TATM79: Föreläsning 3 Komplexa tal
|
|
- Andreas Gustafsson
- för 6 år sedan
- Visningar:
Transkript
1 TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig vara ett reellt tal utan är ett helt nytt slags objekt. Vi inför de komplexa talen z = a + bi där a och b är reella tal (a, b R). Ett komplext tal har alltså två dimensioner, en reell koordinat a (kallas realdelen) och en imaginär koordinat b (kallas imaginärdelen). Vi kan representera det komplexa talplanet, vilket skrivs C, som ett två-dimensionellt plan med en real-axel och en imaginär-axel. Vi kan representera komplexa tal i det komplexa talplanet med figurer av denna typ. Im b r a + bi a Re Avståndet r = a 2 + b 2 har en naturlig tolkning och används som definition av det komplexa absolutbeloppet; vi återkommer till detta. Komplexa tal uppfyller samma regler som reella tal gör (addition, multiplikation etc) med den extra förutsättningen att i 2 = 1. När vi ska räkna med komplexa tal gör vi alltså som vanligt, men vi kan hela tiden förenkla uttryck som innehåller i 2. johan.thim@liu.se 1
2 (2 i)(1 + 4i) = 2 + 8i i 4i 2 = 2 + 7i + 4 = 6 + 7i. Komplexa tal är en användbar konstruktion. I denna kurs och efterföljande analyskurs kommer vi att: (i) Faktorisera polynom fullständigt i (komplexa) faktorer av grad 1. (ii) Göra trigonometriska omskrivningar och förenklingar. (iii) Beräkna integraler. (iv) Lösa differentialekvationer. Tillämpningar finns inom vitt skilda områden som exempelvis elkretsteori, reglerteknik, transformer, elektromagnetism etc. Definition. Låt z = a + bi, där a, b R. Då definierar vi följande begrepp. (i) Realdelen Re z = a (ii) Imaginärdelen Im z = b (observera att det inte är något i i imaginärdelen utan endast koefficienten före i i z) (iii) Absolutbeloppet z = a 2 + b 2 (iv) Konjugatet z = a bi (vi har bytt tecken på imaginärdelen) Direkta följder av definitionerna ovan inkluderar (i) z 2 = zz; (ii) zw = z w ; (iii) zw = z w; (iv) Re z = z + z 2 ; Im z = z z 2. Vad menar vi då med att två komplexa tal är lika? Definitionen är ganska naturlig. Likhet Definition. Talen z = a + bi och w = c + di är lika om och endast om de har samma real- och imaginärdelar, dvs att Vi skriver då att z = w. a = c och b = d. Vi använder oss av denna definition när vi löser ekvationer som involverar komplexa tal. 2
3 Hitta alla z C så att 3z 2iz i = 0. Lösning. En variant för att lösa ekvationer som innehåller komplexa variabler är att ansätta att z = a+bi och utnyttja definitionen ovan genom att undersöka realdelen och imaginärdelen för ekvationen som ett system av ekvationer med två obekanta. Denna metod är inte alltid den bästa. Det kan bli brutalt hemska kalkyler (om vi till exempel skulle ha z 7 + eller dylikt), så finns det en annan metod brukar det vara den det är meningen att använda. Men i fall som denna ekvation blir det faktiskt enklast. Sålunda, låt z = a + bi där a, b R. Då måste 3(a + bi) 2i(a + bi) i = 0 3a + 3bi 2ai 2i( bi) i = 0 Vi undersöker nu realdel och imaginärdel separat: { { 3a 2b = 5 a + b = 5 2a + 3b = 10 3a 2b = 5 3a 2b + i(3b 2a) = 5 10i. { a = 1 b = 4 Alltså ges den enda lösningen av z = 1 4i. Kontrollera detta! Svar. z = 1 4i. Absolutbelopp Observera att absolutbeloppet vi definierat ovan täcker en större klass tal än det vi såg på förra föreläsningen. Om z = a + bi är reell så är b = 0, och då kan vi beräkna att z = a Vi vet enligt tidigare att a 2 = a, där detta belopp är det vi introducerade på föreläsning två. Den