Armin Halilovic: EXTRA ÖVNINGAR
|
|
- Katarina Berglund
- för 6 år sedan
- Visningar:
Transkript
1 ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det motsatta talet om x är negativt ( om själva x är negativt då är x ett positivt tal) T ex 5 = ( 5) = 5 Detta anger vi i nedanstående definition: x om x 0 Definition x = x om x < 0 =================================================== =============================================== Geometrisk tolkning: i) På en reell tallinje är x lika med avståndet mellan punkterna (som svarar mot) x och 0 ii) På en reell tallinje är x y om x y x y = ( x y) = y x om x < y lika med avståndet mellan punkterna (som svarar mot) x och y [oberoende av vilket av talen x och y är störst] Exempelvis om x = 4 och y = 6 har vi x y =0 =avståndet mellan 4 och 6 Avståndet = = 0 =================================================== Egenskaper: A x 0 A x = 0 om och endast om x = 0 A x + y x + y, x y x + y I A gäller likhetstecken om och endast om x och y har samma tecken Exempelvis, om x = och y= 5 då gäller x + y = 8 = x + y, medan för x = och y= + 5 gäller = x + y < x + y = 8 Sida av
2 A4 x = x A5 x y = y x A6 x + x + x x + x + x n n (I A6 gäller likhetstecken om och endast om alla x k har samma tecken) A7 x y x + y Vi kan skriva tillsammans A och A7 på följande sätt: A8 x y x + y x + y Exempel ( a ) a = ( a ) om ( a ) 0 dvs om a om ( a ) < 0 dvs om a < Exempel Uttrycket x 0 för alla x ( eftersom x 0 ) T ex för x = 5 blir (-5) = 5 = 5 Alltså x x = endast om x 0 medan x = x om x < 0 Viktigt: I allmänt gäller x x om x 0 = x = x om x < 0 Exempel (x x 4 = x 4 = ( x om x 4 om x < 4 Grafen till funktionen x om x 0 y = x eller y = har vi nedan x om x < 0 y= - x y=x om 0 Eftersom = kan vi rita grafen till funktionen om < 0 y = genom att först rita grafen till y = f (x) och därefter spegla i x axeln den delen av grafen som ligger under x-axeln (här gäller < 0 ) Uppgift Rita grafen till följande funktioner a) y = x 4 b) y = x 4 c) y = + x 4 Svar: Sida av
3 a) b) c) ========================================================== EKVATIONER OCH OLIKHETER SOM INNEHÅLLER ABSOLUTBELOPP Några enkla ekvationer av följande typ: = a där a är en konstant kan vi lösa direkt (med hjälp av definitionen av absolutbeloppet) a) Ekvationen x = a där a > 0 har lösningar x = ± a a) x = 0 x = 0 a) Ekvationen x = a där a < 0 har ingen lösning a4) Ekvationen = a där konstanten a > 0 ä är ekvivalent med två ekvationer = ± a a5) = 0 = 0 a6) Ekvationen = a där konstanten a < 0 har ingen lösning Uppgift Lös följande ekvationer a) x = b) x = 0 c) x = 5 d) x = 0 e) x 5 = 0 f) x 8 = 0 g) x + 8 = Lösning: a) x = ± b) x = 0 c) ingen lösning d) x = 0 x = x = ± x = ±,två lösningar x =, e) x 5 = 0 x = 5 x = ± 5 x = ± 5 Härav 5 4 x = 5 x = Alltså, två lösningar 4 x = f) x 8 = 0 x 8 = 0 x = 4 g) ingen lösning ============================================================ Några enkla olikheter av följande typer: a, där a är en konstant: < a, > a a och Sida av
4 Först några olikheten om a > 0 (vanligt fall): 4 b) Olikheten x < a där a > 0 har lösning a < x < a x < a a {På samma sätt har olikheten 0 a x a där a > 0 lösning a x a } b) Olikheten x > a där a > 0 satisfieras av alla x som uppfyller x < a eller x > a x > a x < a x > a a 0 a Några exempel med a < 0 eller a = 0 : b) Olikheten x < har ingen lösning ( eftersom x 0 ) b4) Olikheten x satisfieras av alla reella x b4) Olikheten x 0 har exakt en lösning x= Uppgift Lös följande olikheter a) x b) x c) x 5 < 0 d) x 5 0 e) x Lösning: a) Svar: x Alternativt skrivsätt: Intervall [-,] b) Svar: x eller x Alternativt skrivsätt: (, ] [, ) c) Lösning: x 5 < 0 x 5 5 < x < 5 Vi har faktiskt två enkla olikheter 5 < x och x < 5 som vi kan lösa separat och därefter bestämma gemensam lösning Men, den här gången, löser vi båda ekvationer samtidigt: 5 < x < 5 ( addera ) < x < 8 (dela med ) < x < 4 Svar: < x < 4 Alternativt skrivsätt: Intervall (, 4) d) Svar: x eller x 4 Alternativt skrivsätt: (, ] [4, ) e) Lösning: x x 9 Ingen lösning eftersom x 0 för alla x Svar: Ingen lösning ============================================================ ALLMÄNT FALL Mer komplicerade ekvationer och olikheter (t ex av typen = g( x) eller + g( x) < h( x) ) löser vi genom att först analysera varje absolutbelopp för sig Därefter betraktar vi alla fall som kan förekomma när x varierar från till + Sida 4 av
5 5 Med samma metod kan vi rita grafer som innehåller absolutbelopp ( Anmärkning Denna metod kan användas på både enkla och svåra ekvationer) Uppgift 4 Lös följande ekvationer a) x = x + 4 b) x + = x + 8 Lösning: Lösning a) Vi har x = ( x ) om x < och x = + ( x ) om x Därför betraktar vi två fall Fall x < och Fall x Fall Om x < blir ekvationen ( x ) = x + 4 x + = x + 4 x = (Vi måste kontrollera om x = uppfyller kravet A innan vi påstår att detta är en lösning) Eftersom x= satisfierar villkoret A, x <, så har vi en lösning x = Fall För x kan ekvationen skrivas ( x ) = x = 6 ingen lösning i andra fallet Svar a) x = Svar b) x = 6, x 0 / = Uppgift 5 a) Lös följande ekvation x = x + 4 b) Rita grafen till funktionen = x x 4 Lösning a) Vi har x = ( x ) om x < och x = + ( x ) om x Därför betraktar vi två fall A) x < och B) x A) Om x < blir ekvationen ( x ) = x + 4 x + = x + 4 x = x = Eftersom x = satisfierar villkoret A, x <, så har vi en lösning b) För x kan ekvationen skrivas + ( x ) = x + 4 x = x = 7 Detta är omöjligt för x Alltså finns ingen lösning i fallet B och vi har således endast en lösning ( från fallet A) Sida 5 av
6 6 Svar a) x = Lösning b) Vi ska först styckviss definiera funktionen = x x 4 och därefter rita grafen i) För x < har vi x = ( x ) och därför = x x 4 = ( x ) x 4 = x ii) För x har vi x = + ( x ) och därför = x x 4 = + ( x ) x 4 = x 7 Alltså x = x 7 för för x < x Grafen till = x x 4 : Uppgift 6 Lös följande ekvationer a) x = x 5 b) x + = x + Lösning a) Vi har två uttryck med absolutbelopp ) x = + ( x ) om x och x = ( x ) om x < ) x 5 = + ( x 5) om x 5 och x 5 = ( x 5) om x < 5 Alltså har vi 5 x = ( x ) x 5 = ( x 5) x = + ( x ) x 5 = ( x 5) x = + ( x ) x 5 = + ( x 5) Sida 6 av
7 Därför betraktar vi tre fall A) x <, B) x 5 och x > 5 7 A) Om x < då gäller x = ( x ) och x 5 = ( x 5) Ekvationen kan skrivas ( x ) = ( x 5) = 5 Ingen lösning för x < B) Om x 5 då gäller x = + ( x ) och x 5 = ( x 5) Ekvationen kan skrivas + ( x ) = ( x 5) x = 4 Eftersom x = 4 ligger i intervallet x 5 har vi en lösning, x 4, för fallet B C) Om x > 5 då gäller x = + ( x ) och x 5 = + ( x 5) Ekvationen blir ( x ) = ( x 5) = 5 Ingen lösning för x > Svar a) En lösning, x = 4 Svar b) En lösning, x = = Uppgift 7 Lös följande olikheter a) x + > x 4 b) x 6 < x + Lösning a) METOD Vi har två uttryck med absolutbelopp ) x + = + ( x + ) om x och x + = ( x + ) om x < ) x 4 = + (x om x och x 4 = (x om x < Alltså har vi - x + = ( x + ) x 4 = (x x + = + ( x + ) x 4 = (x x + = + ( x + ) x 4 = + (x Sida 7 av
8 8 Därför betraktar vi tre fall A) x <, B) x och C) x > A) Om x < då gäller x + = ( x + ) och x 4 = (x Olikheten kan skrivas ( x + ) > (x x > 6 Detta är inte möjligt om x < Ingen lösning för x < B) Om x då gäller x + = + ( x + ) och x 4 = (x Olikheten blir ( x + ) > (x x > x > Eftersom x får vi < x för fallet B C) Om x > då gäller x + = + ( x + ) och x 4 = + (x Olikheten blir ( x + ) > (x 6 > x x < 6 Eftersom x > får vi < x < 6 för fallet C B och C tillsammans ger < x < 6 Svar a) < x < 6 METOD (Grafisk lösning) Vi skriver om olikheten x + > x 4 genom att flytta alla uttryck till vänsterledet x + x 4 > 0 Därefter skriver vi uttrycket = x + x 4 som en styckvisdefinierad funktion, därefter ritar grafen och löser olikheten > 0 Som vi skrev ovan (i metod ) har vi x + = + ( x + ) om x och x + = ( x + ) om x < x 4 = + (x om x och x 4 = (x om x < Vi betraktar tre fall A) x <, B) x och C) x > A) x <, = x + x 4 = ( x + ) ( (x ) = x + x 4 = x 6 B) x Sida 8 av
9 9 = x + x 4 = ( x + ) ( (x ) = x + + x 4 = x C) x > = x + x 4 = ( x + ) (x = x + x + 4 = x + 6 Alltså är x 6 för x < = x för x x + 6 för x > Vi ritar grafen till f (x) genom att rita varje stycke i motsvarande intervall Notera att alla tre uttryck är linjära (därmed delar av tre räta linjer) A) Vi börjar med = x 6 i intervallet x< Eftersom detta är en rät linje, räcker det att använda två punkter som linjen går genom Det är viktigt att använda ändpunkten x= Notera att funktionen är kontinuerlig (som summan av kontinuerliga abs-funktioner) Vi har exempelvis den här liten tabell x - - y -9-8 B ) = x för x Vi använder två punkter t ex x - y -8-4 C) = x + 6 för x > Vi använder två punkter t ex x 7 y -4 - Grafen till f (x) får vi genom att rita de tre delgrafer över motsvarande intervall: Först bestämmer vi funktionens nollställen Från grafen ser vi att ett nollställe ligger i andra definitionsintervallen (B-delen ovan) Vi löser Sida 9 av
10 0 x = 0 och får x = Det andra nollstället får vi i C-delen x + 6 = 0 x = 6 Vi ser från grafen att > 0 om < x < 6 Svar a) < x < 6 5 Svar b) < x < 7 Uppgift 9 Rita grafen till funktionen = x+ x Lösning x Först i) x x = + ( x x) om ( x x) 0 dvs om x 0 eller x ( Se grafen till y = x x ) ii) x x = ( x x) om ( x x) < 0 dvs om 0 < x < Därmed blir x + ( x x) = x om x 0 eller x = x ( x x) = x + x om 0 < x < eller x om x 0 = x + x om 0 < x < x x Grafen till f(x): Sida 0 av
11 Sida av
H1009, Introduktionskurs i matematik Armin Halilovic
H009, Introduktionskurs i matematik Armin Halilovic ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) b) 0 =0 c) 5 5 Alltså x Absolutbeloppet av ett tal x är lika med själva talet x om
Läs merArmin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt
Läs merNotera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.
OLIKHETER Egenskaper:.Om a < b då gäller a+ c < b +c. Om a < b < c då gäller a+d < b+d < c+d. Om a < b och k > 0 då gäller ka < kb. 4. Om a < b och k < 0 då gäller ka > kb. Notera att tecknet < ändras
Läs merx 1 1/ maximum
a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter
Läs merEkvationer och olikheter
Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När
Läs merKomposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Läs merRIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
Läs mervilket är intervallet (0, ).
Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten 2x > 4 och uttryck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3(2 x) < 2(3 + x), Multiplicera båda led med 2.
Läs merVektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)
1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)
Läs merLinjära ekvationer med tillämpningar
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel
Läs merNågra viktiga satser om deriverbara funktioner.
Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma
Läs merFixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).
Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot
Läs merProv 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:
Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse
Läs mera), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.
PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än
Läs merMoment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a
Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem
Läs merSTABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER
Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Läs merNotera att ovanstående definition kräver att funktionen är definierad i punkten x=a.
SAMMANFATTNING OM KONTINUERLIGA FUNKTIONER Definition (Kontinuitet i en punkt { f ( är kontinuerlig i punkten a} { lim f ( a } a eller ekvivalent: { f ( är kontinuerlig i punkten a} { lim lim f ( a a a+
Läs merTATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter
TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
Läs merKapitel 7. Kontinuitet. 7.1 Definitioner
Kapitel 7 Kontinuitet 7.1 Definitioner Vi har sett på olika typer av funktioner. Vi skall fortsätta att undersöka dem, men ur en ny synvinkel. Vår utgångspunkt är nu att försöka undersöka om de är sammanhängande.
Läs merTATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter
TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0
Läs merINVERSA FUNKTIONER DEFINITION. (invers funktion) Låt ff vara en funktion av en reell variabel med definitionsmängden DD ff och värdemängden VV ff. Vi säger att funktionen ff är inverterbar om ekvationen
Läs merBegreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs mervarandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.
PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät
Läs merTalmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
Läs merRepetitionsprov på algebra, p-q-formeln samt andragradsfunktioner
Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Del B Utan miniräknare Endast svar krävs! 1. Lös ekvationen (x + 3)(x 2) = 0 Svar: (1/0/0) 2. Förenkla uttrycket 4(x 3)(x + 3) så långt
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merBegreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Läs merx 4 a b X c d Figur 1. Funktionsgrafen y = f (x).
Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Läs merEn samling funktionspussel för gymnasienivå
En samling funktionspussel för gymnasienivå ü Pusslenas idé Det är lätt att snabbt rita många funktionsgrafer med en grafisk räknare, men hur är det med elevernas vana och förmåga att utläsa information
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Läs mer1.2 Polynomfunktionens tecken s.16-29
Detta avsnitt handlar om olikheter. < mindre än > större än mindre än eller lika med (< eller =) större än eller lika med (> eller =) Vilka tal finns mellan 2 och 5? Alla tal som är större än 2. Och samtidigt
Läs merChecklista för funktionsundersökning
Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara
Läs merTATM79: Föreläsning 1 Notation, ekvationer, polynom och summor
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q
Läs merAnteckningar för kursen "Analys i en Variabel"
Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av
Läs merLösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
Läs merKapitel 4. Funktioner. 4.1 Definitioner
Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet
Läs merIcke-linjära ekvationer
stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar
Läs merLösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Läs merSF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
Läs merEkvationer och system av ekvationer
Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.
Läs merKravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.
Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst
Läs merMoment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Läs merTATM79: Föreläsning 3 Komplexa tal
TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig
Läs mer5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet
Läs merx +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.
Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4
Läs merLösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Läs merInstitutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Läs mer1 Addition, subtraktion och multiplikation av (reella) tal
Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b
Läs merModul 1 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation
Läs merDel I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Läs merTips : Vertikala asymptoter kan finnas bland definitionsmängdens ändpunkter och bland diskontinuitetspunkter.
ASYMPTOTER Definition. Den räta linjen är en lodrät (vertikal) asmptot till funktionen om å dvs om minst en av följande påståenden gäller lim, lim, lim lim Tips : Vertikala asmptoter kan finnas bland definitionsmängdens
Läs merDel A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.
NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje
Läs merx 2 4 (4 x)(x + 4) 0 uppfylld?
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Örjan Dillner TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN1 Datum: 7 september
Läs mer6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Läs merMa3bc. Komvux, Lund. Prov kap
Ma3bc. Komvux, Lund. Prov kap1-3.1. 150513 (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du
Läs merAUTONOMA DIFFERENTIALEKVATIONER
Armin Halilovic: EXTRA ÖVNINGAR, SF676 AUTONOMA DIFFERENTIALEKVATIONER Stabilitet Fasporträtt AUTONOMA DE: Det är speciellt enkelt att rita ett riktningsfält för en ekvation av typen y F( y) (ekv) (eller
Läs merProvet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merRepetition av matematik inför kurs i statistik 1-10 p.
Karlstads universitet Leif Ruckman Summasymbolen. Repetition av matematik inför kurs i statistik 1-10 p. I stället för att skriva en lång instruktion att vissa värden skall summeras brukar man använda
Läs merKomplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,
Läs merPolynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas
Läs mer5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
Läs mer14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.
PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade
Läs merMa2bc. Prov
Ma2bc. Prov 1. 160317. (Lärare: Ingemar Carlsson) Anvisningar Provtid Hjälpmedel Del A Del B Del C Kravgränser 120 minuter för Del B, C och Del D. Gör du provet som inlämning är det inte betygsgrundande,
Läs mer7 Extremvärden med bivillkor, obegränsade områden
Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,
Läs mer6. Samband mellan derivata och monotonitet
34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för
Läs merFÖRELÄSNING 1 ANALYS MN1 DISTANS HT06
FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har
Läs merv0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Läs mer1.1 Polynomfunktion s.7-15
1.1 Polynomfunktion Vad är då en funktion? En funktion är en regel i matematiken som beskriver sambandet mellan två storheter. T.ex. Hur många hjul har 3 bilar? 3 4 = 12 Hur många hjul har 4 bilar? 4 4
Läs merUpphämtningskurs i matematik
Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna
Läs merAttila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 4 GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merInstitutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
Läs merR LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av
Läs merSF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Läs merExempel. Komplexkonjugerade rotpar
TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs mere x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är
Läs merDiagnostiskt test för Lp03
Diagnostiskt test för Lp --6, kl. 9.5 Inga miniräknare/formelsamlingar. Redovisa dina resonemang/räkningar.. Skriv namn, vilket år du senast läste matematik, vilken kurs det var, vilket betyg du fick..
Läs merVi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen
Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område
Läs merTalmängder N = {0,1,2,3,...} C = {a+bi : a,b R}
Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att
Läs merComplex numbers. William Sandqvist
Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den
Läs mer1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop
Läs merExplorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Lösningar till kryssproblemen 1-5. Uppgifter till lektion 1: = 10 x. = x 10.
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 2010-10-27 Uppgifter till lektion 1: 1. Lös olikheten 2x + 1 > 3. Lösningar till kryssproblemen 1-5. Lösning. Olikheten
Läs merSAMMANFATTNING TATA41 ENVARIABELANALYS 1
SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3
Läs merMAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp
MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största
Läs merSidor i boken KB 6, 66
Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en
Läs merRÄKNEOPERATIONER MED VEKTORER LINJÄRA KOMBINATIONER AV VEKTORER ----------------------------------------------------------------- Låt u vara en vektor med tre koordinater, u = x, Vi säger att u är tredimensionell
Läs merDIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
SUBSTITUTIONER I DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Innehåll: I) Allmänt om substitutioner i förstaordningens DE II) Ekvationer av tpen ( ) F( ) ------------------------------------------------------------------------------------
Läs merEXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM
EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM Vi betraktar ett begnnelsevärdesproblem IVP, initial-value problem) av första ordningen som är skrivet på normal form IVP1) Man
Läs mervux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Läs mer