Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac
|
|
- Rickard Åström
- för 7 år sedan
- Visningar:
Transkript
1 Uppsala Universitet Matematiska institutionen Isac Hedén isac Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med den sista delen av kursen, som handlar om polynom och algebraiska ekvationer. Komplexa tal, andragradsekvationer och binomiska ekvationer ingår i baskursen men det skadar säkert inte att repetera dessa saker inför polynomavsnittet. Både andragrads- och binomiska ekvationer är exempel på algebraiska ekvationer, som helt enkelt är ett samlingsnamn på de ekvationer där man söker nollställen till polynom. Rekursionsformler En talföljd är en följd av tal. Inte deras summa, inte deras produkt, utan helt enkelt bara tal som man skriver efter varandra med kommatecken emellan: a 1, a 2, a 3, a Man kan ange talföljder på olika sätt. Exempel 5.1. Om vi deklarerar att a i = 2 i, får vi talföljden 2 i ) i=1 = 2, 4, 8, 16, 32,.... Man kan också definiera en talföljd rekursivt. Det betyder att man istället för att ange en sluten formel, som i exemplet ovan, anger följdens tal i termer av de föregående talen. Exempel 5.2. Fibonacciföljden definieras av att a 1 = a 2 = 1, och a k = a k 1 + a k 2 för k 3. Det ger upphov till följden 1, 1, 2, 3, 5, 8, 13, 21, 34,.... För en rekursivt definierad följd, behöver man först i princip beräkna a 1, a 2,..., a i 1 för att få reda på vad a i är. Därför är det ofta önskvärt att hitta en sluten formel istället så att man, som i Exempel 5.1, kan veta vad a i är utan att först behöva beräkna alla föregående tal. Komplexa tal repetition) Här följer en kort repetition av komplexa tal, andragrads-, och binomiska ekvtioner. För mer detaljer eller ingående förklaringar, se [Vre06, kap 6]. Ett komplext tal z C är ett tal som kan skrivas på formen a + bi, där a = Re z och b = Im z är reella tal och i 2 = 1. a) Addition: a + bi) + c + di) = a + c) + ib + d). b) Multiplikation: a + bi)c + di) = ac bd) + iad + bc). c) Ett komplext tal z C, z = a + bi har konjugat z = a bi och absolutbelopp z = a 2 + b 2 = z z. Om z och w är komplexa tal, har vi: zw = z w, z/w = z / w, z + w z + w, z = z, Re z z, och Im z z.
2 d) Division av komplexa tal: a + bi a + bi)c di) a + bi)c di) = = c + di c + di)c di) c 2 + d 2. e) Polär form: Ett nollskilt komplext tal z = a + bi har polär form z = rcos θ + i sin θ), där r = a 2 + b 2 är beloppet av z, och θ är argumentet 1 : θ = arctan b a. f) Eulers formel: cos θ + i sin θ = e iθ, så vi kan skriva z som z = re iθ. g) de Moivres lag: Om z = rcos θ + i sin θ) och w = scos φ + i sin φ), så är zw = rscosθ + φ) + i sinθ + φ)) z/w = r s cosθ φ) + i sinθ φ)) z n = r n cosnθ) + i sinnθ)), n Z. Andragradsekvationer I [Vre06, 6.5] handlar det om att lösa andragradsekvationer med komplexa tal som koefficienter. Lösningsmetoden illustreras väl av följande exempel: Lös ekvationen z i)z 1 + 7i = 0. 1) Lösning: Vi börjar med att kvadratkomplettera: z i)z 1 + 7i = z i ) 2 ) 2 + i i 2 2 = z i ) i. Ekvation 1) är alltså ekvivalent med z i ) 2 = 7 6i. 2) 2 4 Ansätt w = z + 2+i 2, och låt a = Re w), och b = Im w), så att w = a + bi. Då gäller w 2 = a 2 b 2 + 2abi = 7 4 6i. Genom att jämföra realdel, imaginärdel, och absolutbelopp av de två sidorna i ekvation 2) får vi följande ekvationer: a 2 b 2 = 7 4 2ab = 6 a 2 + b 2 = ) 2 = = Addition av den första och tredje ekvationen ger att 2a 2 = 8, så att a = ±2. Om den första ekvationen subtraheras från den tredje får vi 2b 2 = 9 2, så att b = ± 3 2. Den mittersta av de tre ekvationerna visar att a och b måste ha motsatt tecken, så att de två lösningarna är w 1 = 2 3i 2 w 2 = 2 + 3i 1 Om a = 0, tar vi istället θ = π/2 om b > 0 π/2 om b < 0. 2.
3 Det ger slutligen följande lösningar till ekvation 1). z 1 = 1 2i z 2 = 3 + i. Den binomiska ekvationen En binomisk ekvation är, som man kan läsa i [Vre06, 6.6], en ekvation på formen z n = a, där z är ett obekant komplext tal, och a C är givet. Vi illustrerar lösningsmetoden genom att lösa ekvationen: z 4 = 1 + i. Lösning: Om z = re iθ, så är z 4 = r 4 e 4iθ, och 1 + i kan skrivas på polär form på följande vis: Ekvationen lyder alltså: 1 + i = 2e πi/4. r 4 e 4iθ = 2e πi/4. Det följer att r = 2 1/8 och att 4θ = π/4 + 2πk. Det leder till att θ = π/16 + πk/2, k = 0, 1, 2, 3. Sammanlagt har vi alltså fyra lösningar: re iθ, där r = 2 1/8, och π θ 16, 9π 16, 17π 16, 25π }. 16 Polynom I [Vre06, 7.1] kan man läsa om vad reella polynom och komplexa polynom är, hur man adderar och multiplicerar polynom med varandra, vad ett konstant polynom är, vad ett polynoms koefficienter är, vad graden av ett polynom är dock avstår vi inte, som Vretblad, från att låta deg 0 = ) och när två polynom är lika med varandra. Där framgår också att man kan se polynom som funktioner, genom att man sätter in ett tal istället för variabeln. Om f och g är två polynom så säger vi, precis som för heltal, att g är en delare i f om det finns ett polynom h sådant att f = gh. I så fall skriver vi g f. Till exempel gäller det att Exempel 5.3. a) x + 3) x 2 9). b) 17 x 3 + 1). c) x + 1) 2x 2). d) 3 5. Här är 3 och 5 två konstanta polynom; motsvarande delbarhetsrelation för heltal gäller inte, trots att den betecknas på samma sätt. När man skriver symbolen för delbarhet, är det alltså viktigt att hålla reda på om man betraktar delbarhetsrelationen på mängden av heltal eller delbarhetsrelationen på mängden av polynom. Definition 5.4. En trivial delare till ett polynom f är en delare på formen λ eller λf för något nollskilt tal λ. För att ett polynom ska kunna ha äkta delare behöver det vara av grad minst två, och en delare g till ett sådant polynom f är en äkta delare om och endast om 1 degg) < degf).
4 Om två polynom f och g bara skiljer sig på en nollskild konstant faktor, så att g = λf, för något komplext tal λ 0, säger vi att de är associerade med varandra. Ekvivalent, kan man säga att två polynom f och g är associerade med varandra om både f g och g f gäller. Exempel 5.5. Vi blickar tillbaka till det föregående exemplet. a) x + 3 är en äkta delare i x 2 9. b) 17 är en trivial delare i x 3 +1 ett konstant nollskilt polynom är en delare i vilket polynom som helst, på samma sätt som ±1 är en delare i vilket heltal som helst). c) Polynomen x + 1 och 2x 2 är associerade med varandra. d) De konstanta polynomen 3 och 5 är associerade med varandra. Dessutom är 3 en trivial delare i 5 eftersom 1 deg3) inte gäller. Definition 5.6. Ett polynom av grad minst 1 kallas irreducibelt om det saknar äkta delare, och reducibelt om det det kan skrivas som en produkt av polynom av lägre grad. Nollpolynomet och konstanta polynom kallas varken irreducibla eller reducibla. Irreducibla polynom har egenskaper som liknar primtalens: Varje reducibelt polynom har en äkta delare som är irreducibel, och varje polynom av grad minst ett kan skrivas som en produkt av irreducibla polynom. Exempel 5.7. Sett som ett reellt polynom är x irreducibelt, men sett som ett komplext polynom har vi x = x i)x i). Varje polynom av grad ett är irreducibelt. Divisionsalgoritmen för polynom Polynom kan divideras med varandra med kvot och rest: Givet två polynom f och g, g 0, finns det polynom q och r sådana att f = qg + r och deg r < deg g speciellt innebär det att r = 0 om g är konstant, eftersom nollpolynomet är det enda polynomet som har negativ grad). För att hitta kvoten och resten kan man utföra polynomdivision med liggande stolen. Exempel 5.8. Låt fx) = 3x 3 + 2x 2 5x + 7 och gx) = x Då är fx) = 3x + 2)gx) 14x + 1. Sats 5.9 Faktorsatsen). Polynomet x α) är en delare i polynomet fx) om och endast om α är ett nollställe till fx). Bevis. Dividera fx) med x α) med kvot och rest: fx) = qx)x α) + r. Eftersom degx α) = 1, följer det att deg r < 1 så att polynomet r är konstant. Om x α) är en delare i fx), blir resten r = 0, och då är fα) = qα)α α) = 0. Om å andra sidan α är ett nollställe till fx), följer det att 0 = qα)α α) + r så att r = 0 och x α) är en delare i fx). Exempel Polynomet x 2 delar polynomet fx) = x 2 5x + 6 eftersom f2) = 0. Enligt faktorsatsen är det ekvivalent att hitta förstagradsfaktorer till ett polynom och nollställen till detsamma.
