Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.
|
|
- Hugo Lundqvist
- för 6 år sedan
- Visningar:
Transkript
1 Moment 4.2.1, 4.2.2, 4.2., Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen kan beskrivas med ett enda tal. Som till exempel omkretsen hos en triangel, summan av en serie eller massan hos en kropp. I stället för tal kommer vi här ofta att använda ordet skalär. Det finns dock andra objekt, som kräver flera tal för att låta sig beskrivas en kraft eller en förflyttning från en punkt till en annan. Dessa objekt beskrivs med en vektor. Det mest klassiska exemplet för att visa skillnaden mellan en skalär och en vektor är skillnaden mellan fart och hastighet. Fart ges som en skalär, 60 km/tim eller 10 m/s, medan hastighet både kräver en storlek, farten, och en riktning, rakt norr ut. I denna föreläsning ska vi studera geometriska vektorer, som kommer att dyka upp i planet eller rummet. Figur 1: Sträckor Riktad sträcka och vektor I figur 1 ser vi två punkter, P 1 och P 2 i rummet. Linjestycket mellan två punkter kallas sträcka. Sträckan i figur 1 betecknas P 1 P 2. Om hänsyn tas till ordningen mellan punkterna är sträckan P 1 P 2 inte samma sträcka som P 2 P 1. Eftersom ordningen är viktig för oss kommer vi fortsättningsvis att tala om riktad sträcka, som vi betecknar P P 4 och ritar med en pil, som i figuren. Den riktade sträckan P 5 P 5 kallar vi i en nollsträcka. I rummet finns förstås oändligt många riktade sträckor, med samma storlek och riktning, som sträckan P P 4. Definition 1. Vektor. En vektor v är mängden av riktade sträckor med samma längd och riktning. Två riktade sträckor hör till samma vektor, om den ena kan överföras till den andra, genom en parallellförflyttning Som ett extra förtydligande betonar vi. Håkan Strömberg 1 KTH Syd
2 Figur 2: 16 riktade sträckor men bara en vektor! En riktad sträcka har längd, riktning, startpunkt och slutpunkt. En vektor har endast längd och riktning. Kör man rakt söder ut med 100 km/tim i Haparanda är det i vektoriellt sammanhang samma sak, som att köra rakt söder ut med 100 km/tim i Ystad. Koordinatsystem i planet För att kunna räkna med vektorer på det sätt vi vill analytiskt måste vi införa ett koordinatsystem. Låt v vara en vektor i planet. Ofta, kommer vi att välja den representant för v som har sin startpunkt i origo i ett vanligt rektangulärt koordinatsystem. Koordinaterna för slutpunkten, (v 1,v 2 ), kallas vektorns komponenter. Vi skriver så vektorn som v = (v 1,v 2 ). Två vektorer v och w är identiska då och endast då v 1 = w 1 och v 2 = w 2, då komponenterna är identiska. Räkneoperationer för vektorer i planet. Definition 2. Vi adderar två vektorer v = (v 1,v 2 ) och u = (u 1,u 2 ) genom v+ u = (v 1 +u 1,v 2 +u 2 ) Vi subtraherar två vektorer v = (v 1,v 2 ) och u = (u 1,u 2 ) genom v u = (v 1 u 1,v 2 u 2 ) När vi multiplicerar en vektor v med en skalär k, får vi k v = (kv 1,kv 2 ) Koordinatsystem i rummet Precis som vektorer i planet kan uttryckas med hjälp av två reella tal, kan vektorer i rummet uttryckas med tre reella tal. Vi väljer först en punkt som origo och sedan tre koordinataxlar, genom origo som är parvis vinkelräta. Håkan Strömberg 2 KTH Syd
3 Kallar vi axlarna x-axeln, y-axeln och z-axeln, vilket är vanligt, kan vi säga att varje par av koordinataxlar spänner upp ett plan, som i tur och ordning kallas xy-planet, xz-planet och yz-planet. Läget hos en punkt P i rummet kan bestämmas med hjälp av en taltrippel, (x,y,z), som förstås kallas koordinaterna till punkten P. Figur : fig 5 Precis som för vektorer i planet fastslår vi nu för vektorer i rummet: Låt v vara en vektor i rummet. Om vi väljer den representant för v som har sin startpunkt i origo, så får slutpunkten koordinaterna (v 1,v 2,v ), vilket vi kallar vektorns komponenter och skriver vektorn som v = (v 1,v 2,v ). Två vektorer v och w är identiska då och endast då v 1 = w 1, v 2 = w 2 och v = w då komponenterna är identiska. Figur 4: Figuren visar att u+ v = v+ u vilket betyder att vektoraddition är kommutativ! Vektorn 0 = (0, 0, 0) kallas nollvektorn. Håkan Strömberg KTH Syd
4 Räkneoperationer för vektorer i rummet Definition. Vi adderar två vektorer v = (v 1,v 2,v ) och u = (u 1,u 2,u ) genom v+ u = (v 1 +u 1,v 2 +u 2,v +u ) och subtraherar vektorerna genom v u = (v 1 u 1,v 2 u 2,v u ) När vi multiplicerar en vektor v med en skalär k, får vi k v = (kv 1,kv 2,kv ) En vektors längd och avståndet mellan punkter Sats 1. Längden av en vektor i planet. En vektor v = (v 1,v 2 ) i planet är given. Vektorns längd, skrivs v och bestäms genom v = v 2 1 +v2 2 Sats 2. Längden av en vektor i rummet. En vektor v = (v 1,v 2,v ) i rummet är given. Vektorns längd bestäms genom v = v 2 1 +v2 2 +v2 Sats. Avståndsformeln. Om P 1 (x 1,y 1,z 1 ) och P 2 (x 2,y 2,z 2 ) är två punkter i rummet är avståndet, d, mellan dessa punkter lika med längden av vektorn med en representant P 1 P 2. Eftersom P 1 P 2 = (x 2 x 1,y 2 y 1,z 2 z 1 ) är d = (x 2 x 1 ) 2 +(y 2 y 1 ) 2 +(z 2 z 1 ) 2 Parallella vektorer Definition 4. Vi säger att vektorerna v och u är parallella, v u, om u kan skrivas som u = t v. Alla vektorer anses vara parallella med nollvektorn 0. Punkten i rummet Varje punkt P i rummet bestäms av en vektor OP, en så kallad ortsvektor för P med avseende på origo O. En punkt i rummet bestäms genom tre koordinater. Vi skriver punkten P = (x,y,z) och motsvarande ortsvektor OP = (x,y,z). Håkan Strömberg 4 KTH Syd
5 Normerad vektor Definition 5. En vektor v = (v 1,v 2,v ) har längden v. Vektorn r som bestäms genom r = v ( v = v1 v, v 2 v, v ) v kallas normerad och har samma riktning som v men längden 1. Figur 5: fig Linjärt beroende Med hjälp av de två vektorerna u och v i figur 5 kan vi uttrycka vilken vektor a som helst i planet. Det finns en linjärkombination a = c 1 u+c 2 v där c 1 och c 2 är skalärer. Förutsättningen för att två vektorer v och u i planet ska ha denna egenskap är att de inte är parallella. Två parallella vektorer i planet är linjärt beroende. Vilket betyder att vi kan finna två skalärer λ u och λ v, så att λ u u+λ v v = 0 utan att både λ u = 0 och λ v = 0. För samma resonemang i rummet krävs tre vektorer. Med tre vektorer u, v och w i rummet kan man uttrycka alla vektorer a det finns en linjärkombination a = c 1 u+c 2 v+c w om λ u u+λ v v+λ w w = 0 endast då λ u = λ v = λ w = 0. Då sägs vektorerna vara linjärt oberoende. Tre vektorer i rummet är linjärt oberoende då inte alla tre ligger i samma plan. Definition 6. Linjärt beroende. Vektorerna v 1, v 2... v n, sägs vara linjärt beroende om någon av dem kan skrivas som en linjärkombination av de övriga. Annars sägs de vara linjärt oberoende. Sats 4. Att vektorerna v 1, v 2... v n är linjärt beroende är detsamma som att det finns skalärer λ 1, λ 2...λ n, av vilka minst en är skild från noll sådana att λ 1 v 1 +λ 2 v λ n v n = 0 Tre eller fler vektorer i planet är alltid linjärt beroende. Fyra eller fler vektorer i rummet är alltid linjärt beroende. Två vektorer i planet kan vara linjärt oberoende. Två eller tre vektorer i rummet kan vara linjärt oberoende Håkan Strömberg 5 KTH Syd
6 Exempel Figur 6: Exempel 1. a) Uttryck g med hjälp av a och b b) Uttryck f med hjälp av b och c c) Uttryck e med hjälp av c och d d) Uttryck e med hjälp av f, g och h a) g = a+ b c) e = d c b) f = b c d) e = f g+ h Figur 7: Exempel 2. En kraft F har storleken 60 N. En annan kraft G har storleken 75 N. Vinkeln mellan krafterna är 45. Bestäm resultanten till storlek och riktning. Vi ska alltså ta reda på längden hos OC. Då vi känner sträckorna ON och NC kan vi enkelt bestämma OC med hjälp av Pythagoras sats. Först konstaterar vi att CN = AC sin45. Eftersom AC = 75 får vi CN = På liknande sätt kan vi så bestämma AN = AC cos45 = Till sist OC 2 = OC = OC ( ) 75 2 ( ) ( ) Håkan Strömberg 6 KTH Syd
7 Exempel. Bestäm avståndet d, mellan punkterna P 1 = (1,0,5) och P 2 = (, 2,6). d((1,0,5),(, 2,6)) = ( 1) 2 +( 2 0) 2 +(6 5) 2 = = Exempel 4. Bestäm den normerade vektorn r till v = (2,, 6). Vi startar med att bestämma v v = ( 6) 2 = 49 = 7 r blir då r = ( 2 7, ) 7, 6 7 Exempel 5. Är vektorerna v = (,9, 21) och w = ( 4, 12,28) parallella? Det vill säga finns det ett reellt tal t sådant attt v = w? Vi får ett överbestämt ekvationssystem (vi kommer att tala mer om dem längre fram), tre ekvationer med endast en obekant. t = 4 9t = 12 21t = 28 För t = 4 gäller likheten för alla tre ekvationerna. Vektorerna är visserligen parallella men riktade åt olika håll! Exempel 6. Är u = (1, 2,), v = (5,6, 1) och w = (,2,1) linjärt oberoende? Om vi lyckas hitta en uppstättning av λ u, λ v, λ w där alla inte är noll, så att λ u u+λ v v+λ w w = 0 så är vektorerna linjärt beroende. Efter instättning får vi (λ u +5λ v +λ w, 2λ u +6λ v +2λ w,λ u λ v +λ w ) = (0,0,0) vilket leder till ekvationssystemet: λ u +5λ v +λ w = 0 2λ u +6λ v +2λ w = 0 λ u λ v +λ w = 0 En av många lösningar till ekvationssystemet är λ u = 1, λ v = 1, λ w = 2, vilket alltså betyder att vektorerna är linjärt beroende Håkan Strömberg 7 KTH Syd
8 Utför polynomdivisionen x 2x+1 x 1 Vi ställer upp för en division enligt skolboken x x x 2 x 2 x 2 2x +1 : x 1 = x 2 +x 1 2x x x +1 x +1 0 Detta kan vara hämtat från en realistisk situation. Man har lyckats gissa sig till en rot x 1 = 1. Genom att dividera ekvationen med (x 1) får vi en andragradsekvation x 2 + x 1 = 0 som vi sedan kan lösa. 1 Addera vektorerna v = (, 5,6), w = ( 2,7, 8) och u = ( 1, 2,2) 2 Vi har en riktad sträcka som startar i P 1 = (1,,5) och slutar i P 2 = (1,1,1). Vi söker representanten för motsvarande vektor v, som har sin startpunkt i origo. Placera en kub, med kantlängden 1, med ett hörn i origo och alla kanter parallella med koordinataxlarna. I vilka koordinater kan det hörn som ligger längst från origo befinna sig? Hur lång är kubens, så kallade, rymddiagonal? 4 Välj a så att vektorerna v = (a, 2, 1) och w = (5, 10, 5a) blir parallella. 5 Är vektorn v = (2,6,4) dubbelt så lång som u = (1,,2)? Läxa a) Läxa b) a+ b = (1,1,0) +(2,2,1) = (,,1) a+ b 2 +2 c = (1,1,0) + 1 (2,2,1)+2(0,1,1) = (1,1,0) + 2 ( 1,1, 1 ) ( +(0,2,2) = 2,4, 5 ) 2 2 Läxa. 4.1 c) Läxa d) Läxa e) b 2 a = (2,2,1) 2(1,1,0) = (0,0,1) a = b = = = 9 = Håkan Strömberg 8 KTH Syd
