Linjer och plan (lösningar)
|
|
- Martin Eriksson
- för 8 år sedan
- Visningar:
Transkript
1 Linjer och plan (lösningar) 0. Enligt mittpunktsformeln (med O i just origo) OM = ³ OA + OB a) b) ((, 0, ) + (,, )) = (0,, ) µ +, +, z + z 0. Enligt tngdpunktsformeln (med O i just origo) ³ OA + OB + OC µ + + =, + +, z + z + z 0. Koordinaterna för punkten P är definitionsmässigt lika med koordinaterna för vektorn OP OQ = OP = ³ OA + AP = = µ OA + AB = (,, ) + 0 ((, 0, ) (,, )) = (, 8, 7) 06. Vad det handlar om, är att uttrcka CA som linjärkombination av CB och CD. Vad vi har att utgå ifrån är att AC = AB +AD AC = [figur!] = AB + BC AC = [figur!] = AD + DC Sätt andra och tredje ekvationens utrck för AB resp. AD in i den första: ³ ³ AC = AC BC + AC DC 4 AC = BC DC 4 CA = CB +CD CA = CB + CD 4 varav vi avläser koordinaterna, a) en sträcka : = (,, ) + (5, 5, 5) = 5 =,, Man kan också utnttja generaliseringen av mittpunktsformeln (övn. 08): OP = OA + OB Vi har tre olika alternativ, beroende på vilket hörn som ligger diagonalt emot ( 5, 0) : Om det är det sökta hörnet, så har det koordinaterna (, ) + (, ) ( 5, 0) = (8, ) Om (, ) ligger diagonalt mot ( 5, 0), så har det fjärde hörnet koordinaterna (, ) + ( 5, 0) (, ) = ( 6, 4) Om (, ) ligger diagonalt mot ( 5, 0) : (, ) + ( 5, 0) (, ) = ( 4, 4) 0 b) en oändlig remsa (inga krav på!) : 0 0
2 c) en parallellogram : f) en triangel : 0 0 d) en oändlig rad av punkter som tcks ligga på rät linje 08. Som föregående, men nu är det A som spelar rollen av (, 0) och B spelar rollen av (0, ). T.e.om A :(0, ),B:(, ) relativt koordinatsstemet i föreg. uppgift, låt OA och OB vara na koordinatalar, B 0 0 A e) hela den räta linjen i som antddes i d) (följer av utredningen i Sparr, avsn..) gradera dem så att A :(, 0),B:(0, ) ochgörettnttrutnät, så är problemet ekvivalent med föregående. T.e. är svaret på (a) återigen en sträcka : B 0 0 A
3 09. Enklast: (,k). 0. a) r = OA + t AB, 0 t Skriv nu AB = OB OA : r = ( t) OA + t OB, 0 t, alt. r = s OA + t OB, 0 s, t,s+ t = b) Till varje punkt X inuti (och på randen av) triangeln, finns Y på BC och 0 u, så att A X AX = u AY Enligt a) kan vi skriva AY = s AB + tac, 0 s, t, s+ t = Alltså OX = ³ OA+u s AB + tac, 0 s, t, s+t = Om vi nu låter s och t stå för us resp. ut : r = OA + s AB + tac 0 s, t, s+ t Sätt in AB = OB OA, AC = OC OA r = t OA + tob + toc, 0 t,t,t, t + t + t = Obs. Går man igenom räkningarna, skall man kunna inse att "koordinaterna" (t,t,t ) är entdigt bestämda: Två olika tripplar kan inte ge samma punkt. (Kan verka litet paradoalt, med tanke på att triangeln är en -dimensionell figur, men glöm inte villkoret t + t + t =.) C Y B c) r = OA + s AB + tad, 0 s, t Den andra varianten, med 4 vektorer r = t OA + tob + toc + t4od, 0 t,t,t,t 4, t + t + t + t 4 = undviker man kanske, eftersom framställningen inte är entdig: olika frtiplar (t,t,t,t 4 ) kan ge samma r : diagonalernas skärningspunk t.e. svarar mot såväl, 0,, 0 som 0,, 0, d) som c) : r = OA + s AB + tad + uae, 0 s, t, u e) som b) Till varje X inuti tetraedern, låt Y vara den punkt där strålen AX skär sidotan BCD. AX = u AY Enligt b) AY = s AB + sac + sad 0 s,s,s, s + s + s = och därmed OX = ³ OA + u s AB + sac + sad = = ³ OA + us OB OA + ³ ³ +us OC OA + us OD OA Alltså : = ( u) OA + us OB + us {z } {z} OC + us {z} OD {z} t t t t 4 r = t OA + tob + toc + t4od, 0 t,t,t,t 4 t + t + t + t 4 = (normerade) barcentriska koordinater