5 Sats Algebrans fundamentalsats). Varje reellt eller komplext) polynom av grad 1 har minst ett komplext nollställe. Bevis. Kommer i kursen komplex analys. Kombinerat med faktorsatsen, får vi följande sats om faktorisering: Sats Om fx) är ett polynom av grad n, så finns det en konstant c och komplexa tal α i sådana att fx) = cx α 1 )x α 2 ) x α n ). Bevis. Enligt fundamentalsatsen har f ett nollställe, säg α 1, så att fx) = x α 1 )g 1 x) för något g 1 x), med deg g 1 x) = n 1. Om n 1 > 0, har även g 1 x) ett nollställe, vilket leder till fx) = x α 1 )x α 2 )g 2 x) för något g 2 x) av grad n 2. Vi kan upprepa detta så länge kvoten g i x) har positiv grad, och när kvoten till slut blir konstant lika med c) är vi klara. Talen α i är f:s nollställen det är fullt möjligt att flera av dem är lika med varandra. Om samma nollställe förekommer 2 gånger säger man att det är ett dubbelt nollställe, och mer allmänt säger man att ett nollställe som förekommer m gånger har multiplicitet m. Faktoriseringen i Sats 5.12 är entydig i den meningen att om fx) har två olika faktoriseringar: fx) = cx α 1 )x α 2 ) x α n ) = dx β 1 )x β 2 ) x β n ) så är c = d och α 1, α 2,..., α n ) = β 1, β 2,..., β n ) förutsatt att vi skriver följden av β i i rätt ordning. Referenser [Vre06] A. Vretblad och K. Ekstig. Algebra och geometri. Gleerup, 2006.
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
Läs merEuklides algoritm för polynom
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma
Läs merKomplexa tal: Begrepp och definitioner
UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,
Läs merKompletteringskompendium
Kompletteringskompendium Tomas Ekholm Institutionen för matematik Innehåll 0 Notationer och inledande logik 3 0.1 Talmängder............................ 3 0. Utsagor.............................. 3 1 Induktion
Läs merden reella delen på den horisontella axeln, se Figur (1). 1
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella
Läs merÖvningshäfte 2: Komplexa tal
LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet
Läs merx2 6x x2 6x + 14 x (x2 2x + 4)
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den
Läs merÖvningshäfte 3: Polynom och polynomekvationer
LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med
Läs merÖvningshäfte 2: Komplexa tal (och negativa tal)
LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa
Läs merExplorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
Läs merIntroduktion till Komplexa tal
October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Läs mer1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Läs mer29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana
Läs merFöreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.
Läs merTATM79: Föreläsning 3 Komplexa tal
TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig
Läs merKTHs Matematiska Cirkel. Polynom. Dan Petersen Kathrin Vorwerk
KTHs Matematiska Cirkel Polynom Dan Petersen Kathrin Vorwerk Institutionen för matematik, 2010 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 0 Mängdlära 1 0.1 Mängder...............................
Läs merMer om faktorisering
Matematik, KTH Bengt Ek november 2013 Material till kursen SF1662, Diskret matematik för CL1: Mer om faktorisering Inledning. Är alla ringar som Z? De första matematiska objekt vi studerade i den här kursen
Läs merforts. Kapitel A: Komplexa tal
forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab
Läs merReferens :: Komplexa tal
Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen
Läs mer1.1 Den komplexa exponentialfunktionen
TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
Läs merPOLYNOM OCH POLYNOMEKVATIONER
Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.
Läs merMatematik 4 Kap 4 Komplexa tal
Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet
Läs merTATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer
TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
Läs mer1 Tal, mängder och funktioner
1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk
Läs merPOLYNOM OCH EKVATIONER. Matematiska institutionen Stockholms universitet Experimentupplaga 2003 Eftertryck förbjudes eftertryckligen
POLYNOM OCH EKVATIONER Torbjörn Tambour Matematiska institutionen Stockholms universitet Experimentupplaga 2003 Eftertryck förbjudes eftertryckligen Postadress Matematiska institutionen Stockholms universitet
Läs merReferens :: Komplexa tal version
Referens :: Komplexa tal version 0.6 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer
Läs merLäsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö
Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa
