Den räta linjens ekvation
|
|
- Sven-Erik Åkesson
- för 8 år sedan
- Visningar:
Transkript
1 Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är de involverade i ett samtal om räta linjen och dess ekvation (funktion). Tillsammans löser de ett antal problem som sammantaget utgör det man behöver ha med sig i ryggsäcken för vidare studier. KTH: Idag ska vi snacka om räta linjen och dess ekvation. Minns du något om det? TB: Ja, det är klart. Jag tror faktiskt att jag kommer att kunna svara rätt på nästan allt du kommer att fråga mig om. KTH: Vi får väl se. Först det här med ekvation. Man uttrycker ju ofta den funktion, som det egentligen handlar om, som y = k x + m istället för att skriva f(x) = k x + m. Jag borde förstås veta varför det blivit på det sättet. Vad står förresten k och m för? TB: Står för!? Vad menar du då? Stopp, stopp vänta ett tag, jag vet. k, även kallat k-värdet är linjens riktningskoefficient eller lutningen helt enkelt. m däremot... KTH: m är kanske mindre viktig, men det underlättar att känna till att linjen skär y-axeln i punkten (0,m). Så om jag säger att en linje har riktningskoefficienten 1 och skär y-axeln i punkten (0,3), vilken är då den linjens funktion? TB: k = 1 och m = 3 ger y = x + 3 eller y = 3 x KTH: Bra. Så här ser grafen för den funktionen ut: Figur 1: I figur finns två linjer inritade. Här har du två funktioner, L 1 : y = x + 1 och L : y = 4 x, vilken är vilken? TB: Linjen markerad med A skär y-axeln på i punkten (0,4) och L har m = 4, alltså hör de ihop. KTH: Det är riktigt. Ännu enklare är det kanske att titta på k-värdena A har negativ lutning L har k = 1. B har positiv lutning L 1 har k =. Vilken funktion har linjen i figur 3 TB: Ingen aning faktiskt. Jag ser att linjen är parallell med x-axeln. Jag gissar att den helt enkelt saknar funktion. KTH: Nu hade du fel. För varje värde x är y = 3, till exempel f(1000) = 3 och f( ) = 3. Funktionen är konstant och skrivs alltså y = 3. Om jag ger dig två punkter P1(1,1) och P(5,13), kan du då bestämma funktionen för den linje som går genom dessa punkter? Håkan Strömberg 1 KTH Syd Haninge
2 Figur : Figur 3: TB: Mmm... Har man två punkter så finns det ju bara en rät linje som går genom dessa. Jag ska alltså bestämma k och m i y = k x + m. Det kanske inte är så lätt. (TB funderar) Om jag börjar med k-värdet k = y x = y 1 y = 13 1 x 1 x 5 1 = 3 Jag tror, eller vet, att k = 3. Jag har nu kommit så här långt: y = 3x+m och nu ska jag bestämma m men hur? (TB funderar igen) När x = 5 är y = 13 KTH: Javisst. TB: Jag sätter alltså in den andra punkten P i ekvationen y = 3x + m och får 13 = m. Löser jag den ekvationen får jag m =. Om jag har tänkt rätt kan funktionen nu skrivas y = 3x. Men om jag hade satt in P1 istället hade jag väl fått ett annat resultat? KTH: Gör det. TB: 1 = m. Nej, jag får ändå m =. Nu är jag säker på mitt svar. KTH: Bra. Vi går vidare i texten. Nu ska jag ge dig två funktioner. { L1 : y = 3x 5 L : y = x + 3 Var skär de varandra. Med andra ord bestäm skärningspunkten. Håkan Strömberg KTH Syd Haninge
3 TB: När jag stoppar in ett och samma x-värde i de båda funktionerna ska jag få samma resultat. Då har jag hittat en punkt som ligger på båda linjerna. Denna punkt kallas skärningspunkten. Observera det kan bara finnas en skärningspunkt när det handlar om två räta linjer. KTH: Allt du sagt är korrekt, men hur hittar du skärningspunkten? TB: Jag kan ju alltid prova mig fram. Stoppa in olika värden på x och om jag har tur, så har jag. KTH: Självklart behöver man inte gissa. Tänk efter nu. TB: Blir det en ekvation? Någonting i stil med 3x 5 = x + 3 3x x = x = 8 Låt mig testa nu då x = 8 för linje L 1 blir y = 19 och x = 8 för linje L är också y = 19. Det funkar ju! KTH: Vilken är då skärningspunkten? TB: (8,19) KTH: Bra. Nästa problem: Nu ska vi kombinera de två problemen vi löst ovan. Givet P1(,4) och P(5,), som ligger på samma linje samt P3( 1,8) och P4(3, 1), som ligger på en annan. Vilken skärningspunkt har dessa linjer? TB: Så du menar att jag ska göra om nästan samma sak igen? Vad jobbig du är. KTH: När du gjort det tror jag att det också kommer att sitta för en lång tid framåt troligtvis över tentamen. TB: Jag börjar med punkterna P1 och P. De ligger på en linje L 1 : y = k 1 x + m 1. Först bestämmer jag k 1 -värdet: k 1 = y x = y y 1 = 4 x x 1 5 = 6 Jag sätter nu in P1 i L 1 och får 4 = 6 + m 1 som ger m 1 = 8. Funktionen för den första linjen är nu bestämd till L 1 : y = 6x 8. Nu är det dags för nästa linje, puh. Det handlar nu om punkterna P3( 1,8) och P4(3, 1). Funktionen är denna gång L : y = k x + m. k = y x = y 3 y 4 x 3 x 4 = 8 ( 1) ( 1) 3 = 5 Så över till m. Jag använder den andra punkten och sätter in den i L och får ( 1) = ( 5)3+m som ger m = 3. Jag är bra på huvudräkning eller hur? Alltså blir L : y = 5x + 3. Vad var det jag skulle göra nu igen? KTH: Ta reda på skärningspunkten för de linjer vars funktion du just bestämt. TB: Javisst ja. Jag har alltså { L1 : y = 6x 8 L : y = 5x + 3 Dessa leder till den enkla ekvationen 6x 8 = 5x + 3 6x + 5x = x = 11 x = 1 Håkan Strömberg 3 KTH Syd Haninge
4 Jag kan nu stoppa in x = 1 i vilken som helst av L 1 och L i båda fallen får jag y =. Skärningspunkten är alltså (1, ). KTH: Nu har du varit så duktig, så du får välja nästa problem själv. TB: Ska jag jag har inga olösta problem. Dom får du stå för. KTH: Då tar vi det här: Jag ger dig fyra punkter P1(,9), P(4,), P3(, 19) och P4(6,37). En av dem ligger inte på samma räta linje vilken? TB: Det är väl enkelt. Jag väljer ut två punkter till exempel P1 och P, bestämmer motsvarande funktion. Sedan sätter jag in de andra två punkterna och den som inte ligger på linjen är den punkt jag söker. KTH: Är du säker på att detta fungerar? TB: Varför skulle det inte göra det? Aha, du menar att om den udda punkten är antingen P1 eller P så får jag en linje som inte innehåller någon av de två andra punkterna. Jag förstår och inser samtidigt att det här kommer att bli riktigt jobbigt. Det finns ju många sätt att välja ut två punkter. KTH: Tänk vidare. TB: Om jag har otur i mitt första val, så vet jag att P3 och P4 ligger på samma linje och då får jag bestämma den funktionen, med vilken jag kan avgöra vilken av P1 och P som är oäkta. Därmed är denna uppgift inte jobbigare än förra uppgiften. KTH: Det är bara att sätta igång. TB: Jag kallar den första linjen L 1 : y = k 1 x+m 1 eftersom punkterna P1 och P är inblandade. Jag bestämmer först k 1 precis som tidigare Oj vad jobbigt, inte ens heltal. Så till m 1 k 1 = y x = y 1 y x 1 x = 9 4 = 13 ger m = 4 och funktionen 9 = 13 + m 1 L 1 : y = 13 x 4 Nu är det spännande. Vad händer förresten om en punkt fungerar? KTH: Det förstår du väl? TB: Ja,ja. Om en av punkterna P3 och P4 ligger på linjen så blir jag glad jag vet då att den andra inte gör det och därmed är den punkt jag är på jakt efter. Först testar jag med P 3 13 ( ) 4 = Nu vet jag att P3(, 19) inte ligger på den linje jag just bestämt funktionen för. Chansen finns nu att P4(6,37) gör det = Neeej inte heller den punkten fungerar, så då måste jag bestämma L 34. Först k-värdet k 34 = y x = y 4 y 3 37 ( 19) = = 56 x 4 x 3 6 ( ) 8 = 7 Håkan Strömberg 4 KTH Syd Haninge
5 Och sedan m-värdet 37 = m 34 m 34 = 5 som ger funktionen L 34 : y = 7x 5. Denna funktion ska nu avgöra vilken av punkterna P1 och P som är udda. Först test med P 1 (,9) 7 5 = 9 P1 ligger på linjen. Då kan inte P göra det. P är svaret! Jag ser på dig att du vill att jag ska testa det. Jag gör som du vill. För P får jag L 34 : = 3 För x = 4 insatt i L 34 får vi alltså 3 istället för. Ganska nära om man säger. KTH: Här ser du ett diagram med fem linjer inritade. Nedan finns också en tabell med fem funktioner. Det blir nu din uppgift att para ihop linjerna med funktionerna. Figur 4: I L 1 : y = x + 3 II L : y = 3 x III L 3 : y = x 3 IV L 4 : y = 3x 1 V L 5 : y = 3x + 8 TB: Ganska lätt eller hur? I och II skär y-axeln i samma punkt (0, 3), vilket betyder att de har samma m-värde. B har positivt k värde och E negativt, så då vet vi att B I och E II. Sedan är det bra att plocka ut linjerna efter m-värdet: A V, C IV och D III KTH: En linje skär y-axeln i punkten (0,6) och den positiva x-axeln i en punkt så att linjen bildar en triangel med axlarna med arean 6 areaenheter. Bestäm linjens ekvation. TB: Triangeln som bildas är ju rätvinklig. Höjden är 6 och basen x. Triangelns area beräknas med: som ger ekvationen A = b h 6 = b 6 Håkan Strömberg 5 KTH Syd Haninge
6 b = och därför skär vår linje x-axeln i (,0). m-värdet har vi ju redan och k-värdet kan vi bestämma med hjälp av k = y x = y y 1 = 6 0) x x 1 0 ) = 3 Den sökta funktionen blir då = 6 3x eller hur Figur 5: KTH: Javisst, jättebra. Direkt över till nästa problem: En linje har k 1 = 1/. En annan går genom P1(5, ) och är samtidigt vinkelrät mot den första. Bestäm den andra linjens funktion. TB: Vad har jag missat? Jag menar, jag har ingen aning! KTH: Vad vet du om k-värdet för två linjer som skär varandra under rät vinkel? TB: Aha, jag har hör något om det. Få se nu... Kanske att om den ena linjen har k-värdet k 1 och den andra k så är k 1 k = 1. Är det det du tänker på? KTH: Ja, hur kan du använda detta här? TB: Linjen måste ju ha k-värdet k = eftersom k 1 k = 1 = 1. Eftersom vi har en punkt P(5, 7) given kan vi bestämma m ur 7 = 5 + m, som ger m = 3 KTH: Bra. Här får du fem funktioner för räta linjer. Vilka är parallella? I 18x + 7 = 9y II y + x 3 = 0 III 3 x + 1 y 3 = 0 IV 13y + 6x = 39 V y x = 3 TB: Ännu fler uppgifter. Jag börjar faktiskt bli trött. KTH: Men det ska kännas, precis som att träna inför Stockholm Marathon. Håkan Strömberg 6 KTH Syd Haninge
7 TB: Så viktig kan ju inte detta vara. Men jag ska samla mig. Vad skulle jag göra nu igen? Linjer med samma k-värde. Man kan inte läsa av koefficienten framför x direkt utan måste först lösa ut y inte sant. Här har du lösningarna I y = x + 3 II y = x + 3 III y = x + 3 IV y = x + 3 V y = x + 3 Det är inte nog med att de är parallella, I,III och V är identiska. På samma sätt II och IV. KTH: Bestäm funktionen för den linje som går genom origo och skärningspunkten för linjerna L 1 : y = 4x + 13 och L : y = 7 x. TB: För en linje som går genom origo är m = 0. Vi ska alltså bestämma y = k x. För att får reda på k måste vi lösa ekvationen L 1 = L 4x + 13 = 7 x 4x + x = x = 6 x = 1 För x = 1 ger L 1 y = 9, skärningspunkten är alltså ( 1,9). Den andra punkten vi ska använda här är (0,0) och nu kan vi bestämma k k = = 9 Så nu kan vi skriva funktionen som L 3 : x = 9x, eller hur KTH: Alldeles utmärkt. Känns det som du börjar behärska detta område nu? TB: Har ingen aning. Även om jag kunnat lösa de uppgifter du givit mig så finns det säker många andra som jag inte skulle klara. KTH: Det låter nästan som du vill ha fler! Vilket k-värde måste linjen y = kx + 5 ha för att gå genom punkten (3,11)? TB: Vi vet att linjen skär y-axeln i (0,5). Då har vi två punkter och kan enkelt räkna ut k-värdet Detta ger funktionen y = x + 5. Det var lätt k = = KTH: Linjerna L 1 och L skär varandra i (4, 3). Bestäm linjernas funktioner då följande är givet { y = k x 11 y = m 3x Håkan Strömberg 7 KTH Syd Haninge
8 TB: Om jag sätter in den givna punkten i L 1 får jag 3 = k 4 11, som ger k =. Om jag på samma sätt sätter in punkten i L, så får jag 3 = m 3 4, m = 9. De två linjernas funktioner är då L 1 : y = x 11 och L : y = 3x + 9 KTH: Här får du tre linjer som tillsammans bildar en triangel vars area vi vill bestämma L 1 : y = 4x L : y = 6 L 3 : y = x TB: Jag har inte en aning om hur man ska göra. Hjälp mig. KTH: Här får du linjernas grafer, som säkert kommer att hjälpa dig in på rätt spår Figur 6: Ser du vilken linje som är vilken? TB: L är parallell med x-axeln, det är nog tursamt. Den linjen får bli bas i triangeln. Jag måste ta reda på var linjerna skär varandra L 1 = L, L 1 = L 3 och L = L 3. Mycket räkna blir det. Vi tar dem i tur och ordning: L 1 och L skär varandra i (,6) 4x = 6 x = 4x = x 6x = x = 1 3 L 1 (x) och L 3 (x) skär varandra i ( 1 3, 3 ) 6 = x x = 3 L (x) och L 3 (x) skär varandra i ( 3,6). Så här långt blev det ju ganska enkla uträkningar. Men sen? KTH: Hur lång är nu basen? Hur bestämmer man höjden? TB: Basen måste vara b = ( 3) = 5 och höjden h = = 0 3. Nu kan jag använda: A = b h = = 50 3 Håkan Strömberg 8 KTH Syd Haninge
9 KTH: Hur många linjer finns det som går genom en given punkt? TB: Hur många som helst förstås. Det finns ju oändligt många k-värden. KTH: Hur många linjer finns det som går genom en given punkt och har ett givet k-värde? TB: Bara en KTH: Utan alltför mycket räknande ska du nu kunna skriva ned funktionerna för de fyra linjerna i figur 7 Figur 7: TB: Först tar vi de två linjerna som har positiva k värden A och B. A går genom origo och har då m=0. k-värdet är 1. Detta ger L A : y = x. B har också k-värdet 1, men skär y-axeln i (0, ) och då får jag L B : y = x. Så över till C och D. Båda har negativa k-värden rättare sagt k = 1. De är parallella. De skär y-axeln i (0,) respektive (0,4). Vilket ger L C : y = 4 x och L D : y = x KTH: Punkterna P1( 4, 17) och P(1,31) ligger på samma räta linje. Vilken är punkten P3 som också ligger på linjen, mitt emellan dessa? TB: x-koordinaten är (1 + ( 4))/ = 4 och y koordinaten är (31 + ( 17))/ = 7. P3 = (4, 7). Är det rätt? KTH: Ja TB: Ha ha, jag behövde inte bestämma någon funktion som jag först tänkte. Hur kunde det bli rätt egentligen. KTH: Att x-koordinaten är 4 är väl inte konstigt? Den ligger ju mitt emellan 4 och 1 på x axeln. På samma sätt är det mer eller mindre självklart att y-koordinaten är 7. En figur? Figur 8: Håkan Strömberg 9 KTH Syd Haninge
10 KTH: Tack för den här gången TB: Tack själv. Jag måste faktiskt säga att det var otroligt jobbigt. KTH: Ja, men du har gjort ett bra jobb och kommer att klara alla uppgifter som har med räta linjen att göra. Håkan Strömberg 10 KTH Syd Haninge
Den räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
Funktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Matematik CD för TB. x + 2y 6 = 0. Figur 1:
Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten
Fler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
Gamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
y y 1 = k(x x 1 ) f(x) = 3 x
Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då
Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?
I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient
Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Sidor i boken KB 6, 66
Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en
Lösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x
Derivator.1 Dagens Teori Figur.1: I figuren ser vi grafen till funktionen f(x) = x 3 + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7 3 finns en tangent som tangerar kurvan i (, 10 3
Lösningar och kommentarer till uppgifter i 2.3
Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f
polynomfunktioner potensfunktioner exponentialfunktioner
Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,
4 Fler deriveringsregler
4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att
Lösningar och kommentarer till uppgifter i 2.2
Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten
f(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att
Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet
Lösningar och kommentarer till Övningstenta 1
Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)
Lösningar och kommentarer till uppgifter i 1.1
Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna
13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till
3 Potensfunktioner 3. Dagens teori Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8
Formelhantering Formeln v = s t
Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller
Repetition inför tentamen
Sidor i boken Repetition inför tentamen Läxa 1. Givet en rätvinklig triangel ACD, där AD = 10 cm, AB = 40 cm och BC = 180 cm. Beräkna vinkeln BDC. Läxa. Beräkna omkretsen av ABC, där BE = 4 cm, EA = 8
Inledande kurs i matematik, avsnitt P.2. Linjens ekvation kan vi skriva som. Varje icke-lodrät linje i planet kan skrivas i formen.
Inledande kurs i matematik, avsnitt P. P..15 Bestäm en ekvation för den linje som går genom punkten P = ( 1, 1) och har riktningskoefficient k = 1. P..17 Bestäm en ekvation för den linje som går genom
Matematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1
Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: Derivatan blir: f(x) = x 4 x + x + 8 f (x) = 8x x + Men hur
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll
Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:
Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd
KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y
KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och
f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
8 + h. lim 8 + h = 8
Nu ar vi kretsat kring oc förberett oss på begreppet derivata i två föreläsningar. Nu är tiden inne! Men innan dess ska vi diskutera gränsvärde, ett annat begrepp. Om vi ar uttrycket 8 + oc låter gå mot
Repetition inför kontrollskrivning 2
Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.
TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor
TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan
6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
2+t = 4+s t = 2+s 2 t = s
Extra 1. Ta fram räta linjens ekvation på parameterform då linjen går genom punkterna (1, 1,0) och (2,0,1) (3, 1,4) och ( 1,1,6) (4,3, 1) och (7, 2,5) (11,3, 6) och (9, 1,3) Lösning: (x,y,z) = (1+t, 1+t,t)
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då
Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till
x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2
Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =
x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z
Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning
y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0
Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens
2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =
Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn
P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor
TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Tisdagen 31 maj 2011 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,
Moment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Fler exempel på optimering Exempel 1. Utifrån en rektangulär pappskiva med bredden 7 dm och längden 11 dm, vill man åstadkomma en kartong utan lock,
TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum:
TENTAMEN Kursnummer: HF0021 Matematik för basår I Moment: TEN1 Program: Tekniskt basår Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: 2015-03-10 Tid: 13:15-17:15 Hjälpmedel:
Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59
Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde
KOKBOKEN. Håkan Strömberg KTH STH
KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................
x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.
Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4
Parabeln och vad man kan ha den till
Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuterar vi vad parabeln är för geometrisk konstruktion och varför den
Talmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Räta linjens ekvation & Ekvationssystem
Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35
Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar.
Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar. 1 Bestäm med jälp av derivatans definition f () då f(x) = x + x + Funktionen f(x) = x 4x + 8 ar en minpunkt. Bestäm
Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som
Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
5 Blandade problem. b(t) = t. b t ln b(t) = e
5 Blandade problem 5.1 Dagens Teori Ett person sätter in 10000 kr på banken vid nyår 2000 till 4% ränta. Teckna en funktion, b(t) för beloppets utveckling. b(t) = 10000 1.04 t Skriv om funktionen med basen
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2
Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.
NpMa3c vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Övningstenta 8. ax+2y+z = 2a 2x (a+2)y = 4 2(a+1)x 13y 2z = 16. Problem 3. Lös matrisekvationen AX BX = C. då A = 0 1
Övningstenta 8 Problem 1. Bestäm avståndet mellan planen 2x 3y+z+1 = 0 och 4x+6y 2z+13 = 0 Problem 2. Lös ekvationssystemet för de värden på a där det finns en lösning ax+2y+z = 2a 2x (a+2y = 4 2(a+1x
Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.
NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje
3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition
3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster
När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1
Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna
9 Skissa grafer. 9.1 Dagens Teori
9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om
Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.
Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)
f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 =
Moment.5,.5.,.5.,.5. Viktiga eempel.0,.,.,.,.,.5,.,.7 Övningsuppgifter.8,.0 abc Inversfunktioner Givet: y = f(), y uttryckt i Sökt : = g(y), uttryckt i y När kan man lösa ut som funktion av y? Sats. Om
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Sidor i boken Figur 1: Sträckor
Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32
6 Trigonometri 6. Dagens Teori Vi startar med att repetera lite av det som ingått i tidigare kurser angående trigonometri. Här följer en och samma rätvinkliga triangel tre gånger. Med en sida och en vinkel
Sidor i boken 8-9, 90-93
Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta
Linjära ekvationssystem
Sidor i boken KB 7-15 Linjära ekvationssystem Exempel 1. Kalle och Pelle har tillsammans 00 kulor. Pelle har dubbelt så många som Kalle. Hur många kulor har var och en? Lösning: Antag att Kalle har x kulor.
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2
SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.
Träningsprov funktioner
Träningsprov funktioner 1. Använd koordinatsystemet nedan a) Vilka koordinater är markerade? b) Markera följande koordinater E: 0,6, F: 3, 2, G: 1, 2 och H: ( 3,2). 2. Skriv en berättelse som överensstämmer
Checklista för funktionsundersökning
Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara
20 Gamla tentamensuppgifter
20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition
17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2
17 Trigonometri Övning 17.1 En likbent triangel har arean 10 cm. De båda lika långa sidorna i triangeln är 0 cm. estäm vinkeln mellan dessa sidor. Här är det dags för areasatsen = s1 s sin v där v ligger
Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner
Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Del B Utan miniräknare Endast svar krävs! 1. Lös ekvationen (x + 3)(x 2) = 0 Svar: (1/0/0) 2. Förenkla uttrycket 4(x 3)(x + 3) så långt
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5A matematik Koll på Skriva Facit 1 Tal i decimalform,3 1 a) 0,5 b) 0,7 c) 0, a) 4, b),1 c) 9,4 3 a) 35,8 b) 41, c) 0,9 4 a) 1,1 b) 4, c) 7,3 5 a) 13,4 b) 3,5 c) 91,7 a) 40,8
Ekvationslösning genom substitution, rotekvationer
Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar
Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK
Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.
MATEMATIK 5 veckotimmar
EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa
Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x
Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon
markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart
PLANERING MATEMATIK - ÅR 9 Bok: Z (fjärde upplagan) Kapitel : 3 Geometri Kapitel : 4 Samband och förändring Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE
===================================================
AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22
Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom
Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med
RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange
Ma B - Bianca Övning lektion 1. Uppgift nr 10. Uppgift nr 1 Givet funktionen f(x) = 4x + 9 Beräkna f(6) Rita grafen till ekvationen.
Ma - ianca 2011 Uppgift nr 1 Givet funktionen f() = + 9 eräkna f(6) Uppgift nr 2 Givet funktionen f() = 5 + 3 eräkna f(7) Uppgift nr 3 Givet funktionen f() = -5 + 5 eräkna f(-3) Uppgift nr 10 Rita grafen
f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:
Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,