4 . Om t.e. P ligger på linjen P P, så OP = OP + t P P = = OP + t ³ OP OP och därmed ( t) OP + top +( ) OP = 0 Omvänt, om λ OP + λ OP + λ OP = 0, och t.e. λ 6=0, och λ = λ λ, så OP = λ OP λ OP = λ λ = λ + λ OP λ OP = λ λ = λ ³ OP OP + OP = λ = OP λ P P λ vilket säger att P ligger på linjen P P.. En ev. skärningspunkts koordinater (,, z) skall uppflla såväl planets som linjens ekvation. Med andra ord skall det gälla + z 5=0 = t =t z =+t för något reellt tal t Sätt uttrcken för,, z från de senare ekvationerna in i första: ( t)+t ( + t) 5 = 0 0 t 5 = 0 Ingen lösning Ingen skärningspunkt Linjen löper parallellt med, utanför planet.. ½ +z = + z = Addera ekv. till ekv.. Skriv -termerna sist ½ +z + = z +5 = = t z = 5t = z + = 7 t 4. Linjen på parameterform: (subtrahera (första ekv.) från den andra) = t = z = t Genom varje punkt på denna linje lägger vi en linje med riktningen (,, ) = t + s = +s z = t + s, s R och bestämmer dess skärningspunkt (uttrckt som funktion av t) med planet +z =4: ( t + s) ( +s)+(t + s) = 4 4s = t 7 s = (t 7) /4 = t + s = t = +s = t, t R z = t + s = t De här skärningspunkterna (en för varje t) utgör den sökta linjen. Vi kan förenkla dess ekvation något genom att bta ut parametern t mot +4u : = u = 4+u, u R z = +5u Kontroll att denna verkligen är innehållen i planet +z =4: ( u) ( 4+u)+( +5u) =4för alla u 5. I ekvationen för första flgplanet blir (,, z) =(, 4, 6) för t =, d.v.s. första flgplanet befinner sig i (, 4, 6) när t =. I ekvationen för andra glgplanet blir (,, z) =(, 4, 6) för t =, d.v.s. andra flgplanet befinner sig i (, 4, 6) när t =. Båda rutterna går alltså genom (, 4, 6), men flgplanen kolliderar inte, eftersom de befinner sig där vid olika tidpunkter. Sätt in dessa uttrck för,, z ideurspr.ekv. och kontrollera att likhet gäller för alla t! Svar: (,, z) =(0, 0, ) + t, 7, 5
5 6. Låt (,,a) vara skärn. punkten med och (,b,) skärn.punkten med. = a a + Alltså skall vara parallell med b = 4 b Linjens ekv. z 4 b = = a + ½ b = a =0. + t 7. Frågan är ekvivalent med: Finns tal t och s sådana att vektorerna +t t = +t +t +t t och +s +s = s +s 4+s +s är parallella? (Talen t och s skall ge oss skärningspunkterna. De parallella vektorerna linjens riktning.) Tittar vi på andra- och tredjekoordinaterna, ser vi att enda möjligheten är att +t = t t = Första vektorn är då (,, ) och den andra är parallell om Svar: Ja, linjen s = (+s) s = 4 = + t = + t z = + t som skär linjerna i (,, ) resp. (,, 0). 8. Sökta linjens skärningspunkter med de givna linjerna måste ha formen (t, 0, 0) resp. (0,s,). Dess riktning skulle då ges av såväl (p t, q, r) som (p, q s, r ) som alltså måste vara parallella. Om r 6= kan parallellitetsvillkoret formuleras p t p = q q s = r r Enda möjligheten för t är då t = p p r r och om även r 6= 0är enda möjligheten för s s = q/r Om däremot r =0, så är enda möjligheten att (p t, q, 0) = 0 (p, q s, 0 ) q =0 t = p s = godtcklig Om r =, så i stället (p, q s, ) = 0 (p t, q, ) p =0 s = q t = godtcklig 9. a) Vill ha b, så att följande ekvationssstem för s och t är lösbart ( + t, +t, +t) =(s, +s, b s) varav b = +t = s +t =+s +t = b s +t = s +t =+(+t) +t = b (+t) +t = s t = 7=b 6 b) Från a) kan vi avläsa skärningspunkten: t =i första linjens ekv. ger (, 5, 7) Planets ekv. på parameterform: = 5 + s z 7 + t 4
6 0. Dela upp e i vinkelräta komposanter, den ena parallell med, den andra vinkelrät mot e :. Lös ut e och e : ½ be =e +e a) be = e +6e ½ e = 8 (be be ) e = 6 (be be ) e θ e e e Linjen består av de punkter vars ortsvektor OP är parallell med den andra komposanten e cos θ e = e e =[relativt basen e, e ] = µ, Alltså svar: µ µ / = t e e + e = 4 (be be ) 6 (be be ) = 6 be 6 be b) Sambandet mellan koordinaterna relativt de olika sstemen fås ur b be + b be = e + e = 8 (be be ) 6 (be be ) ½ b = 8 6 Därför b = b + b = 0 µ 8 µ = = 0 = t = + =0 5