9 Läxa f) a b = (1,1,0) (2,2,1) = ( 1, 1, 1) = Läxa g) Läxa h) ^a = a a = 1 ( ) 1 1 (1,1,0) = 2,,0 2 2 ^b = b b = 1 ( 2 (2,2,1) =, 2, 1 ) ( 1) 2 +( 1) 2 +( 1) 2 = Läxa Tre vektorer i, j och k all med längden 1 och sinsemellan vinkelräta mot varandra (kommer vi att kunna bevisa senare) kan med fördela användas för att beskriva vilken vektor eller punkt som helst i rummet. Då i = (1,0,0), j = (0,1,0), k = (0,0,1) får vi punkternas koordinater till P = (1,0,0) +(0,1,0) 7(0,0,1) = (1,, 7) Q = 5(1,0,0) 2(0,1,0) +4(0,0,1) = (5, 2,4) Vektorn PQ = (5, 2,4) (1,,7) = (4, 5,11) och dess längd PQ = 4 2 +( 5) = 9 2 Den normerade vektorn med samma riktning som PQ ( ) 4 9 2, 5 9 2, Läxa Det tre enhetsvektorerna är i = (1,0,0), j = (0,1,0), k = (0,0,1). Med dess hjälp kan vi närmare bestämma F 1 = i 2 j+5 k F 2 = i+7 j k F = 5 i j+4 k F 4 = 2 j+ k = (, 2,5) = ( 1,7, ) = (5, 1,4) = (0, 2,) Vi adderar de fyra vektorerna för att få reda på resultanten och kan sedan ta reda på hur långt partikeln har förflyttat sig. F = F 1 + F 2 + F + F 4 = (7,2,9) F = F 1 + F 2 + F + F 4 = = 14 med beteckningen ^F menar vi den normerade vektorn (har längden 1) med samma riktning som F. ( ) ^F =,, Läxa a = i 2 j+ k = (, 2,1) b = 2 i+5 j+4 k = ( 2,5,4) c = 4 i+ j 2 k = ( 4,1, 2) d = 2 i j+4 k = (2, 1,4) Håkan Strömberg 9 KTH Syd
10 α 2β 4γ = 2 2α+5β+γ = 1 α+4β 2γ = 4 Detta är ett ekvationssystem med tre obekanta jobbigt att lösa. Vi kommer senare i kursen att berätta mer om ekvationssystem. Nu tar vi Maple till hjälp. solve({-2*a+5*b+c=-1, a+4*b-2*c=4, *a-2*b-4*c=2}) ger svaret Läxa α = 4,β = 1,γ = 2 a = 2 i 4 j k = (2, 4, 1) b = i+2 j 2 k = (,2, 2) c = 5 i 2 j k = (5, 2, ) Vi testar och ser att a+ b = c Vi beräknar de tre vektorerna längder (2, 4, 1)+(,2, 2) = (5, 2, ) a = 2 2 +( 4) 2 +( 1) 2 = 21 b = ( 2) 2 = 17 c = 5 2 +( 2) 2 +( ) 2 = 8 Pythagoras sats ger oss a 2 + b 2 = c 2, som leder till = 8 och vi har bevisat att de tre vektorerna bildar en rätvinklig triangel. Läxa Vi bildar två vektorer P(1,,4) Q(2,2,1) R(,7, 2) PQ = (2,2,1) (1,,4) = (1,5, ) QR = (,7, 2) (2,2,1) = (1,5, ) PQ = QR vilket betyder att de tre punkterna ligger på en linje och att avstånden är lika. PQ : QR = 1 Håkan Strömberg 10 KTH Syd
11 För att få tillgång till de funktioner som tillhör den linjära algebran öppnar man ett bibliotek genom with(linearalgebra); Här får man samtidigt en lista över samtliga funktioner som ingår i biblioteket. Avslutar man med kolon (:) slipper man denna lista. Nu kan vi definiera till exempel vektorer genom a:=<1,-2,>; b:=<2,,-4>; Vill man addera två vektorer skriver man bara c:=a+b; Vi kan nu tar reda på längden hos c genom Norm(a,2); 2:an här är viktig för att ange att det handlar om den Euklidiska normen, som vi alltid kommer att använda. Vi ska så lösa läxa 12 med hjälp av Maple i:=<1, 0, 0>; j:=<0, 1, 0>; k:=<0, 0, 1>; a:=2*i-4*j-k; b:=*i+2*j-2*k; c:=5*i-2*j-*k; a+b; c; Norm(a, 2)^2+Norm(b, 2)^2; Norm(c, 2)^2; 8 8 Vi definierar de tre enhetsvektorerna, som går direkt in i uttrycken för att bestämma a, b och c. Nu kan vi bestämma a+ b och jämföra resultatet med c. Det stämmer! Återstår att använda Pythagoras sats, där c är hypotenusa. Eftersom summan kateterna i kvadrat är lika med hypotenusan i kvadrat så stämmer det hela. Håkan Strömberg 11 KTH Syd
