Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Storlek: px
Starta visningen från sidan:

Download "Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen."

Transkript

1 Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln då y = 3 och x-axeln då x =. En annan linje, L, skär x-axeln då x = 6. Var skär L y-axeln om de två linjerna skär varandra under rät vinkel? Läxa. De tre punkterna i vilka funktionen f(x) = x +x 6 skär x- och y-axeln utgör hörnen i en triangel. Bestäm denna triangels area. Läxa 3. En rät linje f(x) skär y-axeln då y = 4 och x-axeln då x = 3/. En annan g(x) skär y-axeln i punkten (0, 3). De två linjerna skär varandra under rät vinkel. Var skär g(x) x-axeln? Läxa 4. Man vet att punkten punkten P(, 9) ligger på kurvan till funktionen f(x) = ax x. Bestäm a och undersök för vilka värden på x som f(x) > 0 Läxa 5. Bestäm talen b och c, så att grafen till funktionen går genom punkterna P 1 ( 1,6) och P (,3) y = x +bx+c Läxa 6. Funktionen f(x) = 3x + x 10 är given. Mellan punkterna (5,75) och (, ) på funktionens kurva har dragits en sekant (helt enkelt en linje genom dessa punkter). Parallell med denna sekant har dragits en annan sekant (en annan linje), som bland annat går genom punkten ( 4, 30). Bestäm avståndet mellan denna punkt och och den andra av denna sekantens ändpunkter. Läxa 7. Bestäm a, så att linjen genom punkterna P 1 (a,10) och P ( 4,a) får k-värdet Håkan Strömberg 1 KTH STH

2 Läxa 8. Funktionerna f(x) = a+x x och g(x) = ax 5 skär varandra då x = 3 bestäm den andra skärningspunkten. Läxa 9. Lös ekvationen x + 3 x = 1 8 Läxa 10. På var och en av triangelns tre sidor är placerad en halv cirkel. Bestäm hela figurens area. Läxa 11. Lös ekvationen x+55 = x 1 Läxa 1. Bestäm rymddiagonalen e i ett rätblock då a = 3, b = 4 och c = 1. Läxa 13. Förenkla x xy y + y xy x Läxa 14. The function is f(x) = x 10x+1. What is the least value of the function? Läxa 15. Med hur många procent ökar arean hos en kvadrat om kvadratens sida ökas med 0% Läxa 16. Förenkla a a + a+1 a 1 Håkan Strömberg KTH STH

3 Läxa 17. Lös ekvationen 3 3 x = 1 17 Läxa 18. Bestäm den lilla skuggade triangelns area. Läxa 19. Volymen hos en pyramid med kvadratisk basyta är 6.4 m 3. Sidan i kvadraten är m. En skalenlig modell har volymen 100 cm 3. Vilken längd har sidan i modellens kvadrat? Läxa 0. En rektangel är inritad i ett koordinatsystem med sidorna parallella med axlarna. Två diametralt motstående hörn har koordinaterna ( 1,7) och ( 6, 15). Bestäm rektangelns area. Läxa Lösning 1. Först bestämmer vi k-värdet för L 1, som går genom de två punkterna (0,3) och (,0) k 1 = = 3 Det är nu känt att k-värdena för två linjer som skär varandra under rät vinkel har sambandet k 1 k = 1. Detta betyder att k = 3. Vi vet nu följande om L y = 3 x+m Sätter vi in de kända punkten (6,0) får vi 0 = 3 6+m som ger m = 4, som också är y-koordinaten till skärningspunkten. Linjens ekvation är L : y = 3 x 4 Svar: L skär y-axeln i (0, 4) Håkan Strömberg 3 KTH STH

4 Läxa Lösning. För att få funktionens nollställen löser vi ekvationen f(x) = 0 x +x 6 = 0 1 x = 1 ± x = 1 ± 5 4 x = 1 ± 5 x 1 = x = 3 Två av triangels hörn ligger på x-axeln (,0) och ( 3,0). f(0) = 6 ger det tredje hörnet (0, 6). Hörnen på x-axeln bildar basen som är 5 l.e. Höjden är 6 l.e. Med hjälp av formeln får vi arean till A = bh = 5 6 = 15 Figur 1: Svar: 15 a.e. Läxa Lösning 3. De två funktionerna g(x) = k g x+m g och f(x) = k f x+m f måste bestämmas för att svaret ska kunna ges. Vi vet att f(0) = 4 och f(3/) = 0 ur detta kan vi bestämma k f k f = = 8 3 Vi vet redan att m f = 4 och kan nu skriva f(x) = 8 3 x + 4. Genom texten vet vi att k g = 3 8 eftersom k g k f = 1. Vi vet också att m g = 3 och kan skriva g(x) = 3 8 x 3. Då vi löser ekvationen g(x) = 0 får vi den efterfrågade roten. Svar: g(x) skär x-axeln i (8,0) 3 8 x 3 = 0 x = 8 Håkan Strömberg 4 KTH STH