7 . Linjens ekvation på parameterform: ½ = t, t godtcklig = 4 t OP= OP 0 + tv, där OP 0 = (0, 4), v =(, ) med avseende på den urspr. basen Sambandet mellan na och gamla basvektorer (eftersom OP =(, 0) och PQ =(, ) relativt den gamla basen) : ½ e 0 = e e 0 = e +e ½ e = e 0 e = e + e0 = e0 + e0 Alltså O 0 P 0 = e 4e = e 0 e 0 v = e e = e 0 e 0 e 0 = e 0 e 0 I det na sstemet har vi ekvationen O 0 P = O P 0 + tv där O P 0 = (, ), v =(, ) med avseende på den na basen d.v.s. ½ 0 = t 0 = t, t godtcklig eller ekvivalent 0 = 0 vilket fås ur 0 + = t = 0 +. Alternativ : Utgå från en parameterformekvation och eliminera: OP = OP + s P P + t P P = s +at = +t z = s t t = s = at = a + a z = ( a + a) ( ) Den sista ekvationen är den som efterfrågas: (a ) + z = a Alternativ : Vi söker A, B, C och D, sådana att alla de tre punkternas koordinater uppfller A + B + Cz = D B +C = D A + B + C = D Aa +B + C = D B = D C A = D B C = C ac +(D C)+C = D därdensistaekv.ärekviv.med D = ( a) C Planets ekvation skall alltså ha formen C +( a) C + Cz = ( a) C +( a) + z = a (Fallet C =0ger inte ett plan utan hela rummet.) 6
8 4. Låt oss bestämma oss för att uttrcka allt i de tre linjärt oberoende vektorerna AB, AD och AE. Vektorn AP kan vi uttrcka på två olika sätt. Å ena sidan AP = t AG för något tal t ³ = t AB + BC + CG ³ = t AB + AD + AE Å andra sidan AP = AD + s v + s v där s,s är tal och v, v är två vektorer som spänner upp planet. Vi kan ta v = AE AD v = AB + BC AD = AB AD Därmed t AB + tad + tae = s AB + µ s s AD + s AE I och med att vektorerna är linjärt oberoende, så måste t = s t = s + s t = s vilket ger t = 7 µ s = 4 7,s = 7 Det sökta förhållandet är alltså :5 Alternativt sätt att formulera (egentligen) samma räkningar: Tänk dig ett koordinatsstem med A som origo och med koordinatalar så att intilliggande hörnen får koordinaterna B :(, 0, 0),D:(0,, 0),E:(0, 0, ) och därmed G :(,, ). Planet skall alltså gå genom (0, 0, /), (, /, 0) och (0,, 0). Dess ekvation blir (ser man direkt med interceptformeln) av tpen A + +z = där A bestäms av att (, /, 0) skall uppflla ekv. + +z = Detta plans skärning med linjen t (,, ) fås ur t + t +t = t = 7 5. Låt v, v, v, v 4 beteckna simmarnas hastigheter, t jk = tidpunkten då simmare j och k stöter ihop. Att, och möts parvis sinsemellan ger (t t ) v = (t t ) v +(t t ) v v = ( λ) v + λv med λ = t t t t Att, och 4 möts parvis sinsemellan ger (t 4 t ) v = (t 4 t ) v +(t 4 t 4 ) v 4 v = ( µ) v + µv 4 med µ = t 4 t 4 t 4 t Vi vill visa att det finns t sådant att (t t ) v = (t 4 t ) v +(t t 4 ) v 4 (t 4 t) v 4 +(t t ) v = (t 4 t ) v ( s) v 4 + sv = v med s = t t t 4 t Detta fås, om vi sätter vi de två uttrcken för v lika och omformar : ( λ) v + λv = ( µ) v + µv 4 λv µv 4 = (λ µ) v λ λ µ v µ λ µ v 4 = v Fallet λ = µ är uteslutet, eftersom det skulle innebära att v och v 4 är parallella. 7
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Linjer och plan Låt ABCD vara en fyrhörning i planet. Om A väljs till origo och
Linjer oh plan Läs Sparr, avsn. 3. Många läroböker likställer koordinatsystem med rätvinkligt koordinatsystem, närmare bestämt: med ett ortonormerat system (ON-system). O:et står för ortogonal = rätvinklig,
===================================================
AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)
{ 1, om i = j, e i e j = 0, om i j.