12 Svar till: De fyra korten Vi översätter de fem satserna till lika många pusselbitar Valörbitarna kan endast sättas samman på ett sätt. Färgbitarna likaså. När vi sedan passar in färgkorten över raden av valörkort, finns det även här endast en möjlighet och vi har svaret: hjärterdam, hjärterkung, spaderkung och spaderdam. Dagens problem: Finn skeppen I figuren ovan till vänster ser vi ett hav bestående av rutor. I havet finns ett antal fyrar markerade med cirklar. Inuti cirklarna finns ett tal, som berättar hur många skepp man kan se från fyren. Alla dessa skepp finns i samma rad eller kolumn som fyren. De åtta rutor som maximalt kan omge ett skepp kan aldrig innehålla vare sig ett annat skepp eller en fyr. Alla skepp syns från åtminstone en fyr. Var finns skeppen? Samma fråga för havet till höger i figuren. Håkan Strömberg 12 KTH Syd
13 1 Det är riktigt, den resulterande vektorn är (0,0,0) 2 v = (1 1,1,1 5) = (0, 2, 4) Det finns8möjligheter :(1,1,1), (1,1, 1), (1, 1,1), (1, 1, 1), ( 1,1,1), ( 1,1, 1), ( 1, 1,1), ( 1, 1, 1). Rymddiagonalen är ( 1) ( 1) 2 =, förstås oavsett vilken av de tre punkterna för det motsatta hörnet man väljer. 4 Som sagt, det är frågan om huvudräkning, och det bör vara enkelt att se att a = 1 5 v = = 48 och u = = 14, då vi ser att Så svaret är nej Håkan Strömberg 1 KTH Syd
Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument
Moment 4.2.1, 4.2.2, 4.2.3, 4.2.4 Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument Många av de objekt man arbetar med i matematiken och
Läs merSidor i boken Figur 1: Sträckor
Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar
Läs merVeckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Läs merDagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer
Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,
Läs merLinjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läs merLinjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läs merM0043M Integralkalkyl och Linjär Algebra, H14,
M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 1 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 31 Lärare Ove Edlund Föreläsningar
Läs merDär a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att
Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet
Läs merMoment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61
Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska
Läs merMoment Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning.
Moment 4.2.7 Viktiga exempel 4.17, 4.18, 4.19, 7.20, 4.22, 4.23 Handräkning 4.17, 4.18, 4.19, 4.21, 4.24, 4.54 Datorräkning Figur 1: fig 6 Skalärprodukt Först fastslår vi att två vektorer i planet eller
Läs merDeterminant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22
Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom
Läs merExplorativ övning Vektorer
Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken
Läs merSeptember 13, Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har. (i) en riktning, och
Fö : September 3, 205 Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har i en riktning, och ii en nollskild längd betecknad P Q. Man använder riktade sträckor
Läs mer. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
Läs merx+2y 3z = 7 x+ay+11z = 17 2x y+z = 2
Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =
Läs merMoment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då
Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.
Läs merMatematik CD för TB. x + 2y 6 = 0. Figur 1:
Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten
Läs merLösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
Läs merMoment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a
Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem
Läs merVektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.
Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B
Läs merRÄKNEOPERATIONER MED VEKTORER LINJÄRA KOMBINATIONER AV VEKTORER ----------------------------------------------------------------- Låt u vara en vektor med tre koordinater, u = x, Vi säger att u är tredimensionell
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Läs merTENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor
TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan
Läs merMoment Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.52, P 0 P = t v OP och OP 0 är ortsvektorer för punkterna P och P 0, så
Tisdagen september kl 10:15, Sal 093, Moment 4.3.1 Viktiga exempel 4.37, 4.38, 4.39 Övningsuppgifter 4.5, 4.55 Räta linjen i rummet En rät linje l i rummet är bestämd då en punkt P 0 på linjen och en riktningsvektor
Läs merMoment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.
Läs merORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
RTNRMERADE BASER I PLAN (D) CH RUMMET (D) RTNRMERAT KRDINAT SYSTEM Vi säger att en bas i rummet e x e e z följande villkor är uppfllda: ( e x e i plan) är en ortonormerad bas om basvektorerna är parvis
Läs merVektorgeometri. En inledning Hasse Carlsson
Vektorgeometri En inledning Hasse Carlsson Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 01 Innehåll 1 Inledning Geometriska vektorer.1 Definition av vektorer........................
Läs merKOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Läs merMoment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6
Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.
Läs merOctober 9, Innehållsregister
October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................
Läs merSidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Läs mer2+t = 4+s t = 2+s 2 t = s
Extra 1. Ta fram räta linjens ekvation på parameterform då linjen går genom punkterna (1, 1,0) och (2,0,1) (3, 1,4) och ( 1,1,6) (4,3, 1) och (7, 2,5) (11,3, 6) och (9, 1,3) Lösning: (x,y,z) = (1+t, 1+t,t)
Läs merx = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z
Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning
Läs merAnalys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Läs merLösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Läs mer1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Läs merSF1624 Algebra och geometri
SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet
Läs mer1 Vektorer i koordinatsystem
1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en
Läs mer1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Läs merz = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)
Tentamenskrivning MATA15 Algebra: delprov 2, 6hp Fredagen den 16 maj 2014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Låt l vara linjen genom punkten (5, 4, 4) som är vinkelrät mot planet 2x+2y +3z
Läs merFunktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Läs merLinjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.
Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät
Läs mertal. Mängden av alla trippel av reella tal betecknas med R 3 och x 1 x 2 En sekvens av n reella tal betecknas med (x 1, x 2,, x n ) eller
Augusti, 5 Föreläsning Tillämpad linjär algebra Innehållet: linjen R, planet R, rummet R, oh vektor rummet R n Matriser punkter oh vektorer i planet, rummet, oh R n Linjen, planet, rummet, oh vektor rummet
Läs mer1 som går genom punkten (1, 3) och är parallell med vektorn.
KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med
Läs merKarta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara
Föreläsning 1 Jag hettar Thomas Kragh och detta är kursen: Flervariabelanalys 1MA016/1MA183. E-post: thomas.kragh@math.uu.se Kursplan finns i studentportalens hemsida för denna kurs. Där är två spår: Spår
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll
Läs merTrigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Läs merMAA123 Grundläggande vektoralgebra
Mälardalens högskola Akademin för undervisning, kultur och kommunikation MAA123 Grundläggande vektoralgebra Tentamen TEN4 Lösningsförslag 2012.01.09 14.30 16.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll
Läs merSF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
Läs merKomposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Läs mer2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =
Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
Läs merMATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Läs merkan vi uttrycka med a, b och c. Avsnitt 2, Vektorer SA + AB = SB AB = SB SA = b a, Vi ritar först en figur av hur pyramiden måste se ut.
vsnitt 2, Vektorer kan vi uttrycka med a, b och c. W109 är basytan (en kvadrat) i en regelbunden fyrsidig pyramid med spetsen. Låt = a, = b och = c. eräkna. Vi ritar först en figur av hur pyramiden måste
Läs mer===================================================
AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merDEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:
Läs merLinjär algebra på några minuter
Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen
Läs merVektorer för naturvetare. Kjell Elfström
Vektorer för naturvetare Kjell Elfström Copyright c Kjell Elfström 2015 Första upplagan, mars 2015 Innehållsförteckning 1 Vektorer 5 1.1 Vektorbegreppet......................... 5 1.2 Operationer på vektorer.....................
Läs mer= ( 1) ( 1) = 4 0.
MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)
Läs merP Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
Läs merExempel :: Spegling i godtycklig linje.
INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som
Läs merLösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
Läs merMAA123 Grundläggande vektoralgebra
Test 1 2009.09.14 08.30 09.30 Poäng: Detta test ger maximalt 8 poäng. För godkänt fordras minst 5 poäng. Frågor kan ställas till: Hillevi Gavel, som nås på 073 763 27 88 Övriga anvisningar: Skriv läsbart.
Läs merVektorer. 1. Vektorer - definition och räkneoperationer F H
Vektorer Detta material bygger på valda och delvis omarbetade delar av kompendiet Vektoralgebra av Hasse Carlsson. Dessutom har ett helt nyskrivet avsnitt om strömtriangeln lagts in. Inledning Du är säkert
Läs merPolynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas
Läs merMoment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Fler exempel på optimering Exempel 1. Utifrån en rektangulär pappskiva med bredden 7 dm och längden 11 dm, vill man åstadkomma en kartong utan lock,
Läs merLinjer och plan (lösningar)
Linjer och plan (lösningar) 0. Enligt mittpunktsformeln (med O i just origo) OM = ³ OA + OB a) b) ((, 0, ) + (,, )) = (0,, ) µ +, +, z + z 0. Enligt tngdpunktsformeln (med O i just origo) ³ OA + OB + OC
Läs merLösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
Läs mer1 Grundläggande kalkyler med vektorer och matriser
Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just
Läs merModul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll
Läs mere 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2
Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π
Läs merMer om analytisk geometri
1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
Läs merSKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Läs mer{ 1, om i = j, e i e j = 0, om i j.
34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt
Läs merTENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor
TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Tisdagen 31 maj 2011 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,
Läs merMålsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Läs merTentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Läs merBetygsgränser: För betyg. Vem som har. Hjälpmedel: av papperet. Uppgift. 1. (4p) 0. (2p) 3 (2p) Uppgift. 2. (4p) B-2C om. vektor A (1p) b) Bestäm k så
Kurs: HF90 Matematik, Moment TEN (Linjär Algebra) ) Datum: 4 augusti 08 Skrivtid 08:00 :000 Examinator: Armin Halilovic För godkänt betyg krävss 0 av maxx 4 poäng. Betygsgränser: För betyg A, B, C, D,
Läs merSF1624 Algebra och geometri
Föreläsning 1 Institutionen för matematik KTH 31 oktober 2016 Kurstart för Algebra och geometri Välkomen till kursen, CELTE och CMETE och COPEN!, kursansvarig LFN@KTH.SE Idag ska vi se hur kursen funkar
Läs merRäta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med
RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange
Läs merComplex numbers. William Sandqvist
Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den
Läs merGeometriska vektorer
Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive
Läs merx+2y+3z = 14 x 3y+z = 2 3x+2y 4z = 5
Uppgifter med linjära ekvationssystem Tips för att lösa linjära ekvationssystem Då systemet saknar parametrar ställer man direkt upp totalmatrisen. Detta är endast av administrativa skäl, blir mer lättöverskådligt.
Läs merGamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Läs merPreliminärt lösningsförslag
Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel
Läs merUPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004
UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara
Läs merVEKTORRUMMET R n. 1. Introduktion
VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Läs merKvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Läs merVektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.
Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på
Läs merLösningar till utvalda uppgifter i kapitel 8
Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet
Läs merKS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y
KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och
Läs mer