y y 1 = k(x x 1 ) f(x) = 3 x
|
|
- Elias Lindberg
- för 8 år sedan
- Visningar:
Transkript
1 Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för vare sig linjens lutning eller var den skär y-axeln. Dessutom finns enpunktformen: y y 1 = k(x x 1 ) där (x 1, y 1 ) är en känd punkt på linjen. Till sist har vi denna där a och b är konstanter vars betydelse vi återkommer till: y a + x b = 1 Alla dessa sätt att teckna en linjär funktion är förstås ekvivalenta. Ett bra tips är att föra över en given linjär funktion till den form som man är mest van vid. Under Lösta uppgifter tar vi upp några exempel. Derivatan av exponentialfunktionen. Vi minns att f(x) = 3 x är ett exempel på en exponentialfunktion. Kännetecknet är att x förekommer som exponent. Det är fritt fram för vilken positiv bas som helst. I exemplet har vi använt basen 3. Så här ser grafen ut: Figur 1: Gemensamt för alla exponentialfunktioner är att de växer snabbt då basen är > 1. Man talar om exponentiell tillväxt och menar då något som ökar snabbt. (Även Håkan Strömberg 1 KTH Syd
2 om detta inte alltid är helt korrekt. Jag menar att med basen 1.01, (1%), är ju tillväxten inte särskilt snabb). Vi förstår att denna funktion liksom andra vi studerat hittills har en tangent i varje punkt på kurvan. Med andra ord det borde finnas en derivata till f(x) = 3 x. Använder vi derivatans definition för att ta reda på den får vi f (x) = lim h 0 f(x + h) f(x) h = lim h 0 3 x+h 3 x h Vidare 3 x 3 h 3 x 3 x (3 h 1) lim = lim h 0 h h 0 h Eftersom 3 x inte är direkt inblandad när h 0, så kan vi skriva (om inte helt självklart) 3 x (3 h 1) lim h 0 h Sedan är det stopp! Det vi lärt oss om gränsvärden räcker inte för att knäcka detta. Vi ser att, när h = 0 får vi 0. Vi går till en bok för högre studier i matematik och 0 hittar (a h 1) lim h 0 h Använder vi detta resultat får vi = lna 3 x (3 h 1) lim = ln3 3 x h 0 h Det återstår nu endast ett problem. Vad står ln för? Vi kommer ihåg att lösningen till ekvationen 10 x = 23 skrivs x = lg23. Detta är en logaritmekvation där vi använder basen 10. Basen 10 är (åtminstone i Sverige) knuten till symbolen lg och det finns en knapp på dosan märkt log som motsvarar lg. Vilken bas man använder när man räknar med logaritmer är egentligen valfritt! Det känns naturligt att använda basen 10 eftersom vi använder oss av basen 10 när vi skriver våra tal. En annan bas är e. Talet e är en konstant precis som π och dessutom lika viktig i matematiken. Jag ska nu försöka förklara varifrån talet e kommer. Betrakta uttrycket ( lim ) x x x Det handlar alltså om ett gränsvärde där x Plottar vi funktionen ( f(x) = ) x x får vi följande graf, se 2. Vi kan gissa eller tro att kurvan närmar sig en gräns när x. Jag påstår att denna gräns är just talet e. Här har du talet e med de 200 första decimalerna: Håkan Strömberg 2 KTH Syd
3 Figur 2: Normalt brukar man komma ihåg att e På dosan finns en knapp märkt e x. Slår vi e 1 får man fram talet e med några av de decimaler som ges ovan. Vi tänker nu använda e som bas när vi räknar med logaritmer och konstaterar att: lg är för 10, vad ln är för e. Sök upp knappen ln på din räknare. Det finns ju oändligt många tal, varför har man fastnat för talet e? Vi återkommer till det. Först ska vi lösa några enkla ekvationer. Förhoppningsvis kommer du ihåg hur man löser till exempel denna ekvation: lgx = 2 10 lg x = 10 2 x = 100 Om den ekvationen är OK för dig är inte denna svårare: lnx = 2 e ln x = e 2 x = e 2 x Vi konstaterar at vår kattregel gäller även här (liksom för alla baser). så även för de andra logaritmlagarna. e ln = Detta är viktigt. Man kan nu skriva om vilket uttryck som helst a b till ett med basen e. Jag påstår att a b = e bln a För att förklara detta använder vi bara två logartimlagar: lna b = b lna Håkan Strömberg 3 KTH Syd
4 och så kattregeln. Alltså Så om vi har en funktion så kan vi skriva den som e bln a = e ln ab = a b f(x) = 3 x f(x) = e xln 3 eller hur? Bestämmer vi oss för att alltid skriva om en exponentialfunktion oavsett bas till en bas med e (vilket verkar enkelt) så får vi en fastare grund att stå på. Minns ni att vi för en halv timma sedan började med att försöka finna derivatan till f(x) = 3 x Vi kom fram till, genom derivatans definition och genom att låna ett gränsvärde från den högre matematiken, att f (x) = ln 3 3 x Man verkar inte kunna presentera derivatan till denna funktion utan att blanda in ln. Fakta: har derivatan f(x) = e x f (x) = e x Lätt att komma ihåg eller hur? Det är detta faktum som gör e så märkvärdigt. Att derivatans värde är lika med funktionens. där k är en konstant har derivatan f(x) = e kx f (x) = k e kx Lite svårare men fortfarande möjligt att memorera. Vad betyder detta? Ja att: f(x) = 3 x = e ln 3x = e xln 3 Vi deriverar sedan med hjälp av regeln ovan och får Detta uttryck kan ju skrivas om till f (x) = ln 3 e xln 3 f (x) = ln3 e xln 3 = ln 3 e ln 3x = ln 3 3 x Det var ju där vi började! Återstår att vänja sig vid att använda e och ln. Håkan Strömberg 4 KTH Syd
5 1 Översätt den linjära funktionen given på allmän form till k-form, där a och b är obestämda konstanter. Vi utgår alltså från ax + by + c = 0 och vill komma fram till y = k x + m. Det betyder att vi kommer att få k och m uttryckta i a och b. Vi ska alltså lösa ut y ur formeln ax + by + c = 0 by = ax c y = ax c b y = a b x + c b Detta betyder att k = a b och m = c b. Normalt lär man sig inte detta utantill, utan är beredd att räkna fram det varje gång det behövs. 2 Vi har den linjära funktionen y 5 + x 3 = 1 I vilka punkter skär denna linje koordinataxlarna? När funktionen skär x-axeln är y = 0. Vi sätter in det i funktionen och får ekvationen x 3 = 1 som har lösningen x = 3. Linjen skär alltså x-axeln i (3, 0) När funktionen skär y-axeln är x = 0. Vi sätter in det i funktionen och får ekvationen y = 1 som har lösningen y = 5. Linjen skär alltså y-axeln i punkten (0, 5). Det finns tydligen ett klart samband mellan de två nämnarna i funktionen och de punkter i vilka linjen skär axlarna. 3 Vilket resultat, ungefär, bör man få då man beräknar detta uttryck med dosans hjälp: ( ) Ungefär , ett tal ganska nära e, eller hur! Håkan Strömberg 5 KTH Syd
6 4 Lös ekvationen lnx + ln2 = ln10 lnx + ln2 = ln 10 ln x = ln 10 ln2 ln x = ln 10 2 ln x = ln 5 e ln x = e ln 5 x = 5 Förutom e ln = har vi använt ln ln = ln. Vi konstaterar att tekniken att lösa en ekvation med ln inte skiljer sig speciellt från det med lg. 5 Förenkla så långt möjligt 2 3 lnea lne 2 3 lnea lne a 2a a 3 = ln e 3 3 lne = 2a 3 a 3 = 2a 3 + a 3 = a Om lg10 = 1 så måste ju lne = 1. 6 Bestäm derivaten till f(x) = 10e x a 3 7 Bestäm derivatan till 8 Vilken funktion f (x) = 10e x f(x) = e 10x f (x) = 10e 10x a) f(x) = e 1 x b) f(x) = e 0 x c) f(x) = e 1 x hör ihop med vilken graf i figur 3 a) f(x) = e x b) f(x) = e x c) f(x) = e 0 När koefficienten är 0 är förstås funktionen konstant = 1. 9 Derivera funktionen f(x) = 4 x + 3 x Håkan Strömberg 6 KTH Syd
7 Figur 3: Vi skriver om funktionen enligt receptet ovan (även om man är ovan): Nu är det enkelt att derivera f(x) = e xln 4 + e xln 3 f (x) = ln4 e xln 4 + ln3 e xln 3 om man så vill kan man återställa baserna och få f (x) = ln 4 4 x + ln3 3 x Visserligen försvinner e, som vi är ovana vid just nu, men ln består. 10 Kurvan y = C e kx går genom punkten (0, 10). Lutningen i den punkten är 5. Bestäm talen C och k. Först och främst förstår vi att 10 = C e k 0 Vi har helt enkelt satt in x och y efter punkten (0, 10). Detta ger 10 = C e 0 eller C = 10. När vi har C = 10 kan vi skriva funktionen f(x) = 10 e kx Nu tar vi hand om den givna lutningen. För detta måste vi derivera funktionen ovan f (x) = k 10e kx Man har fått veta att f (0) = 3, eller hur (tänk efter). Detta ger f (0) = k 10e k 0 Eftersom f (0) = 5 får vi k 10e k 0 = 5 k 10e 0 = 5 k 10 = 5 k = 1 2 Till slut har vi kommit fram till funktionen: f(x) = 10e x 2 Håkan Strömberg 7 KTH Syd
8 1 Omforma den linjära funktionen till k-form. 3x + y 2 3 = 0 2 En linje skär koordinataxlarna i punkterna (0, 2) och (3, 0). Bestäm linjens ekvation (den linjära funktionen). 3 Lös ekvationen ln x 2 + lnx = 3 4 Man får reda på att f(2) = 3 e 2 och att f(3) = 3 e 3. Bestäm f(x). 5 Skriv om funktionen f(x) = x till funktionen g(x) med basen e och bestäm både f(10) och g(10) 6 Derivera funktionen 7 Bestäm f (2) då 8 Derivera f(x) = 3e 2x f(x) = 2e 3x + e x f(x) = (e x e x ) (e x + e x ) 1 Det är bara att räkna på, det vill säga att lösa ut y ur formeln 3x + y 2 3 = 0 y 2 = 3x + 3 y = 6x + 6 Lätt som en plätt, eller hur! Svar: y = 6x Utnyttjar vi kunskapen från Lösta problem nummer 2 får vi direkt y 2 + x 3 = 1 som kan hyfsas till y = 2 3 x 2 Håkan Strömberg 8 KTH Syd
9 3 Svar: x = e 4 Funktionen ln x 2 + lnx = 3 2 lnx + lnx = 3 3 lnx = 3 lnx = 1 e ln x = e 1 x = e f(x) = 3e x är förstås närliggande, men det finns faktiskt oändligt många funktioner som går genom dessa två punkter. Tänk efter. 5 Vi kan tyda denna funktion som en där man startar med 1000 kr och erhåller 4% ränta varje år. f(x) talar om hur mycket man har efter x år. 6 Omskriven till basen e får vi Vi får nu Omskrivningen verkar korrekt. 7 Först deriverar vi Vi kan nu bestämma f(10) = xln 1.04 g(x) = 1000 e g(10) 1480 f (x) = 3 2e 2x f (x) = 6e 3x + e x f (2) = 6e 6 + e 2 Matematiken stannar normalt här. Handlar det om fysik eller andra tillämpningar av matematiken kanske man svarar f (x) Vi måste börja med att utveckla parenteserna (tänk på konjugatregeln): (e x e x ) (e x + e x ) = e 2x e 2x Vi får då funktionen vars derivata är f(x) = e 2x e 2x f (x) = 2e 2x ( 2)e 2x = 2(e 2x + e 2x ) Håkan Strömberg 9 KTH Syd
10 Räkna bokens uppgifter: 2327, 2330, 2335, 2338, 2341, 2342, 2343, 2348, 2353, b) TB: f(x) = 3 e 4x ska deriveras. f (x) = 12 e 4x. Enkelt d) TB: Nu har vi funktionen f(x) = 6 e x/2. dess derivata är f (x) = 3 e x/2 och f (1/3) = 3 e 1/ TB: Tråkiga uppgifter hela vägen. Vad har du tänkt på när du plockat ut dem? Vi har f(x) = 10 e 7x som har derivatan f (x) = 70 e 7x. Vi ska nu visa att KTH: Javisst 2338 f (x) + 7f(x) = 0 70 e 7x e 7x = 0 det ser man ju på en gång. Har jag visat vad jag skulle och på rätt sätt TB: Nu ska jag derivera f(x) = (e x + e x ) 2. Jag vet inte riktigt. Ska man utveckla parenteserna, eller finns det något annat sätt? KTH: I och för sig finns det ett annat sätt, men det har du inte lärt dig ännu, så du får nog utveckla parenteserna TB: 2341 f(x) = (e x + e x ) 2 f(x) = (e x ) 2 + (e x ) 2 + 2e x e x f(x) = e 2x + e 2x + 2 f (x) = 2e 2x 2e 2x TB: C och k i f(x) = C e kx ska bestämmas. Till detta har vi två villkor f(0) = 2 och f (0) = 3. f(0) = C e k0 ger direkt C = 2. Om vi deriverar får vi f (x) = 2k e kx. Eftersom f (0) = 2k kan vi skriva 2k = 3 ger k = 3/2 och hela funktionen f(x) = 3 e 3x/ TB: Nu är jag helt borta igen. Vad ska jag göra? Jag inser att jag har funktionen f(x) = 4 x och att jag kan derivera den på något sätt. f(x) = e xln 4, så kan också man skriva funktionen. För mig blir det då enklare att finna f (x) = ln 4 e xln 4. Nu har jag både funktionen och derivatan Håkan Strömberg 10 KTH Syd
11 f (x) = k f(x) ln4 e xln 4 = k e xln 4 k = ln Är det klart? I så fall, vad har jag löst och varför? KTH: Kanske vill man påvisa att f(x)/f (x) är konstant TB: Det här med gränsvärden har jag inte fått riktigt grepp på. Hur skulle man skriva nu igen a h 1 lim = 1 h 0 h 2 När h 0 går både täljare och nämnare mot 0 och det är omöjligt att säga vad som händer. Jag har för mig att jag har hört att 0, kan vara precis vad 0 som helst. Här blir det tydligen 1/2 om man väljer a på ett bra sätt. KTH: Den är inte så lätt den här uppgiften. Vi vet att a h 1 h om vi har korrekt värde på a och små värden på h. Om vi fortsätter att förenkla uttrycket får vi e) a h h a ( h Om vi nu beräknar a med några små värden på h, till exempel h = 0.01 och h = så får vi a = respektive a = , så vi kan vara ganska säkra på att de tre första siffrorna hos a = Det var ju ett närmevärde det var frågan om. Det exakta svaret är a = e, men jag tänker inte berätta hur jag kom fram till det. Du får vänta några kurser till. TB: Att skriva om en potens a b, som ju har basen a och exponenten b till en annan bas till exempel e eller 10 görs genom eller på samma sätt för basen e Speciellt då för uppgiften ) 1 h a b = 10 lg ab = 10 blg a a b = e ln ab = e bln a 4 2t = 10 lg 42t = 10 2tlg 4 4 2t = e ln 42t = e 2tln 4 Håkan Strömberg 11 KTH Syd
12 KTH: Kan verka enkelt men det är viktigt att man kan detta, eftersom det dyker upp som små detaljer i större sammanhang. TB: Vad händer om man skriver om 10 x till basen 10 som det ju redan är. Jag, menar om man inte tänker på detta x = 10 lg 10x = 10 xlg 10 = 10 x Det blir rundgång eftersom lg10 = 1, på samma sätt som lne = 1 TB: Nu kommer ett sådant här obegripligt uttryck igen. oberoende av x Vad menar de? KTH: Att du ska få fram ett uttryck där x inte ingår. TB: Hur gör jag då? KTH: Vi säger att du inte har en aning. Vad gör du då? TB: Jag har f(x) = x, som jag omedelbart skriver om till basen e, bara för att jag då enklare kan derivera f(x). Jag får då f(x) = 5000 e xln 1.05 och dess derivata är f (x) = 5000 ln1.05 e xln 1.05 Enligt uppgiften ska jag nu beräkna en kvot f (x) f(x) = 5000 ln1.05 exln 1.05 = ln e xln 1.05 KTH: Ja Är det rätt? TB: Men varför. Vad var det för vits med detta? KTH: Att kvoten mellan derivatan och funktionen är konstant ln Vet du ett funktionsvärde f(a) så kan du omedelbart bestämma f (a) genom f(a) ln1.05. Det är väl bra! TB: Nej TB: Den här uppgiften är mer konkret och därmed tycker jag att den är bättre. Jag har funktionen f(x) = 2 x = e xln 2 och dess derivata f (x) = ln 2 e xln 2 Tangenten har k-värdet f (1) = ln2 e ln 2 = 2 ln2. Jag ska bestämma k och m i f(x) = kx + m. k = 2 ln2 och med hjälp av punkten (1, 2), som ligger på linjen får jag m genom 2 = (2 ln2) 1 + m, ger m = 2 2 ln2. Nu frågar man var tangenten skär y-axeln och det råkar vara samma värde som m. Svaret är (0, 2 2 ln2) Håkan Strömberg 12 KTH Syd
4 Fler deriveringsregler
4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x
Läs merLösningar och kommentarer till uppgifter i 2.3
Lösningar och kommentarer till uppgifter i 2.3 2303 d) TB: Jaha, nu gäller det att kunna sina deriveringsregler. Polynom kommer man alltid ihåg hur de ska deriveras. f(x) = 4x 2 + 5x 3 ger derivatan f
Läs merf(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:
Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t kan vi läsa av temperaturen, beloppet, hastigheten,
Läs merVi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då
Läs merKOKBOKEN. Håkan Strömberg KTH STH
KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................
Läs merGamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Läs merDagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att
Läs merIngen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar.
Ingen ny teori denna dag. Istället koncentrerar vi oss på att lösa två tränings-ks:ar. 1 Bestäm med jälp av derivatans definition f () då f(x) = x + x + Funktionen f(x) = x 4x + 8 ar en minpunkt. Bestäm
Läs merDen räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
Läs merMatematik 3c Kap 2 Förändringshastighet och derivator
Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html
Läs merDen räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
Läs merf (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1
Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: Derivatan blir: f(x) = x 4 x + x + 8 f (x) = 8x x + Men hur
Läs merLösningar och kommentarer till uppgifter i 2.2
Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten
Läs merFunktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Läs mer6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Läs merVi tolkar det som att beloppet just vid denna tidpunkt stiger med 459 kr/år, alltså en sorts hastighet. Vi granskar graferna till b(x) och b (x)
Ett person sätter in 0000 kr på banken vid nyår 000 till 4% ränta. Teckna en funktion för beloppets utveckling. b(t) = 0000.04 t Skriv om funktionen med basen e istället för.04. Derivera denna funktion
Läs merKan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.
Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera
Läs mer20 Gamla tentamensuppgifter
20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition
Läs mer13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till
3 Potensfunktioner 3. Dagens teori Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8
Läs merNär vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1
Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna
Läs merLogaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos
Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merFler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
Läs mer8 + h. lim 8 + h = 8
Nu ar vi kretsat kring oc förberett oss på begreppet derivata i två föreläsningar. Nu är tiden inne! Men innan dess ska vi diskutera gränsvärde, ett annat begrepp. Om vi ar uttrycket 8 + oc låter gå mot
Läs mer5 Blandade problem. b(t) = t. b t ln b(t) = e
5 Blandade problem 5.1 Dagens Teori Ett person sätter in 10000 kr på banken vid nyår 2000 till 4% ränta. Teckna en funktion, b(t) för beloppets utveckling. b(t) = 10000 1.04 t Skriv om funktionen med basen
Läs merpolynomfunktioner potensfunktioner exponentialfunktioner
Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,
Läs mer3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition
3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster
Läs merIntroduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt
KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande
Läs merFöreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018
Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,
Läs merLösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Läs merUPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER
UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till
Läs merATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan
Läs merf(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
Läs merLösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
Läs merSF1625 Envariabelanalys
Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner
Läs merLösningar och kommentarer till Övningstenta 1
Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)
Läs merSekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?
I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient
Läs merM0038M Differentialkalkyl, Lekt 4, H15
M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs merIntroduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt
KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande
Läs merf(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna
Läs merMoment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59
Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde
Läs merR AKNE OVNING VECKA 2 David Heintz, 13 november 2002
RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(
Läs merAvsnitt 4, introduktion.
KTHs Sommarmatematik Introduktion 4:1 4:1 Avsnitt 4, introduktion. Potensregler. Följande grundläggande potensregler är startpunkten för detta avsnitt: Ex 1: 2 3 2-2 = 2 3-2 =2 1 = 2. Ex 2: 8 4 = (2 3
Läs mer2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x
Derivator.1 Dagens Teori Figur.1: I figuren ser vi grafen till funktionen f(x) = x 3 + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7 3 finns en tangent som tangerar kurvan i (, 10 3
Läs mer3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd
I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4
Läs merDERIVATA. = lim. x n 2 h h n. 2
DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt
Läs merDOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4
Logövningar Uppgift nr 1 lg y -2 Uppgift nr 2 Huvudräkna lg200 + lg5 Uppgift nr 3 71 z 70 Uppgift nr 4 Ange derivatan till y e x Uppgift nr 5 Skriv 3 lg5 som en logaritm utan faktor framför. Uppgift nr
Läs merLäsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.
Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.
Läs merMatematik CD för TB. x + 2y 6 = 0. Figur 1:
Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten
Läs merKontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Läs merLäsanvisningar till kapitel 4 i Naturlig matematik
Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här
Läs mer9 Skissa grafer. 9.1 Dagens Teori
9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om
Läs merChecklista för funktionsundersökning
Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara
Läs merMeningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
Läs merMATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS..07 BESKRIVNING AV GODA SVAR Examensämnets censorsmöte har godkänt följande beskrivningar av goda svar. Av en god prestation framgår det hur examinanden har kommit fram till
Läs mer10.1 Linjära första ordningens differentialekvationer
10.1 Linjära första ordningens differentialekvationer Här ska vi studera linjära första ordningens differentialekvationer som kan skrivas y (x) + g(x)y(x) = h(x) Om g(x) har en primitiv funktion G(x) så
Läs merexakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log
LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen
Läs merTeori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:
Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd
Läs merEkvationslösning genom substitution, rotekvationer
Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar
Läs merPlanering för kurs C i Matematik
Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.
Läs merAllt du behöver veta om exponentialfunktioner
Allt du behöver veta om exponentialfunktioner Problem 1. Funktionerna a) a(x) = e x b) b(x) = e x c) c(x) = 4 x e x ln4 d) d(x) = 3 10 x 3 e x ln10 e) e(x) = ex 3 avbildas i figuren. Vilken är vilken?
Läs mer5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.
Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter
Läs merSF1625 Envariabelanalys
Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.
Läs merMoment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Läs merSekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).
Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på
Läs merIntroduktionskurs i matematik LÄSANVISNINGAR
UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september
Läs merMoment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73
Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar
Läs merLMA222a. Fredrik Lindgren. 17 februari 2014
LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite
Läs merChalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström LMA222a Matematik DAI1 och EI1
MATEMATIK Hjälpmedel: inga Calmers tekniska ögskola Datum: 1015 kl. 0.0 12.0 Tentamen Telefonvakt: Jonny Lindström 07 607040 LMA222a Matematik DAI1 oc EI1 Tentan rättas oc bedöms anonymt. Skriv tentamenskoden
Läs merAttila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Läs merMAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp
MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största
Läs merModul 4 Tillämpningar av derivata
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,
Läs merDenna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som
Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik
Läs merx +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.
Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4
Läs merTisdag v. 2. Speglingar, translationer och skalningar
1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger
Läs mer4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.
TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att
Läs merEn vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas.
Max och min för trigonometriska funktioner En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Ta t.ex y = 12 sin(3x-90) När man ska studera
Läs merMVE465. Innehållsförteckning
Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade
Läs merSidor i boken KB 6, 66
Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en
Läs merEkvationer & Funktioner Ekvationer
Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus
Läs merEgentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.
Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)
Läs merkvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.
Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att
Läs merSF1625 Envariabelanalys
Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:
Läs merGrafen till funktionen z = x y.
Frågor och svar om ln x, e x och 1/x i anslutning till grafen finns på nästa sida och framåt. 1 (6) Grafen till funktionen z = x y. plot3d(x^y, x=-3..3, y=-1..2, axes=frame, grid=[25,25], title="z=x^y");
Läs mere x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är
Läs merTentamen Matematisk grundkurs, MAGA60
MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merMoment Viktiga exempel Övningsuppgifter I
Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter
Läs merKOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Läs merf (a) sin
Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan
Läs merLösningsförslag till Tentamen i SF1602 för CFATE 1 den 20 december 2008 kl 8-13
KTH Matematik Examinator: Lars Filipsson Lösningsförslag till Tentamen i SF60 för CFATE den 0 december 008 kl 8-3 Preliminära betygsgränser: A - 8 poäng varav minst 8 VG-poäng, B - 5 poäng varav minst
Läs merFörberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1)
Förberedelser inför lektion 1 (första övningen läsvecka 1) Läs kapitel 0.10.3. Mycket av detta är nog känt sedan tidigare. Om du känner dig osäker på något, läs detta nogrannare. Kapitel 0.6 behöver inte
Läs merx sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx
TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Läs mervux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Läs merKomposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Läs merDel I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.
Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera
Läs mer1 Förändingshastigheter och derivator
Förändingsastigeter oc derivator. Dagens Teori Som en inledning till begreppet derivata, ska vi är diskutera genomsnittlig förändingsastiget. Utan att veta vad som änt mellan två givna tider t oc t 2 kan
Läs mer