5 Läxa Lösning 4. Vi bestämmer a i f(x) = ax x genom P(, 9), f() : a = 9. Ger a = 7/ och får funktionen f(x) = 7 x x Vi behöver nu funktionens nollställen och måste lösa ekvationen f(x) = 0 7 x x = 0 x + 7 x = 0 x = ± x = 7 4 ± 9 4 x 1 = 4 x = 1 Svar: Eftersom f(x) har ett maximum är funktionen positiv för 4 < x < 1 Läxa Lösning 5. Sätter vi in de två punkterna i funktionen får vi följande ekvationssystem: { 6 = ( 1) +b( 1)+c 3 = +b +c eller { c b = 5 c+b = 1 Vi subtraherar den första ekvationen från den andra och får (c+b) (c b) = 1 5 c+b c+b = 6 3b = 6 b = b = insatt i första ekvationen ger c ( ) = 5 eller c = 3 Svar: Funktionen får följande utseende: y = x x+3 Läxa Lösning 6. Vi börjar med att skissa kurvan och sekanterna Figur : Det kommer att visa sig att denna skiss är helt korrekt, men det ska den inte behöva vara för att man ska ha glädje av den. De två sekanterna ligger förstås på två linjer med funktionerna g(x) = k g x+m g och h(x) = k h x+m h. Här är en lösningsplan: a Ta reda på k g med hjälp av P1 och P b Ta reda på m h med hjälp av P3 Håkan Strömberg 5 KTH STH

6 c Lös ekvationen f(x) = h(x) för att få P4 Steg a Steg b d Ta reda på avståndet mellan P3 och P4 med hjälp av avståndsformeln k g = 75 ( ) 5 ( ) = = 11 ( 4)+m h m h = 74 Vi vet nu att den andra sekanten ligger på linjen h(x) = 11x+74. Steg c 3x +x 10 = 11x+74 3x 9x 84 = 0 x 3x 8 = 0 9 x = 3 ± x = 3 ± 11 x 1 = 7 x = 4 Genom h(7) = 151 har vi bestämt P4(7,151). Steg d Läxa Lösning 7. ger ekvationen A = (x 1 x ) +(y 1 y ) A = (7 ( 4)) +(151 30) A 11.5 k = y 1 y x 1 x = 10 a a ( 4) (a+4) = 10 a a+8 = 10 a a+a = a = a = 1 Svar: a = 1 Håkan Strömberg 6 KTH STH

7 Läxa Lösning 8. f(3) = a a 3 och g(3) = 3a 5 Eftersom funktionerna skär varandra då x = 3 har de då samma y-värde. Vi får ekvationen a 3 = 3a 5 3a a = 5 3 a = Vi har nu f(x) = 4+x x och g(x) = x 5. Vi har att lösa ekvationen 4+x x = x 5 x = 9 x = ±3 För den andra skärningspunkten x = 3. g( 3) = ( 3) Ett värde man också får genom f( 3). Så här ser grafen ut Svar: Skärningspunkten är ( 3, 11). Läxa Lösning 9. x + 3 x ( 8x x + 3 ) x 8x x + 8x 3 x = 1 8 = 8x = 8x 1 8 ( ) = x Svar: x = 8 Läxa Lösning 10. Den korta katetens längd är x = 8 40 tan Hypotenusans längd är 40 cos Med hjälp av formeln för arean hos halva cirkeln med diametern d får vi Svar: 573 a.e. 40 π π 8 A = πd π Håkan Strömberg 7 KTH STH

8 Läxa Lösning 11. x+55 = x 1 ( x+55 ) = (x 1) Vi testar svaret Svar: x = 9. x+55 = x x+1 x 3x 54 = 0 9 x = 3 ± x = 3 ± 5 4 x = 3 ± 15 x 1 = 9 x = 6 x 1 = 9 V.L H.L. 9 1 = 8 V.L. = H.L. x 1 = 9 V.L H.L V.L. H.L. Läxa Lösning 1. Först bestämmer vi diagonalen i bottenplanet med hjälp av Pythagoras sats: d 1 = 3 +4 = 9+16 = 5 = 5 Med hjälp av denna diagonal och höjden kan vi så bestämma rymddiagonalen åter med hjälp av Pythagoras sats d r = 5 +1 = = 169 = 13 Svar: Rymddiagonalen är 13 l.e. Läxa Lösning 13. x xy y + y xy x = x y(x y) + y x(y x) = x y(x y) x y xy(x y) = (x y)(x+y) = x+y xy(x y) xy y x(x y) = x xy(x y) y xy(x y) = Läxa Lösning 14. Vi bestämmer funktionens nollställen och med hjälp av symmetrin det x-värde för vilket funktionen antar sitt minsta värde. x 10x+1 = 0 x = 5± 5 1 x = 5± x 1 = 7 x = 3 x = 5 ligger mitt emellan rötterna f(5) = = 4 Svar: Funktionens minsta värde är 4 Läxa Lösning 15. Innan sidan ökas är den a och arean a. Efter ökningen är sidan 1.a och arean (1.a) = 1.44a. Den procentuella ökningen blir då 1.44a a a = 0.44 = 44% Håkan Strömberg 8 KTH STH

9 Läxa Lösning 16. a a ( a 1) a + = a+1 a 1 ( a 1)( a+1) + ( a+1) a ( a+1)( a 1) = a a+a+ a ( a+1)( a 1) = a a 1 Läxa Lösning 17. En ekvation innehållande ett dubbelbråk, men x bara på ett ställe. Starta med att förenkla vänstra ledet. Avsluta den förenklingen med att ersätta divisionen av bråken i täljare och nämnare med multiplikation av täljaren och nämnaren inverterad. Sedan har vi nått till en ekvation, som är enkel att lösa. = 1 17 Svar: x = x x 3 3 3x 3x x 9 3x x 9 3x 1 51x ( x 9 3x 1 17 = 1 17 = = 1 17 ) = 51x ( x(x 9)1 3x 17 = 51x 17 1(x 9) = 3x 4x 108) = 3x 7x = 108 x = 4 Läxa Lösning 18. Först bestämmer vi hypotenusan c, i den lilla triangeln c 17 = tan30 ger c = 17 tan Den skuggade triangelns katetrar a och b får vi genom sin60 = a och cos60 = b som ger a = sin och b = sin Med hjälp av formeln ) Svar: 0.86 a.e. A = bh = Håkan Strömberg 9 KTH STH

10 Läxa Lösning 19. Vi använder oss av följande fakta: Längdskalan i kubik är lika med volymskalan ( l1 ) 3 = v 1 Detta ger l ( x ) 3 = 00 x = v Svar: 5 cm x 3 = x = x = 5 Läxa Lösning 0. Höjden är 7 ( 15) = och bredden är 6 ( 1) = 6, som ger arean A = 6 = 13 Svar: 13 a.e. Håkan Strömberg 10 KTH STH

11 Absolutbelopp Följande definition har ni sett tidigare: a = { a om a 0 a om a < 0 Tolkning: a b är avståndet mellan punkterna a och b på tallinjen. Exempel 1. Lös olikheten Först en grafisk lösning x 3 < 7 Avståndet mellan 3 och x ska vara < 7. Vi kan direkt från figuren utläsa svaret 4 < x < 10 Vi kan även lösa uppgiften rent algebraiskt x 3 < 7 7 < x 3 < 7 4 < x < 10 Ekvationer med absolutbelopp Exempel. Lös ekvationen Lösning: Plan: x+3 = 5 1 Ta reda på x 1, där termen med absolutbeloppet är = 0. Dela upp ekvationen i två ekvationer. En då x < x 1 och en då x > x 1. Ersätt tecknet för absolutbelopp med en parentes. Sätt -tecken framför parentesen om så skall vara! 3 Lös de båda ekvationerna var för sig. Kontrollera att erhållen rot ligger i aktuellt intervall. Genomförande: 1 Då x = 3 är x+3 = 0.,3 Vi får två ekvationer Då Ekvation Rot OK x < 3 (x+3) = 5 x = 8 Ja x 3 x+3 = 5 x = Ja Svar: x 1 = 8 och x = Exempel 3. Lös ekvationen x 6 x = 4 Lösning: Plan: 1 Ta reda på x 1, för vilket x 6 = 0 Betrakta två intervall. Ett där x < x 1 och ett där x > x 1. Lös upp termen med absolutbelopp och bilda samtidigt två ekvationer. Håkan Strömberg 11 KTH STH

12 3 Lös ekvationerna och kontrollera att roten ligger i intervallet. Genomförande: 1 Då x = 6 är x 6 = 0 De två ekvationerna med gällande intervall Då Ekvation Rot OK x < 6 (x 6) x = 4 x = 1 Ja x 6 (x 6) x = 4 ingen rot Nej Svar: x = 1 Exempel 4. Lös ekvationen x+1 4 x + x 3 = 0 Lösning: Plan: 1 Ta reda på de x i för vilka var och en av de tre termerna = 0. Sortera de tre brytpunkterna och skapa fyra intervall, man kan finna utefter x-axeln. 3 Lös upp absolutbeloppen inom varje intervall och bilda på så sätt fyra ekvationer. 4 Lös ekvationerna och kontrollera att roten ligger i aktuellt intervall. Genomförande: 1, De tre eftersökta x-värdena är x 1 = 1, x = 3 och x 3 = 4 3 Vi har nu att studera följande fyra intervall 4 Detta ger oss följande ekvationer x < 1 1 x < 3 3 x < 4 x 4 Då Ekvation Rot OK x < 1 (x+1) (4 x) (x 3) = 0 x = 6 Ja 1 x < 3 (x+1) (4 x) (x 3) = 0 x = 4 Nej 3 x < 4 (x+1) (4 x)+(x 3) = 0 x = Ja x 4 (x+1)+(4 x)+(x 3) = 0 x = 6 Nej Svar: x 1 = 6 och x = (se grafen nedan) Håkan Strömberg 1 KTH STH

13 Olikheter med absolutbelopp Exempel 5. Lös olikheten Lösning: Plan: x + x 4 < 8 1 Ta reda på x 1, för vilket x = 0 och det x för vilket x 4 = 0 Betrakta tre intervall. Ett där x < x 1, ett då x 1 x x och ett då x > x. Lös upp absolutbeloppen och bilda olikheter utan absolutbelopp, ett för varje intervall. 3 Lös olikheterna och kontrollera inom vilken del av intervallet som olikheten gäller. Genomförande: 1 x 1 = och x = 4 Intervallen är x <, x 4 och x > 4. 3 Då Olikhet Lösning Intervall x < (x ) (x 4) < 8 x > 1 1 < x < x < 4 (x ) (x 4) < 8 Alltid x < 4 x > 4 (x )+(x 4) < 8 x < 7 4 x < 7 För en del av första intervallet gäller olikheten, för hela andra intervallet och åter för en del av tredje. Sammantaget fås Svar: 1 < x < 7 Exempel 6. Lös olikheten Lösning: Plan: 1 Ta reda på de x i, för vilka termerna är = 0 x 4 + x < 5 x Ställ upp fyra intervall inom vilka olikheten ska lösas. Lös upp absolutbeloppen och bilda olikheter utan absolutbelopp, ett för varje intervall. 3 Lös olikheterna och kontrollera att roten ligger i intervallet. Genomförande: 1 x 1 = 0, x = och x 3 = 5 De fyra intervallen är 3 x < 0 0 x < x < 5 x 5 Då Olikhet Lösning Intervall x < 0 (x 4) x < (5 x) x > 1 1 < x < 0 0 x < (x 4)+x < (5 x) Alltid 0 x < x < 5 (x 4)+x < (5 x) x < 9 4 x < 9 4 x 5 (x 4)+x < (5 x) x < 1 Inget x Svar: 1 < x < 9 4 Håkan Strömberg 13 KTH STH

14 Tekniskt basår Matematik I ABSOLUTBELOPP4 Definition Absolutbeloppet av ettt tal betecknas och o definieras enligt nedan: Exempel Notera att 0 för alla reella tal, och 0 baraa om 0. Ett alternativt sätt att definiera är därförr. Observera att gäller alltid, men gäller bara när 0. Geometriskt representerar avståndet mellan x och h 0 på tallinjen. Mer generellt representerar avståndet mellan punkterna och på tallinjen, eftersom detta avstånd är det samma som avståndet från punkten på tallinjen till 0. Räkneregler a) b) c) d) Ekvationer och Olikheter Ekvationen där 0 har två lösningar, och, d.v.s. två punkter på tallinjen som står på avståndet från 0. Olikheten kan tolkass som ett avstånd som är mindree än, så detta innebär att måste ligga mellan och. Vid algebraisk lösningg av ekvationer och olikheter med absolutbelopp så är det ofta praktiskt att dela upp problemett i olika fall med hjälp av följande samband: 0 å ä 0 å ä 4 Sid.17 Något omarbetat från: K. Eriksson, H. Gavel (013),, Diskret matematik och diskreta modeller, Studentlitteratur AB, ISBN

15 Tekniskt basår Matematik I Exempel a Lös ekvationen Lösning Exempel b Lös olikheten Lösning Exempel c Lös olikheten Lösning Exempel d Lösning Lös olikheten Exempel e Lösning Lös olikheten

16 Tekniskt basår Matematik I Exempel 3a Lös ekvationen 5 3. Använd tallinje Lösning: för att enkelt visa Teckenväxling sker när 5 0 d.v.s. när,5 aktuellt intervall,5 I detta intervall blir ekvationen Svar: 1 och 4 I detta intervall blir ekvationen Exempel 3b Lös olikheten 3 1. Lösning: Teckenväxling sker när 3 0 d.v.s. när 3 3 I detta intervall blir olikheten 3x 1 3x 1 1 3x x I detta intervall blir olikheten Vi får 1 Vi får Svar: Beräkna genom att ta bort absolutbeloppets tecken. a) 5 7 b) 7 5 c) 4 d) Låt 3 och 7, och visa att räknereglerna a) till d) nedan stämmer a) b) c) d x x 403. Lös ekvationen a) 1 b) 4 7 c) 5 d) 1 e) Lös olikheten a) 1 3 b) 4 1 c) 5 d) 1 e)

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Matematik CD för TB. x + 2y 6 = 0. Figur 1: Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Repetition inför tentamen

Repetition inför tentamen Sidor i boken Repetition inför tentamen Läxa 1. Givet en rätvinklig triangel ACD, där AD = 10 cm, AB = 40 cm och BC = 180 cm. Beräkna vinkeln BDC. Läxa. Beräkna omkretsen av ABC, där BE = 4 cm, EA = 8

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Formelhantering Formeln v = s t

Formelhantering Formeln v = s t Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller

Läs mer

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum:

TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: TENTAMEN Kursnummer: HF0021 Matematik för basår I Moment: TEN1 Program: Tekniskt basår Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: 2015-03-10 Tid: 13:15-17:15 Hjälpmedel:

Läs mer

Sidor i boken 8-9, 90-93

Sidor i boken 8-9, 90-93 Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Sidor i boken KB 6, 66

Sidor i boken KB 6, 66 Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en

Läs mer

Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner

Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Del B Utan miniräknare Endast svar krävs! 1. Lös ekvationen (x + 3)(x 2) = 0 Svar: (1/0/0) 2. Förenkla uttrycket 4(x 3)(x + 3) så långt

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p) 1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Ekvationslösning genom substitution, rotekvationer

Ekvationslösning genom substitution, rotekvationer Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Fler exempel på optimering Exempel 1. Utifrån en rektangulär pappskiva med bredden 7 dm och längden 11 dm, vill man åstadkomma en kartong utan lock,

Läs mer

Sidor i boken Figur 1: Sträckor

Sidor i boken Figur 1: Sträckor Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till 3 Potensfunktioner 3. Dagens teori Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

20 Gamla tentamensuppgifter

20 Gamla tentamensuppgifter 20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Uppgiftshäfte Matteproppen

Uppgiftshäfte Matteproppen Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................

Läs mer

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge

Läs mer

Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:

Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1: Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004 KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

skalas bort först och sedan 4. Då har man kvar kärnan som är x.

skalas bort först och sedan 4. Då har man kvar kärnan som är x. Ge inte upp om inte ditt svar stämmer med facit. Du kan ha tänkt helt rätt, men bara räknat fel. Prova en gång till. Om ditt svar ändå inte stämmer med facit, klicka på Hjälp?, eller be din lärare om hjälp

Läs mer

Lösningar och kommentarer till Övningstenta 1

Lösningar och kommentarer till Övningstenta 1 Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det

Läs mer

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2. Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4

Läs mer

Lösning till tentamen i 5B1126 Matematik förberedande kurs för TIMEH1, , kl

Lösning till tentamen i 5B1126 Matematik förberedande kurs för TIMEH1, , kl Institutionen för Matematik, KTH, Olle Stormark. Lösning till tentamen i 5B116 Matematik förberedande kurs för TIMEH1, 5-1-19, kl. 8 1. Tentamensskrivningen består av 4 moment, svarande mot kursens olika

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning

Läs mer

NpMa3c vt Kravgränser

NpMa3c vt Kravgränser Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna

Läs mer

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891

5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891 KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden

Läs mer

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =

Läs mer

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna

Läs mer

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1

När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1 Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna

Läs mer

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L. Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Föreläsning 1 5 = 10. alternativt

Föreläsning 1 5 = 10. alternativt Föreläsning 1 101 a) Beräkna 5 + ( 8) = ( ) Kommentar: Vi använder parenteser för att förtydliga negativa tal, här ( 8) och ( ). 101 b) Beräkna 9 16 = 5 Kommentar: Egentligen borde man skriva 9 som ( 9),

Läs mer

PRELIMINÄRPROV Kort matematik

PRELIMINÄRPROV Kort matematik PRELIMINÄRPROV Kort matematik 80 Lösningar och poängförslag Lös ekvationerna x 0 x 4 x,0 a) 0x b) c) a) Multiplikation med 0; x 00x, p 0 99 b) Division med ; : 4 9 9 x ( = =,5 ) p 4 8 8 8-99 x = 0, x 0

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Enklare uppgifter, avsedda för skolstadiet

Enklare uppgifter, avsedda för skolstadiet Elementa Årgång 1, 198 Årgång 1, 198 Första häftet 97. Ett helt tal består av 6n siffror. I var och en av de på varandra följande grupperna av 6 siffror angiva de 3 första siffrorna samma tresiffriga tal

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden

Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden Ordlista 5A:1 Öva orden Dessa ord ska du träna term Talen som du räknar med i en addition eller subtraktion kallas termer. faktor Talen som du räknar med i en multiplikation kallas faktorer. täljare Talet

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas

Läs mer

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden. Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

2+t = 4+s t = 2+s 2 t = s

2+t = 4+s t = 2+s 2 t = s Extra 1. Ta fram räta linjens ekvation på parameterform då linjen går genom punkterna (1, 1,0) och (2,0,1) (3, 1,4) och ( 1,1,6) (4,3, 1) och (7, 2,5) (11,3, 6) och (9, 1,3) Lösning: (x,y,z) = (1+t, 1+t,t)

Läs mer

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA Röd kurs Mål: I den här kursen får du lära dig att: ~ multiplicera parenteser ~ använda kvadreringsregler ~ använda konjugatregeln ~ uttrycka formler på olika sätt Matteord första kvadreringsregeln andra

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet

Läs mer

HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng

HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng Kursnummer: Moment: Program: Rättande lärare: Examinator: Datum: Tid: Hjälpmedel: Omfattning och betygsgränser: TENTAMEN HF0021 Matematik för basår I TEN2 Tekniskt basår Marina Arakelyan, Jonass Stenholm

Läs mer

Lathund, geometri, åk 9

Lathund, geometri, åk 9 Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar

Läs mer

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm Kapitel 4 4107 4103 a) tan(34 )= x x = 35 tan(34 )= 4cm 35 b) cos(40 )= x x = 61 cos(40 )= 47cm 61 c) tan(56 )= 43 x x = 43 tan(56 ) = 9cm d) sin(53 )= x x = 75 sin(53 )= 60cm 75 4104 a) tan(v )= 7 4 v

Läs mer

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: Tentamen 010-10-3 : Lösningar 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: x 5 0 och 3 x > 0 x 5 och x < 3, en motsägelse, eller x 5 0 och

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson , MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag.6.8 4.3 6.3 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid:

TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid: TENTAEN Kursnummer: HF00 atematik för basår I oment: TENA / TEN Program: Tekniskt basår Rättande lärare: Niclas Hjelm Eaminator: Niclas Hjelm Datum: Tid: 07--8 08:00-:00 Hjälpmedel: Formelsamling: ISBN

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer