0 (,,0) = (0,,) Svar: a) En riktningsvektor är v = (,,0). b) En enhets vektor parallell med linjen är e = v = (,,0). v 5 c) Tre punkter (0,,), (,4,) och (0,,). Uppgift 5. Linjen L är given på följande form x 3 y + z 3 = =. 4 a) Ange linjens ekvation på parameterform. b) Bestäm en riktningsvektor och tre punkter på linjen L c) Bestäm 3 punkter ( bland ändligt många) som ligger på linjen L. a) Vi betecknar de tre lika uttryck med t x 3 = y + = z 3 = t 4

5 5 och därefter löser x, y, z. Vi har x 3 = t x = 3 + t y + = t y = + t z 3 = t z = 3 + 4t 4 Alltså (x,y,=(3,, 3)+t(,,4) är linjens ekvation på parametersform x 3 Alternativt skrivsätt y = + t z 3 4 b) En riktningsvektor är är v =(,,4). c) Vi substituerar tre t-värden, t ex t=0, t= och t= och får tre punkter A=(3,, 3), B=(4, 0, 7) och C=( 5, ) Uppgift 6. Bestäm vilka av följande punkter A=(,0, ), B=(, 4, ), C=( 3, 8, ) ligger på linjen L: (x,y,=(0,,)+t(,,0). i) Punkten A(,0, ) ligger på linjen (x,y,=(0,,)+t(,,0) om och endast om det finns ett värde på parametern t så att (,0, ) = (0,,)+t(,,0) dvs om det finns ett t-värde så att alla tre skalära ekvationer = 0+t 0 = +t = +0 t samtidigt är uppfyllda. Från första ekvationen har vi t=. Samma t= satisfierar också andra och tredje ekvationen och därmed ligger punkten A på linjen L ( punkten svarar mot t= ) ii) För punkten B(, 4, ) har vi följande vektorekvation (, 4, ) = (0,,)+t(,,0) som är ekvivalent med de tre skalära ekvationerna = 0+t 4 = +t

6 6 = +0 t Första ekvationen ger t=. (Därmed, om det finns en lösning på t för alla tre ekvationen då är t=). Vi kollar om t= satisfierar de kvarstående ekvationer. Substitutionen i andra ekvationen ger 4=4 (OK) men insättning t= i den tredje ekvationen ger = som är inte sant. Punkten B ligger alltså inte på linjen L. iii) Med samma metod inser vi att punkten C fås ur ekvationen om t=3, dvs C ligger på linjen L Svar. A och C ligger på L medan B inte ligger på linjen L. Uppgift 7. ( D rummet) Vi betraktar den räta linje i xy-planet ( dimensionella rummet ) som har ekvationen L: x + 3y 4 = 0. a) Bestäm linjens ekvation på explicit form y = kx + n b) Ange linjen på parameterform c) Bestäm en vektor parallell med linjen L d) Bestäm två enhetsvektorer parallella med linjen. e) Bestäm en vektor i xy-planet som är vinkelrät mot linjen L a) Vi löser ut y ur ekvationen x + 3y 4 = 0, x x + 3y 4 = 0 y = y = x + ( explicit form) b) Vi betecknar x= t och får ( enkelt från explicit form) linjen på parameter form = t 4 y = t x t Vi kan också skriva ( x, y) = ( t, t + ) eller =. 3 3 y 4 / 3 t / 3 c) Vi kan välja två punkter på linjen genom att välja värden på x (eller på t i parameterform) och beräkna y. Vi kan t ex välja följande punkter A(0, 4/3 ) och B(, /3) och beräkna AB =(, / 3). Varje vektor parallell med AB är också parallell med linjen. ( Vi kan även använda parameterform och direkt välja vektorn (, / 3) ) Som en riktningsvektor (bland oändligt många) kan vi ange v = 3 AB = (3, ) med heltalskoordinater. d) Det finns två enhetsvektorer som är parallella med linjen L e, = ± v = ± (3, ) v 3 e) En vektor n = ( a, b) är vinkelrät mot linjen L om ( och endast om) den är vinkelrät mot linjens riktningsvektor v =( 3, ) och därför är skalärprodukten n v = 0.

7 7 Alltså 3a b = 0 a = b / 3. Vi söker en vinkelrät vektor ( bland oändligt många sådana vektorer) så at vi kan välja b, t ex kan vi ta b = 3 och få a=. Därmed blir n =(, 3) en vektor vinkelrät mot L. Notera att varje vektor parallell med n =(, 3) också är vinkelrät mot L. Uppgift 8. Ett plan går genom punkten A=(,3,). Planet är parallellt med vektorerna u = (,,3) och v = (,, ). Bestäm planets ekvation a) på parameterform N b) på formen Ax + By + Cz + D = 0. v a) (x,y,=(,3,)+t(,,3)+s (,,) u i j k i j k 3 3 b) N = u v = x y z = 3 = i j + k = x y z = i + j k = (,, ) Planets ekvation: A( x x) + B( y y) + C( z = 0 ( x ) + ( y 3) ( z ) = 0 x + y z 3 = 0 Svar: Planets ekvation: x + y z 3 = 0 Uppgift 9. Ett plan går genom punkterna A=(,, ) och B=(,5,) och C=(3,0,). Bestäm planets ekvation. N C = AB AC = ( 0,6, 6) Vi kan använda punkten A och vektorn N = (0,8, 3) (som är parallell med N ). A( x x) + B( y y) + C( z = 0 0( x ) + 8( y ) 3( z + ) = 0 0x + 8y 3z 4 = 0 Svar: Planets ekvation: 0 x + 8y 3z 4 = 0 Uppgift 0. Ett plan går genom punkterna A=(,,) och B=(,,3). Planet är parallell med linjen ( x, y, = (3,4,5) + t(,,) Bestäm planets ekvation.

8 8 Vektorerna u = AB = (0,, ) och linjens riktningsvektor v = (,, ) Bestäm planets ekvation. N = u v = ( 0,, ). Planets ekvation: A x x ) + B( y y ) + C( z z ) = 0 ( 0( x ) + ( y ) ( z ) = 0 y z + = 0 är parallella med planet Svar: Planets ekvation: y z + = 0 Uppgift. En rät linje går genom punkten A=(,,0). Linjen är ortogonal (vinkelrät) mot planet x + y + 3 z + = 0. Bestäm linjens ekvation. Planets normal v = (,,3 ) är en är en riktningsvektor. Linjens ekvation på parameterfårm : (x,y,=(,,0)+t(,,3) Svar: (x,y,=(,,0)+t(,,3) Uppgift. En rät linje går genom punkten A=(,,0). Linjen är parallell med skärningslinjen mellan planen x + y + z 3 = 0 och x + y + 3z + = 0 Bestäm linjens ekvation. Vi löser systemet med Gaussmetoden: + y + z 3 = 0 + y + z 3 = 0 x + y + 3z + = 0 y + z + 4 = 0 En fri variabel z=t. y = 4 t x = 3 y z x = 7 + t dvs x = 7 + t y = 4 t z=t Alltså har skärnings linje ekvation (x,y,=(7, 4,0)+t(,,) Den sökta linjen har samma riktnings vektor men går genom punkten A. Därför: (x,y,=(,,0)+t(,,) Svar: Linjens ekvation är (x,y,=(,,0)+t(,,) Uppgift 3. Bestäm eventuella skärningspunkter mellan linjen (x,y,=(,0,0)+t(,,) och följande plan: a) x + y + z + 3 = 0 b) x y + z = 0 c) x y + z = 0

9 9 Svar: a) x = 0, y =, z = b) Ingen lösning c) Linjen ligger i planet. Uppgift 4. Bestäm eventuella skärningspunkter mellan följande linjer (x,y,=(,,3)+t(,,) och (x,y,=(3,5,7)+s(,,3). Linjernas ekvationer kan skriva som = + t = 3 + s L : y = + t, L : y = 5 + s z = 3 + t z = 7 + 3s Vi löser systemet: + t = 3 + s t = + t = 5 + s s = 3 + t = 7 + 3s Härav x=, y=3 och z=4 Svar: Skärningspunkten är P=(,3,4). Uppgift 5. Vi betraktar två rymdfarkoster i ett lämpligt vald koordinatsystem. En rymdfarkost rör sig längs banan (x, y, =(+3t, +t, 3+7t) dvs farkosten befinner sig i punkten (x,y, vid tidpunkten t. En annan rymdfarkost rör sig länga banan (x,y,=( +3t,6 t, +4t). a) Krockar farkosterna? (Motivering krävs!) b) Skär farkosternas banor varandra? (Motivering krävs!) a) Svar: Farkosterna kolliderar ej eftersom systemet + 3t = + 3t + t = 6 t 3 + 7t = + 4t saknar lösningar b) Både farkosterna rör sig längs räta linjer. Deras banor har följande ekvationer: L: (+3t, +t, 3+7t) L: ( +3s,6 s, +4s) Vi söker skärningen mellan linjerna och får ekvationssystemet

10 + 3t = + 3s + t = 6 s 3 + 7t = + 4s 0 som har lösningen s=3, t=. Svar: Banorna skär varandra. (Farkost är i skärningspunkter vid tidpunkten t= tidsenheter; farkost är i samma punkt vid tidpunkten t=3 tidsenheter.

===================================================

=================================================== AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 = Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn

Läs mer

2+t = 4+s t = 2+s 2 t = s

2+t = 4+s t = 2+s 2 t = s Extra 1. Ta fram räta linjens ekvation på parameterform då linjen går genom punkterna (1, 1,0) och (2,0,1) (3, 1,4) och ( 1,1,6) (4,3, 1) och (7, 2,5) (11,3, 6) och (9, 1,3) Lösning: (x,y,z) = (1+t, 1+t,t)

Läs mer

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll

Läs mer

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.

Läs mer

RÄKNEOPERATIONER MED VEKTORER LINJÄRA KOMBINATIONER AV VEKTORER ----------------------------------------------------------------- Låt u vara en vektor med tre koordinater, u = x, Vi säger att u är tredimensionell

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet

Läs mer

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t) Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen.

Anmärkning: Härledning av ovanstående formel finns i slutet av stencilen. VSTÅNDSERÄKNING I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkter Låt = x, och = x, y, z ) vara två punkter i rummet vstånet mellan och är x) + y y) + z ) = = x z ===================================================

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

= ( 1) ( 1) = 4 0.

= ( 1) ( 1) = 4 0. MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)

Läs mer

Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.

Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B

Läs mer

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så

Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så Tisdagen september kl 10:15, Sal 093, Moment 4.3.1 Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.5, 4.55 Räta linjen i rummet En rät linje l i rummet är bestämd då en punkt P 0 på linjen och en riktningsvektor

Läs mer

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd. Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

Att beräkna:: Avstånd

Att beräkna:: Avstånd Att beräkna:: Avstånd Mikael Forsberg :: 27 november 205 Innehåll Punkter, linjer och plan, en sammanställning 2. Punkter i två och tre dimensioner....................... 2.2 Räta linjer i två och tre

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM RTNRMERADE BASER I PLAN (D) CH RUMMET (D) RTNRMERAT KRDINAT SYSTEM Vi säger att en bas i rummet e x e e z följande villkor är uppfllda: ( e x e i plan) är en ortonormerad bas om basvektorerna är parvis

Läs mer

Lösningar till utvalda uppgifter i kapitel 1

Lösningar till utvalda uppgifter i kapitel 1 Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument

Moment 4.3.1, Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument Moment 4.3.1, 4.3.2 Viktiga exempel 4.44, 4.46, 4.48 Handräkning 4.53, 4.59, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65 Datorräkning 1-15 i detta dokument Planet Ett plan i rummet är bestämt då två icke parallella

Läs mer

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning. Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på

Läs mer

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av:

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av: MATA15 Algebra, delprov, 6 hp Lördagen den 8:e december 01 Skrivtid: 800 100 Matematikcentrum Matematik NF Lösningsförslag 1 Ligger punkterna P 1 = (0, 1, 1), P = (1,, 0), P = (, 1, 1) och P 4 = (, 6,

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

Föreläsning 13 Linjär Algebra och Geometri I

Föreläsning 13 Linjär Algebra och Geometri I Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?

Läs mer

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0

Övningstentammen 1. 3x 2 3x+a = 0 ax 2 2ax+5 = 0 Övningstentammen 1 Här kommer den första av en mängd övningstentor. Lösningarna är exempel på hur du ska formulera dina lösningar på den riktiga tentamen. Lösningarna ska alltså bifogas på papper. Inga

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX

Läs mer

Vi definierar addition av två vektorer och multiplikation med en reell skalär (tal) λλ enligt nedan

Vi definierar addition av två vektorer och multiplikation med en reell skalär (tal) λλ enligt nedan ORTOGONALA VEKTORER OCH ORTONORMERADE (ORTONORMALA) BASER I R n INLEDNING ( repetition om R n ) Låt RR nn vara mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs RR nn {(aa, aa,, aa

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

1. Beräkna determinanten

1. Beräkna determinanten MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4). TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:

Läs mer

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p) SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden.

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN6 alt.

Läs mer

Tentamen i Linjär algebra, HF1904 exempel 3 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Linjär algebra, HF1904 exempel 3 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Linjär algebra, HF1904 exempel Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic För godkänt betyg krävs 10 av max 24 poäng Betygsgränser: För betyg A, B, C, D, E krävs 22, 19, 16,

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)

Läs mer

Proof. Se uppgifterna. Definition 1.6. Två vektorer u och v är vinkelräta (ortogonala) om < u, v >= 0.

Proof. Se uppgifterna. Definition 1.6. Två vektorer u och v är vinkelräta (ortogonala) om < u, v >= 0. 1. Punkt och Linjer När du läser denna text är det bra om du ritar bilder för att exemplifiera innehållet. Det är lite komplicerad med i.tex, och därför avstår jag från att lägga vid illustrationer även

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A

Läs mer

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1

Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1 Övningstenta 8 Problem 1. Bestäm avståndet mellan planen 2x 3y+z+1 = 0 och 4x+6y 2z+13 = 0 Problem 2. Lös ekvationssystemet för de värden på a där det finns en lösning ax+2y+z = 2a 2x (a+2y = 4 2(a+1x

Läs mer

GRAM-SCHMIDTS METOD ... Med hjälp av Gram-Schmidts metod kan vi omvandla n st. linjäroberoende vektorer. samma rum dvs som satisfierar

GRAM-SCHMIDTS METOD ... Med hjälp av Gram-Schmidts metod kan vi omvandla n st. linjäroberoende vektorer. samma rum dvs som satisfierar Armin Halilovic: EXTRA ÖVNINGAR GRAM-SCHMIDTS METOD Med hjälp av kan vi omvandla n st linjäroberoende vektorer vv vv nn i ett vektorrum till n st ortonormerade vektorer ff ff nn som spänner upp samma rum

Läs mer

Linjer och plan Låt ABCD vara en fyrhörning i planet. Om A väljs till origo och

Linjer och plan Låt ABCD vara en fyrhörning i planet. Om A väljs till origo och Linjer oh plan Läs Sparr, avsn. 3. Många läroböker likställer koordinatsystem med rätvinkligt koordinatsystem, närmare bestämt: med ett ortonormerat system (ON-system). O:et står för ortogonal = rätvinklig,

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Facit/lösningsförslag

Facit/lösningsförslag Facit/lösningsförslag 06-08- Låt l vara linjen med parameterform x, y, z 0 s, mellan planet x y z och planet z 0 och låt l vara skärningslinjen a) Skriv l på parameterform b) Beräkna avståndet mellan l

Läs mer

LYCKA TILL! kl 8 13

LYCKA TILL! kl 8 13 LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade

Läs mer

ANDRAGRADSKURVOR Vi betraktar ekvationen

ANDRAGRADSKURVOR Vi betraktar ekvationen ANDRAGRADSKURVOR Vi betraktar ekvationen Ax + Bxy + Cy + Dx + Fy + G 0 (ekv) där minst en av A,B, eller C är skild från 0 En andragradskurva är mängden av alla punkter vilkas koordinater satisfierar en

Läs mer

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp Övningstentamen i MA00 Tillämpad Matematik II, 7hp Tentamen består av 30 frågor! Endast Svarsblanketten ska lämnas in! Inget tentamensomslag! Hjälpmedel: Penna, radergummi och linjal Varken räknedosa eller

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor: Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8

Läs mer

Vektorer för naturvetare. Kjell Elfström

Vektorer för naturvetare. Kjell Elfström Vektorer för naturvetare Kjell Elfström Copyright c Kjell Elfström 2015 Första upplagan, mars 2015 Innehållsförteckning 1 Vektorer 5 1.1 Vektorbegreppet......................... 5 1.2 Operationer på vektorer.....................

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Linjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n

Linjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n Linjära avbildningar Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. R n = { x = x x. x n } x, x,..., x n R. Vi räknar med vektorer x, y likandant som i planet och i rymden. vektorsumma:

Läs mer

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2. Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4

Läs mer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Vektorgeometri och funktionslära

Vektorgeometri och funktionslära Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),

Läs mer

Linjer och plan (lösningar)

Linjer och plan (lösningar) Linjer och plan (lösningar) 0. Enligt mittpunktsformeln (med O i just origo) OM = ³ OA + OB a) b) ((, 0, ) + (,, )) = (0,, ) µ +, +, z + z 0. Enligt tngdpunktsformeln (med O i just origo) ³ OA + OB + OC

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.

Moment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning. Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller

Läs mer

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Tangentplan Linjära approimationer TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vara en dierentierbar unktion i punkten a b Då är N a b a b en normalvektor

Läs mer

Veckoblad 4, Linjär algebra IT, VT2010

Veckoblad 4, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den fjärde veckan ska vi under måndagens föreläsning se hur man generaliserar vektorer i planet och rummet till vektorer med godtycklig dimension. Vi kommer också

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a

Moment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem

Läs mer

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut.

kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut. vsnitt 2, Vektorer kan vi uttrycka med a, b och c. W109 är basytan (en kvadrat) i en regelbunden fyrsidig pyramid med spetsen. Låt = a, = b och = c. eräkna. Vi ritar först en figur av hur pyramiden måste

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Onsdagen den 8 december, 2010

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Onsdagen den 8 december, 2010 SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Onsdagen den 8 december, 2010 UPPGIFT (1) Betrakta det linjära ekvationssystemet x 1 x 2 + x + 2x 4, x 1 + x

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så

Betygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så Kurs: HF90 Matematik, Moment TEN (Linjär Algebra) ) Datum: 4 augusti 08 Skrivtid 08:00 :000 Examinator: Armin Halilovic För godkänt betyg krävss 0 av maxx 4 poäng. Betygsgränser: För betyg A, B, C, D,

Läs mer

Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl

Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 1 Matematiska Institutionen, KTH Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 08.00-13.00. Examinator: Olof Heden. OBS: Inga

Läs mer

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF90 Torsdag augusti Skrivtid: 4:00-8:00 Examinator: Armin Halilovic För godkänt betyg krävs 0 av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive 0 poäng

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2010 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 7 Uppgift 1................................. 7 Uppgift 2.................................

Läs mer

Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl

Tentamen 1 i Matematik 1, HF1903, för BD10 onsdag 22 september 2010, kl entamen i Matematik, HF9, för D onsdag september, kl 8.. Hjälpmedel: Endast formelblad (miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng (betygsskala är,,,d,e,fx,f). Den som uppnått

Läs mer

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer