Linjära ekvationer med tillämpningar
|
|
- Helena Jakobsson
- för 8 år sedan
- Visningar:
Transkript
1 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel Exempel på ett algebraiska uttryck är 4x " 5y eller x 2 " y 2x + 4y. I dessa uttryck kan olika värden sättas in istället för variablerna x och y och det är möjligt att räkna ut uttryckets värde. Tex för första uttrycket med x =1 och y = 4 får vi värdet 4 "1# 5 " 4 = #16 En ekvation är två uttryck som sätts lika med varandra (det skall finnas ett likhetstecken!). Tex 3x " 2y = x + 8. Detta avsnitt kommer att behandla linjära ekvationer med en variabel, Ax+ B = C. Ex Ekvationen 2x "6 = 2 har lösningen x = 4. Vänsterledet blir då 2 " 4 # 6 = 2 vilket är exakt högerledet. Vi har likhet! Vi säger att x = 4 löser eller satisfierar ekvationen. En vanlig metafor är att se ekvationen som en jämvikt. Detta kan man symbolisera med en balansvåg. Adderar vi något till ena sidan måste samma adderas till andra sidan. Dubblar vi ena sidan (multiplikation med två) måste även andra sida dubblas. På sidan har du 4 exempel som löses väldigt grundligt. De avslutar alltid med att kontrollera svaret, ser om det satisfierar ekvationen. På sidan delas ekvationer in i tre typer. Conditional (villkorlig): Det är endast en eller ett begränsat antal lösningar till ekvationen (men minst en). Contradiction (Motsägelse): Det finns inte något värde som satisfierar ekvationen. Lösning saknas. Identitet: Det finns oändligt många lösningar. Det går i princip att välja vilket värde som helst. Detta beror på att vänsterledet och högerledet i ekvationen är identiska uttryck (eller går att skriva om så att de blir identiska). Se exempel 5 sid Lämpliga övningar: sid ,3,5,7,9,15,19,25,31,33,37,41,47,49,51,53 55,57,59,65
2 Avsnitt 2.2 Formler Inom många områden så används matematiska modeller för att förutsäga vad som kommer att inträffa under vissa förhållanden. Håller bron för den belastningen? Vilken blir strömmen i kretsen? Vilket ph har lösningen? I dessa modeller använder man sig då av ekvationer och olikheter som vi ofta kallar formler. Några exempel är: Ohms lag U = R " I (spänning, resistans och ström), p = F A (tryck, kraft och area), BMI b = m 2 ( body mass index, massa och längd). l Det är viktigt att kunna göra omskrivningar av formler. Du är kanske intresserad av någon av de andra variablerna. Om vi till exempel vill ta reda på idealvikten hos en person. Ideal BMI för en person är 25. Vilken är då idealvikten för en person med längden 1,80m? b = m l 2 " l 2 b = m l 2 l 2 " m = bl 2 m = 25 #1,8 2 = 81kg Hur man löser ut en variabel kan du se i exempel 1-7 sid Lämpliga övningar: Sid ,7,9,13,15,17,19,23,27,29,35,39 Avsnitt 2.3 Tillämpningar av linjära ekvationer Avsnittet innehåller inget nytt utan behandlar samma ekvationer som tidigare men här presenteras ett antal tillämpade problem som kan lösas med linjära ekvationer. Det svåraste momentet är oftast att förstå problemet och därefter ställa upp den ekvation (matematiska modell) som löser problemet. Ett bra exempel på detta är blandningsproblemen på sidan Denna problemtyp är svår och steg 1 och 2 i processen är det som oftast ställer till det för problemlösaren, dvs att förstå problemet och ställa upp ekvationen. Studera exemplen och räkna sedan övningarna. Lämpliga övningar: 76-80: 1,3,5 7,9,11,17,19,21,23,25,31,33,41,45,49,51,53 Avsnitt 2.4 Mer tillämpningar av linjära ekvationer Fler tillämpade problem med linjära ekvationer. Titta speciellt på exempel 2 och 3 som behandlar likformig rörelse, dvs föremål som har konstant hastighet. Vi använder två begrepp, hastighet och fart. Hastigheten, betecknas v, talar om hur fort föremålet rör sig och åt vilket håll (riktningen). Farten, är bara hur fort ett föremål rör sig. Dessa begrepp på engelska är velocity och speed (fart). Tex om vi skriver att bilen kör 90 km/h norrut anger vi hastigheten. Skriver vi enbart bilen kör 90 km/h så anger vi farten. Ordet hastighetsmätare är ur en fysikers synvinkel felaktigt medan engelskans speedometer är mer korrekt. Studera exemplen och räkna sedan övningarna. Lämpliga övningar: 1,9,15,19,23,25,31,41*
3 Avsnitt 2.5 Linjära olikheter med en variabel En linjär olikhet är, precis som hos linjära ekvationer, att man jämför två linjära uttryck. Däremot så söker vi inte likhet utan olikhet. Likhetstecknet ersätts med >, <, eller. Detta innebär att oftast så är det oändligt många värden på variabeln som satisfierar (löser) olikheten. Tex olikheten 4x " 4 + 3x har lösningen x " 4. Dvs alla tal på tallinjen som är mindre än fyra. Lösningsmängden (lösningen) kan åskådliggöras på tallinjen som de har gjort i boken. Vi inför begreppet intervall. Det finns öppna, halvöppna och slutna intervall. Ett slutet intervall kan skrivas på formen a " x " b. Dvs alla tal mellan a och b men även a och b. Man använder i boken hakklammrar [ a,b] som beteckning för detta intervall. Mitt på sid 92 beskrivs de olika intervalltyperna. Man inför även tecknet " som står för plus oändligheten. Intervallet x > 3 kan skrivas ( 3," ). Observera att man alltid har ett öppet intervall om ena änden är ". Oändligheten är ju ingen punkt på tallinjen som kan tillhöra intervallet. När vi löser en olikhet så kan vi använda samma teknik som när vi löser en ekvation. Vi kan addera (subtrahera) vänster led och högerled med samma sak för att förenkla olikheten (se sid 116). Vi kan multiplicera (dividera) vänsterled och högerled med samma sak för att förenkla olikheten. Observera att förhållandet kommer att förändras då vi multiplicerar/dividerar med ett negativt tal. Om vi har olikheten 3< 4. Vi multiplicerar den med (-1). Vi får då "3> "4. Olikhetstecknet vänds. Bortsett detta så är det bara att använda samma strategier som när du löser ekvationer. Lämpliga övningar: Sid : 1,3,5,7,9,11,15,19,23,25,29,31,33,43,47,57, 71 (men med SI enheter m och kg, se läsanvisningar för formler 2.2.) Avsnitt 2.6 Mängdoperationer och kopplade olikheter Här börjar man att definiera vad man menar med snittet, ", ( intersection på engelska) utav två mängder, dvs mängden av alla gemensamma element. Se blå rutan och exempel 1 på sidan 104. När man har två villkor på en variabel x som kan formuleras som två olikheter Hur tar man då reda för vilka x båda villkoren gäller? En sådan här situation kallas i boken compound inequality with and. Det är inte viktigt att lära sig benämningen utan att förstå hur man löser uppgiften. Studera exempel 2-4 sidan Strategin är att man löser de två olikheterna i uppgifterna separat. Lösningen är de gemensamma elementen ( x:en ) för de två olikheternas lösningar,dvs snittet av de två lösningsmängderna. I exempel 2 är det tex enbart intervallet [ 5,8] som är gemensamt. I exempel 4 finns det ingen gemensam del. Detta medför att det inte finns några x:värden som satisfierar båda olikheterna samtidigt och lösningsmängden är tomma mängden ". Vi kan ju även ha en situation där vi har två villkor gällande x och något av dessa skall åtminstone vara uppfyllt. Det som intresserar oss är alla element (x:värden)
4 som uppfyller något av villkoren. I exempel 6 och 7 har vi just denna situation. Samma strategi som tidigare. Lös de två olikheterna separat. Lösningen är unionen av dessa intervall. Unionen, ", definieras som mängden av alla element i de båda mängderna (se blå rutan sid 107). Lösningsmängden i exempel 6 skrivs som en union. Lämpliga övningar: sid :1,3,5,7,9,11,13,15,17,19,21,23,27,31,33,35,37 39,43,45,47,53 Avsnitt 2.7 Ekvationer och olikheter med absolutvärde I avsnitt 1.1 så introducerades absolutbeloppet x som är x om x " 0 och "x om x < 0. Detta innebär att x alltid är större än eller lika med noll. Tex så är lösningen till ekvationen x = 5 x = 5 eller x ="5. Det vill säga de tal som ligger på avståndet 5 från origo (noll). Ersätter vi likhetstecknet med olikhetstecken så blir lösningsmängden intervall. Se tex figur 31 och 32 sidan Ekvationen av typen 2x +1 = 7 (exempel 1 sidan 114) löses genom att titta på de två olika fallen då a) 2x +1= 7och b) 2x +1= "7. Vi får då två lösningar, x = 3 och x = "4 (se exempel 1). Ett annat angreppsätt är skriva om ekvationen på formen x "a = k. Detta kan tolkas geometriskt som att talet x ligger på avståndet k från talet a. Tex ekvationen x + 2 = 4 kan skrivas som x " "2 Avståndet 4 från (-2), dvs x = 2 eller x = "6 ( ). Om vi går tillbaks till vårt exempel 1 och skriver om det. 2x +1 = 2 x = 2 x " # $ 2& = 7 # x " $ 2 & = 7 2 ( ) = 4. x är de tal som ligger på x är de tal som ligger på avståndet 7 2 från talet #, dvs x = 3 och x = "4. $ 2 & Vi kan resonera på samma sätt i exempel 3 på sidan 115. Efter omskrivning (samma steg som i exempel1)får vi # x " $ 2& < 7 2 Lösningsmängden är alla tal som ligger närmare än 7 2 från talet # $ 2 &, dvs, intervallet ("4, 3).
5 På sidan 118 beskriver man relativt fel. Vi kan ta fallet motstånd. Ett motstånd med relativt fel 5%, dvs 0,05 och förväntad resistans R t =". R är den reella resistansen. Relativa felet enligt formel på sidan 118 Relativa felet = R " R t dvs 0, 05 = " R R t Två fall: 0, 05 = " R eller 0, 05 = - " R I fall 1 är R = 950" och i fall 2 är R =1050". Lämpliga övningar: sid : 1,3,5.9,13,17,23,27,33,37,41,47, 51,55,57,61, 65,67,77, 85,93
vilket är intervallet (0, ).
Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten 2x > 4 och uttryck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3(2 x) < 2(3 + x), Multiplicera båda led med 2.
Läs mera), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.
PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än
Läs merArmin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det
Läs merH1009, Introduktionskurs i matematik Armin Halilovic
H009, Introduktionskurs i matematik Armin Halilovic ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) b) 0 =0 c) 5 5 Alltså x Absolutbeloppet av ett tal x är lika med själva talet x om
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Läs merDenna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används
Läs merArmin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt
Läs mer1.2 Polynomfunktionens tecken s.16-29
Detta avsnitt handlar om olikheter. < mindre än > större än mindre än eller lika med (< eller =) större än eller lika med (> eller =) Vilka tal finns mellan 2 och 5? Alla tal som är större än 2. Och samtidigt
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER
Läs merRepetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation
Läs merLinjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem
Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
Läs merMÖNSTER OCH TALFÖLJDER
MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll
Läs merRepetition av matematik inför kurs i statistik 1-10 p.
Karlstads universitet Leif Ruckman Summasymbolen. Repetition av matematik inför kurs i statistik 1-10 p. I stället för att skriva en lång instruktion att vissa värden skall summeras brukar man använda
Läs merKravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.
Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst
Läs mersanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är
PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.
Läs merNotera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.
OLIKHETER Egenskaper:.Om a < b då gäller a+ c < b +c. Om a < b < c då gäller a+d < b+d < c+d. Om a < b och k > 0 då gäller ka < kb. 4. Om a < b och k < 0 då gäller ka > kb. Notera att tecknet < ändras
Läs merRepetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Läs merEkvationer och olikheter
Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När
Läs mer8-1 Formler och uttryck. Namn:.
8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?
Läs merRepetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför
Läs merLösa ekvationer på olika sätt
Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.
Läs mer3-8 Proportionalitet Namn:
3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt
Läs mer8-4 Ekvationer. Namn:..
8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar
Läs merVectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Läs merSvar till vissa uppgifter från första veckan.
Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!
Läs merInga vanliga medelvärden
Inga vanliga medelvärden Vanligtvis när vi pratar om medelvärden så menar vi det aritmetiska medelvärdet. I en del sammanhang så kan man dock inte räkna med det. Vi går här igenom olika sätt att tänka
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merÖvningar i ekvationer
i ekvationer Innehåll A. Addition och subtraktion B. Multiplikation och division C. Blandade räknesätt - prioritet D. Enkla förenklingar E. Parenteser F. Tillämpningar Detta häfte är till dig som läser
Läs mer14 min 60 s min 42 s 49m 2 =18 s m 2, alltså samma tid. Vi kan säga att den tid som mamman behövde åt dammsugning var beroende av husets storlek.
PASS 10. FUNKTIONER 10.1 Grundbegrepp om funktioner Mamman i den finländska modellfamiljen från pass fyra brukade dammsuga det 100 m 2 stora huset varje lördag. Det tog 30 minuter. Efter att pappan hade
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem
Läs merLäsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.
Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.
Läs merBegreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Läs merTalmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
Läs merDIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Läs merNpMa2b ht Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 73 poäng varav 27 E-, 27 C- och 19 A-poäng. Kravgräns för provbetyget
Läs merUtvidgad aritmetik. AU
Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och
Läs merLokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Läs merFöreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter
Läs merBegreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Läs merDagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer
Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,
Läs merComplex numbers. William Sandqvist
Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den
Läs mervarandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.
PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät
Läs merMATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Läs merDE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING
DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..
Läs merNATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av mars 1997. NATIONELLT PROV
Läs merDel A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.
NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje
Läs mer8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Läs merSammanfattningar Matematikboken Z
Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform
Läs merAndragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7
Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)
Läs merANDREAS REJBRAND NV1A Matematik Linjära ekvationssystem
ANDREAS REJBRAND NVA 004-04-05 Matematik http://www.rejbrand.se Linjära ekvationssystem Innehållsförteckning LINJÄRA EKVATIONSSYSTEM... INNEHÅLLSFÖRTECKNING... DEFINITION OCH LÖSNINGSMETODER... 3 Algebraiska
Läs mer7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Läs merÖvningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Läs merMoment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61
Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Läs merJörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Läs merFall 1 2x = sin 1 (1) + n 2π 2x = π 2 + n 2π. x = π 4 + n π. Fall 2 2x = π sin 1 (1) + n 2π. 2x = π π 2 + n 2π
48 a sin x + cos x = cos x Trigonometriska ettan sin v + cos v = 1 1 = cos x cos x = 1 x = ±cos 1 (1) + n π x = 0 + n π x = n π b sin x cos x = 1 Multiplicera båda led med sin x cos x = 1 sin x cos x =
Läs merMer om analytisk geometri
1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare
Läs merLokala betygskriterier Matematik åk 8
Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva
Läs mer29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merExplorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merDel I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Läs mer1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken.
Modul: Taluppfattning och tals användning. Del 3: Det didaktiska kontraktet Likhetstecknet Ingrid Olsson, fd lärarutbildare Mitthögskolan Läraraktivitet. 1. Skriv = eller i den tomma rutan, så att det
Läs merSKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 207 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.. För
Läs mer7. Max 0/1/0. 8. Max 0/2/1. 9. Max 0/0/ Max 2/0/0
7. Max 0/1/0 14 Korrekt svar (t.ex. 16514 = 44 a ) +1 C M 8. Max 0/2/1 a) Godtagbart angivet intervall, t.ex. då x är mellan 3 och 4 +1 C B med korrekt använda olikhetstecken ( 3 < x < 4 ) +1 C K b) Korrekt
Läs mer7. Ange och förklara definitionsmängden och värdemängden för funktionen f definierad enligt. f(x) = ln(x) 1.
MMA11 Matematisk grundkurs TEN Datum: 1 januari 01 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera
Läs merSubtraktion. Räkneregler
Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom
Läs merÖvningshäfte 2: Komplexa tal (och negativa tal)
LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa
Läs merBedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Läs merkvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.
Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att
Läs merSKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade
Läs merR LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av
Läs merKomplexa tal: Begrepp och definitioner
UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,
Läs merModul 1 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation
Läs merSKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.
Läs mer1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Läs merSkolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Läs merEkvationer och system av ekvationer
Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.
Läs mer1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta
Läs mera) Ange ekvationen för den räta linjen L. (1/0/0)
Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).
Läs merUppfriskande Sommarmatematik
Uppfriskande Sommarmatematik Matematiklärarna på Bäckängsgymnasiet genom Johan Espenberg juni 206 Välkommen till Naturvetenskapsprogrammet GRATTIS till din plats på Naturvetenskapsprogrammet på Bäckängsgymnasiet!
Läs merMA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Läs merSF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
Läs merRemissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Läs merx 2 4 (4 x)(x + 4) 0 uppfylld?
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Örjan Dillner TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN1 Datum: 7 september
Läs merLinnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson
Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består
Läs merMängder och kardinalitet
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
Läs merLokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Läs merInledande kurs i matematik, avsnitt P.4
Inledande kurs i matematik, avsnitt P.4 P.4. Bestäm definitionsmängd och värdemängd till funktionen f() = +. så ser vi att den har värdemängden [0, ). Eftersom funktionen G har utseendet någonting där
Läs merTATM79: Föreläsning 3 Komplexa tal
TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig
Läs merMatematik för sjöingenjörsprogrammet
Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............
Läs merSKRIVNING I VEKTORGEOMETRI Delkurs
SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Läs merStudiehandledning till linjär algebra Avsnitt 1
Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 1 Kapitel 1 och 11.2 alt. 11.9 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.)
Läs mer