34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt
1 Vektorer i koordinatsystem
1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en
September 13, Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har. (i) en riktning, och
Fö : September 3, 205 Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har i en riktning, och ii en nollskild längd betecknad P Q. Man använder riktade sträckor
Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.
Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät
M0043M Integralkalkyl och Linjär Algebra, H14,
M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 1 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 31 Lärare Ove Edlund Föreläsningar
Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med
RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange
= ( 1) ( 1) = 4 0.
MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)
Lösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.
Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på
Explorativ övning Vektorer
Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken
October 9, Innehållsregister
October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................
Del A. Lösningsförslag, Tentamen 1, SF1663, CFATE,
Lösningsförslag, Tentamen, SF, CFATE, -- Del A a Om matrisekvationen skrivs AXB C och matriserna A och B är inverterbara så kan ekvationen lösas genom att båda led vänstermultipliceras med A och högermultipliceras
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2
SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.
Veckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
Detta cosinusvärde för vinklar i [0, π] motsvarar α = π 4.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 8-- kl 4-9 a) Triangelns area är en halv av parallellograms area som spänns upp av tex P P (,, ) och P P (,, ), således area av P P P (,, ) (,,
. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
Vektorgeometri och funktionslära
Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),
Vektorgeometri. En inledning Hasse Carlsson
Vektorgeometri En inledning Hasse Carlsson Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 01 Innehåll 1 Inledning Geometriska vektorer.1 Definition av vektorer........................
e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2
Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π
Sidor i boken Figur 1: Sträckor
Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar
ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
RTNRMERADE BASER I PLAN (D) CH RUMMET (D) RTNRMERAT KRDINAT SYSTEM Vi säger att en bas i rummet e x e e z följande villkor är uppfllda: ( e x e i plan) är en ortonormerad bas om basvektorerna är parvis
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att
Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet
z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)
Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll
1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e ett koordinataxel.
rmin Haliloic: EXTR ÖVNINGR a 9 aser och koordinater i D-rummet SER CH KRDINTER Vektorer i ett plan Vektorer i rummet SER CH KRDINTER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betraktar ektorer som ligger
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
SF1624 Algebra och geometri
SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet
2+t = 4+s t = 2+s 2 t = s
Extra 1. Ta fram räta linjens ekvation på parameterform då linjen går genom punkterna (1, 1,0) och (2,0,1) (3, 1,4) och ( 1,1,6) (4,3, 1) och (7, 2,5) (11,3, 6) och (9, 1,3) Lösning: (x,y,z) = (1+t, 1+t,t)
Skalärprodukt (lösningar)
Skalärprodukt (lösningar) 404. Nej : 40. Utnyttja definitionen u v u v cos θ u v 4 6 u och distributiviteten (u v) (u + v) u u 6v u + u v v v 4 5 6 0 (Ritar man noggrant, ser man att u v och u + v mycket
Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.
Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen
Geometriska vektorer
Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive
Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer
Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument
Moment 4.2.1, 4.2.2, 4.2.3, 4.2.4 Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument Många av de objekt man arbetar med i matematiken och
Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.
Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
Inledande kurs i matematik, avsnitt P.2. Linjens ekvation kan vi skriva som. Varje icke-lodrät linje i planet kan skrivas i formen.
Inledande kurs i matematik, avsnitt P. P..15 Bestäm en ekvation för den linje som går genom punkten P = ( 1, 1) och har riktningskoefficient k = 1. P..17 Bestäm en ekvation för den linje som går genom
Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22
Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom
kan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut.
vsnitt 2, Vektorer kan vi uttrycka med a, b och c. W109 är basytan (en kvadrat) i en regelbunden fyrsidig pyramid med spetsen. Låt = a, = b och = c. eräkna. Vi ritar först en figur av hur pyramiden måste
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.
Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av:
MATA15 Algebra, delprov, 6 hp Lördagen den 8:e december 01 Skrivtid: 800 100 Matematikcentrum Matematik NF Lösningsförslag 1 Ligger punkterna P 1 = (0, 1, 1), P = (1,, 0), P = (, 1, 1) och P 4 = (, 6,
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.
UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
Studiehandledning till. MAA123 Grundläggande vektoralgebra
Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra
LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då
Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.
3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN6 alt.
Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:
Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2016 Skrivtid 8:15 12:15
Kurs: HF9 Matematik Moment TN Linjär lgebra Datum: 5 augusti 6 Skrivtid 8:5 :5 aminator: rmin Halilovic Undervisande lärare: lias Said För godkänt betg krävs av ma poäng. Betgsgränser: För betg B C D krävs
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
Föreläsning 13 Linjär Algebra och Geometri I
Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och
1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA.
Övningsuppgifter i anslutning till Kapitel. Skriv följande vektorsummor som en vektor a AB + BC b BC + CD + DA..2 Sök i nedanstående figur de vektorer som har samma längd och samma riktning som vektorn
1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e
. Inledning I Linjär algebra kommer vi att stdera olika objekt samt deras egenskaper. Dessa objekt kan ha geometrisk tolkning såsom geometriska vektorer men också inte som t.e. matriser. Vi har tidigare
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade
Moment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så
Tisdagen september kl 10:15, Sal 093, Moment 4.3.1 Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.5, 4.55 Räta linjen i rummet En rät linje l i rummet är bestämd då en punkt P 0 på linjen och en riktningsvektor
Kompendium om. Mats Neymark
960L09 MATEMATIK FÖR SKOLAN, Lärarlftet 2009-02-24 Matematiska institutionen Linköpings universitet 1 Inledning Kompendium om KÄGELSNITT Mats Nemark Detta kompendium behandlar parabler, ellipser och hperbler
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) Vi betraktar triangeln ABC där A=(1,0,3), B=(2,1,4 ), C=(3, 2,4).
TETAME 08-Okt-, HF006 och HF008 Moment: TE (Linjär algebra), hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF008, Linjär algebra och anals HF006 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats:
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
Vektorer. 1. Vektorer - definition och räkneoperationer F H
Vektorer Detta material bygger på valda och delvis omarbetade delar av kompendiet Vektoralgebra av Hasse Carlsson. Dessutom har ett helt nyskrivet avsnitt om strömtriangeln lagts in. Inledning Du är säkert
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
MAA123 Grundläggande vektoralgebra
Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen TEN4 Lösningsförslag 2012.01.09 14.30 16.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva
Matematik CD för TB. x + 2y 6 = 0. Figur 1:
Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =
Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn
10.4. Linjära höljet LINJÄRA RUM
98 LINJÄRA RUM.4. Linjära höljet Definition.37. Mängden av alla linjärkombinationer av M = {v, v,...,v n } iett linjärt rum V kallas för linjära höljet av M betecknas [M], dvs [M] ={u V : u = λ v + λ v
ANDRAGRADSKURVOR Vi betraktar ekvationen
ANDRAGRADSKURVOR Vi betraktar ekvationen Ax + Bxy + Cy + Dx + Fy + G 0 (ekv) där minst en av A,B, eller C är skild från 0 En andragradskurva är mängden av alla punkter vilkas koordinater satisfierar en
(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.
UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
SKRIVNING I VEKTORGEOMETRI Delkurs
SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom
Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0.
Avsnitt Egenvärden och egenvektorer W Vilka av följande matriser är ortogonala? b d En matris A a a a n a a a n a a a n a m a m a mn är en ortogonal matris om dess kolumner bildar en ON-bas för rummet
1. Beräkna determinanten
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.
Analys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF90 Torsdag augusti Skrivtid: 4:00-8:00 Examinator: Armin Halilovic För godkänt betyg krävs 0 av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive 0 poäng
1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet
1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll
Vektorer för naturvetare. Kjell Elfström
Vektorer för naturvetare Kjell Elfström Copyright c Kjell Elfström 2015 Första upplagan, mars 2015 Innehållsförteckning 1 Vektorer 5 1.1 Vektorbegreppet......................... 5 1.2 Operationer på vektorer.....................
Preliminärt lösningsförslag
Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel
Vektoralgebra. En inledning Hasse Carlsson
Vektoralgebra En inledning Hasse Carlsson Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 2005 Innehåll 1 Inledning 2 2 Geometriska vektorer 2 2.1 Definition av vektorer.......................