nya definitionen reduceras alltså till den gamla om vi endast betraktar reella tal. En kuggfråga som blir fel ibland. Komplext eller reellt belopp? Bestäm 3 4. Felet som kan inträffa är att man slarvigt tänker sig att 3 4 är ett komplext tal och bildar = 25 = 5. Detta är så klart helt galet; vi ser direkt att 3 4 = 1, så 3 4 = 1 = 1. Definition. Om z, w C och w 0 så definierar vi z w = zw ww. 3 i 2 + 3i = (3 i)(2 3i) (2 + 3i)(2 3i) = 9 11i = i. 1.1 Geometriska tolkningar Eftersom komplexa tal kan representeras som punkter i ett plan så kan vi ibland tolka operationer, olikheter och ekvationer geometriskt. Till att börja med kan addition av komplexa 3
4 tal göras som vektoraddition. Im 4 z 1 + z 2 = 6 + 4i z 1 = 2 + 3i 2 z 2 = 4 + i Re Om z, z 0 C så kommer till exempel samband av typen z z 0 = d och z z 0 d att representera en cirkel respektive en ifylld disk. Im d z = a + bi i 4 Re Hur kan vi se detta? Vi kan ansätta att z = a + bi och z 0 = a 0 + b 0 i där a, b, a 0, b 0 R och se vilken form uttrycken tar. Till exempel: d 2 = z z 0 2 = a + bi a 0 b 0 i 2 = (a a 0 ) + (b b 0 )i 2 = (a a 0 ) 2 + (b b 0 ) 2, något vi känner igen som cirkelns ekvation! 1.2 Triangelolikheten En mycket användbar olikhet (så användbar att man ofta kräver att mer abstrakta rum ska ha denna egenskap) är triangelolikheten. Triangelolikheten Om z, w C så gäller att z + w z + w. Geometriskt är detta ganska klart. Uttrycken z och w kan tolkas som katetlängderna i en triangel där längden på hypotenusan ges av z + w. Försök rita en triangel där hypotenusan 4
5 är längre än summan av kateternas längder! Det går även att visa rent algebraiskt. Tanken bygger på att visa z + w 2 ( z + w ) 2. Utveckla vänsterledet som (z + w)(z + w) och utnyttja att Re (zw) zw (varför är detta sant?). Antag att z ligger i en disk med centrum i punkten 3i och radie 7. Visa att z ligger i en disk med centrum i punkten 4 och radie 12. Vi börjar med att formulera det hela med belopp. Vi vet att z 3i 7 då detta är precis den olikhet som beskriver att z ligger i en disk med centrum i punkten 3i och radie 7. Sen vill vi undersöka z ( 4) : z + 4 = (z 3i) + (3i + 4) z 3i + 3i i + 4 = = 12. Här har vi kreativt lagt till noll i form av 3i + 3i för att på så sätt skapa z 3i, som vi sedan kan uppskatta. 1.3 Andragradsekvationer med komplexa koefficienter Finn alla (reella och komplexa) lösningar till ekvationen z 2 + 2(1 + i)z 3 2i = 0. Lösning. Vi kvadratkompletterar för att få en enklare ekvation: z 2 + 2(1 + i)z 3 2i = (z i) 2 (1 + i) 2 3 2i = (z i) 2 3 4i = 0. Låt w = z i och skriv w = a + bi där a, b R. Vi löser { a 2 b 2 = 3 w 2 3 4i = 0 a 2 + 2abi b 2 3 4i = 0 2ab = 4 Alternativ 1. Vi söker w så att w 2 = 3+4i. Detta innebär då att w 2 = 3+4i = 25 = 5. Nu vet vi att w = a + bi är ett komplext tal, så w 2 = w 2 = a 2 + b 2. Dessa två samband visar alltså att a 2 + b 2 = 5. Det följer då att 2a 2 = 8, eller att a = ±2. Alternativ 2. Vi ser att a, b 0 och att b = 2/a. Då måste a 2 (2/a) 2 = 3 a 4 4 = 3a 2 gälla (ekvivalens ty a 0). Vi låter t = a 2 och ser att t 2 3t 4 = 0 (t 4)(t + 1) = 0. Endast t = 4 a = ±2 ger intressanta lösningar då t = a 2 0. Om a = 2 så blir b = 1 och om a = 2 blir b = 1. Vi får alltså lösningarna w 1 = 2 + i och w 2 = 2 i, vilket i sin tur ger z 1 = 1 och z 2 = 3 2i. Svar: z = 1 och z = 3 2i. Genomför även en kontroll! 5
6 2 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck av typen p(z) = a n z n + a n 1 z n a 2 z 2 + a 1 z + a 0, där a 0, a 1,..., a n är konstanter och n ett icke-negativt heltal. Om a n 0 säger vi att polynomet har grad n. Det är en liten skillnad i jämförelse med föreläsning 1: vi har ersatt variabeln x med variabeln z. Detta har vi gjort för att markera att vi kommer att arbeta med komplexa tal. Faktorsatsen gäller fortfarande. Faktorsatsen Sats. Följande två påståenden är ekvivalenta. (i) Polynomet p(z) innehåller faktorn z z 0, det vill säga p(z) = (z z 0 )q(z) för något polynom q(z). (ii) z = z 0 är ett nollställe till p(z), det vill säga att p(z 0 ) = 0. Ett mycket viktigt resultat är algebrans fundamentalsats (och dess följdsats). Algebrans fundamentalsats Sats. Varje polynomekvation p(z) = 0 med grad n 1 har minst en rot. Ett korollarium till denna sats är att ett polynom p(z) av grad n har precis n stycken rötter om vi räknar med multiplicitet (dvs en dubbelrot räknas som två rötter etc). Polynomet p(z) = 4z 2 (z 1)(z + 2)(z + i) 3 har grad n = 7 (varför?) och har rötterna z = 0 (dubbelrot), z = 1, z = 2, samt z = i (trippelrot). Det finns även en trevlig symmetri hos polynom med reella koefficienter. Komplexkonjugerade rotpar Sats. Om ett polynom p(z) har reella koefficienter (viktigt) och z = a + bi är en rot så är även z = a bi en rot. Med andra ord, då p(z) har reella koefficienter. p(z 0 ) = 0 p(z 0 ) = 0 Ett allvarligt principfel som bör undvikas är att använda föregående sats när koefficienterna inte är reella. Med andra ord: 6
7 Reella koefficienter Observera att denna sats endast gäller då p(z) har reella koefficienter. Till exempel p(z) = z 2 iz har roten z = i, men z = i är ingen rot. Testa! 3 Gissning av nollställen vid heltalskoefficienter Som utlovat kommer här en systematisk metod för att veta vilka rationella lösningar som är möjliga om vi har heltalskoefficienter i ett polynom. Låt p(x) = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 vara ett polynom där koefficienterna a n, a n 1,..., a 2, a 1, a 0 är heltal. Om x = p är en rationell q rot (p och q är heltal, p och q har inga gemensamma delare så p/q är fullt förenklad, och q 0) så måste p vara en faktor i a 0 och q en faktor i a n. Detta följer av att p ( ) p p n = 0 a n q q + a p n 1 n n 1 q + + a p n 1 1 q + a 0 = 0 ) q + + a p n 1 1 q + a 0 a n p n = q ( a n 1 p n a 1 pq n 2 + a 0 q n 1) a n p n = q n ( a n 1 p n 1 samt att p ( ) p p = 0 a o = p (a n 1 n q q n ) + a p n 2 n 1 q + + a 1q n 1, n 1 där p och q är relativt prima. Med andra ord, om p q är ett nollställe så är a 0 = p k 1 och a n = q k 2 för några heltal k 1 och k 2. Hur använder vi detta i praktiken? Faktorisera polynomet p(x) = 2x 3 3x 2 + 2x 3 i reella faktorer. Om x = p är en rot till p(x) så måste alltså p vara en faktor i siffran 3. Möjliga värden på p q är p = ±1, ±3. Vidare, q måste vara en faktor i siffran 2. Möjliga värden på q är q = ±1, ±2. Från dessa möjligheter kan vi skapa alla möjliga kombinationer för p q : p q = ±1, ±3, ±1 2, ±3 2. Detta är alltså alla möjligheter för att ha en rationell rot. Enda heltalsrötterna som är möjliga är alltså ±1 och ±3, och testning visar att ingen av dessa är en rot. Skulle vi bara gissa på måfå kan vi alltså hålla på ganska länge! Testar vi resten av möjligheterna finner vi att 3 2 är ett nollställe. Polynomdivision ger att p(x) = (x 3/2)(2x2 + 2). Den sista faktorn är strikt positiv så vi är klara. Svar: p(x) = (x 3/2)(2x 2 + 2). 7
8 Faktorisera polynomet p(z) = 3z 4 15z z 2 18z fullständigt i komplexa faktorer. Lösning. Vi börjar med att bryta ut 3z och får att p(z) = 3zq(z), där q(z) = z 3 5z 2 + 8z 6. Vi gissar sedan en rot, och finner att q(3) = 0. Alltså måste z 3 vara en faktor i q(z). Polynomdivision ger att q(z) = (z 3)(z 2 2z + 2): z 2 2z + 2 z 3 ) z 3 5z 2 + 8z 6 z 3 + 3z 2 2z 2 + 8z 2z 2 6z 2z 6 2z + 6 Det återstår sålunda att finna rötterna till z 2 2z + 2. Vi löser ekvationen 0 = z 2 2z + 2 = (z 1) = (z 1) (z 1) 2 = 1, varvid vi ser att z 1 = ±i är de enda möjligheterna. Alltså finner vi lösningarna z = 1 ± i, och vi kan skriva z 2 2z +2 = (z (1+i))(z (1 i)). Vi kan nu faktorisera p(z) fullständigt enligt p(z) = 3z(z 3)(z (1 + i))(z (1 i)). Svar: p(z) = 3z(z 3)(z (1 + i))(z (1 i)) Observera att det inte finns några kvadratrötter ur negativa (eller tal med imaginärdel) i lösningen! Rötterna dyker upp direkt vid ekvationslösningen. 0 8
Exempel. Komplexkonjugerade rotpar
TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför
TATM79: Matematisk grundkurs HT 2018
TATM79: Matematisk grundkurs HT 08 Föreläsningsanteckningar för Y, Yi, MED, Mat, FyN, Frist Johan Thim, MAI y y = /x x x TATM79: Föreläsning Notation, ekvationer, polynom och summor Johan Thim augusti
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
TATM79: Matematisk grundkurs HT 2017
TATM79: Matematisk grundkurs HT 017 Föreläsningsanteckningar för Y, Yi, MED, Mat, FyN, Frist Johan Thim, MAI y 1 y = 1/x 1 x x TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q
TATM79: Matematisk grundkurs HT 2016
TATM79: Matematisk grundkurs HT 016 Föreläsningsanteckningar för Y, Yi, MED, Mat, FyN, Frist Johan Thim, MAI y 1 y = 1/x 1 x x TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim
1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
x2 6x x2 6x + 14 x (x2 2x + 4)
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den
Komplexa tal: Begrepp och definitioner
UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,
Kompletteringskompendium
Kompletteringskompendium Tomas Ekholm Institutionen för matematik Innehåll 0 Notationer och inledande logik 3 0.1 Talmängder............................ 3 0. Utsagor.............................. 3 1 Induktion
Polynomekvationer (Algebraiska ekvationer)
Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har
29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana
Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med
TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer
TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
1.1 Den komplexa exponentialfunktionen
TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
Introduktion till Komplexa tal
October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Övningshäfte 2: Komplexa tal
LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet
Referens :: Komplexa tal
Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen
Explorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
Analys 2 M0024M, Lp
Analys 2 M0024M, Lp 4 2013 Lektion 1 Staffan Lundberg Luleå Tekniska Universitet 4 april 2013 Staffan Lundberg (LTU) Analys 2 M0024M, Lp 4 2013 4 april 2013 1 / 17 Kursinformation m.m. Examinator: Lennart
Övningshäfte 2: Komplexa tal (och negativa tal)
LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa
Föreläsning 3: Ekvationer och olikheter
Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta
(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C
Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B
Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.
Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter
TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0
Euklides algoritm för polynom
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Matematik 4 Kap 4 Komplexa tal
Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet
TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter
TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x
A-del. (Endast svar krävs)
Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i
Complex numbers. William Sandqvist
Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den
Lite om räkning med rationella uttryck, 23/10
Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen
Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...
Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa
Referens :: Komplexa tal version
Referens :: Komplexa tal version 0.5 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer
Föreläsning 9: Komplexa tal, del 2
ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns
Analys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Inociell Lösningsmanual Endimensionell analys. E. Oscar A. Nilsson
Inociell Lösningsmanual Endimensionell analys E. Oscar A. Nilsson January 31, 018 Dan Brown "The path of light is laid, a secret test..." Tillägnas Mina vänner i Förord Detta är en inociell lösningsmanual
4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y
UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas
Manipulationer av algebraiska uttryck
Manipulationer av algebraiska uttryck Valentina Chapovalova SMaL-kursen i Mullsjö 19 juni 2018 Kluring 1 Bestäm produkten (x a) (x b) (x c)... (x z) Lösning kluring 1 Bestäm produkten (x a) (x b) (x c)..
1 Addition, subtraktion och multiplikation av (reella) tal
Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b
Referens :: Komplexa tal version
Referens :: Komplexa tal version 0.6 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer
Crash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7
Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)
Ekvationer och olikheter
Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När
Allmänna Tredjegradsekvationen - version 1.4.0
Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra
Polynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion
Polynom över Under baskursen bekantade du dig med polynomen över de komplexa talen. Nedanstående material är till stora delar en repetition av detta stoff. DEFINITION Ett polynom över är ett uttryck av
Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö
Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa
sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är
PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.
Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är
Om komplexa tal och funktioner
Analys 360 En webbaserad analyskurs Grundbok Om komplexa tal och funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om komplexa tal och funktioner 1 (11) Introduktion De komplexa talen
A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi
A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall
TATM79: Föreläsning 4 Funktioner
TATM79: Föreläsning 4 Funktioner Johan Thim augusti 08 Funktioner Vad är egentligen en funktion? Definition. En funktion f är en regel som till varje punkt i en definitionsmängd D f tilldelar precis ett
Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Tentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
Planering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson
Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.
Matematik för sjöingenjörsprogrammet
Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............
S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och
Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4
Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas
Elteknik. Komplexa tal
Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare
Tentamen i Komplex analys, SF1628, den 21 oktober 2016
Institutionen för matematik KTH Håkan Hedenmalm Tentamen i Komplex analys, SF68, den oktober 06 Skrivtid 4.00-9.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga motiveringar. För
OM KOMPLEXA TAL. 1 Om a är ett positivt reellt tal så betecknar a det positiva reella tal vars kvadrat är a men det är
OM KOMPLEXA TAL Inledning. Vilka olika talområden finns det? Jag gör en snabb genomgång av vad ni tidigare stött på, bl.a. för att repetera standardbeteckningarna för de olika talmängderna. Positiva heltal,
Talmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a, b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Sidor i boken
Sidor i boken 0- Dagens mängdträning gäller ekvationer. Med den algebraträning vi nu har i ryggen bör även de mest komplicerade ekvationerna gå att reda ut. Tillsammans med övningarna i föreläsning 6 täcker
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
den reella delen på den horisontella axeln, se Figur (1). 1
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella
Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
För att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999
Lektion 4, Envariabelanalys den november 999 6.. Beräkna d 4. Det första vi observerar i integralen är uttrycket i nämnaren, 4. När ett uttryck av den här typen förekommer i en rationell integrand kan
Komplexa tal. z 2 = a
Moment 3., 3.2.-3.2.4, 3.2.6-3.2.7, 3.3. Viktiga exempel 3.-3.8, 3.9,3.20 Handräkning 3.-3.0, 3.5a-e, 3.7, 3.8, 3.25, 3.29ab Datorräkning Komplexa tal Inledning Vi skall i följande föreläsning utvidga
Sommarmatte. del 2. Matematiska Vetenskaper
Sommarmatte del 2 Matematiska Vetenskaper 7 april 2009 Innehåll 5 Ekvationer och olikheter 1 5.1 Komplea tal.............................. 1 5.1.1 Algebraisk definition, imaginära rötter............. 1
Övningshäfte 3: Polynom och polynomekvationer
LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med
Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.
OLIKHETER Egenskaper:.Om a < b då gäller a+ c < b +c. Om a < b < c då gäller a+d < b+d < c+d. Om a < b och k > 0 då gäller ka < kb. 4. Om a < b och k < 0 då gäller ka > kb. Notera att tecknet < ändras
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Avsnitt 3, introduktion.
KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar
1 Tal, mängder och funktioner
1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk
Uppföljning av diagnostiskt prov HT-2016
Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri
Faktorisering av polynomuttryck har alltid utgjort en väsentlig del av algebran.
Per-Eskil Persson Visst kan man faktorisera x 4 +1 Att faktorisera polynom är inte alltid helt enkelt men inte dess mindre en väsentlig del av den algebra som elever möter i slutet av högstadiet och senare
Algebrans fundamentalsats
School of Science and Technology SE-701 8 Örebro, Sweden Algebrans fundamentalsats Ett linjäralgebraiskt bevis Andreas Thore Örebro Universitet Akademin för naturvetenskap och teknik Matematik C, 61 75
Avsnitt 1, introduktion.
KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen
Namn Klass Personnummer (ej fyra sista)
Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Armin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det
Introduktion till Komplexa tal
October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Matematik för sjöingenjörsprogrammet
Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll Ekvationer 1.1 Förstagradsekvationer.......................... 5.1.1 Övningar............................ 6. Andragradsekvationer..........................
SF1624 Algebra och geometri
SF1624 Algebra och geometri Första föreläsningen Mats Boij Institutionen för matematik KTH 26 oktober, 2009 Översikt Kurspresentation Komplexa tal Kursmålen Efter genomgången kurs ska studenten vara förtrogen
x 2 4 (4 x)(x + 4) 0 uppfylld?
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Örjan Dillner TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN1 Datum: 7 september
Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:
Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse
Repetitionsmaterial för kompletteringskurs i matematik (5B1114)
Institutionen för matematik KTH petitionsmaterial för kompletteringskurs i matematik (5B4) Innehåll. Potenser och logaritmer. Trigonometriska funktioner. Komplexa tal 4. Polynom 0 5. Derivator 6 6. Differentialekvationer
Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
POLYNOM OCH POLYNOMEKVATIONER
Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Imz. Rez. Bo E. Sernelius
KKKA 2005 Imz Rez Bo E. Sernelius Kort kurs i komplex analys Förord Den här kursen är avsedd som en kort introduktion till komplex analys för studenter som går på Fysikprogrammet. Avsikten är delvis att
Repetition av matematik inför kurs i statistik 1-10 p.
Karlstads universitet Leif Ruckman Summasymbolen. Repetition av matematik inför kurs i statistik 1-10 p. I stället för att skriva en lång instruktion att vissa värden skall summeras brukar man använda
III. Analys av rationella funktioner
Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu
polynomfunktioner potensfunktioner exponentialfunktioner
Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,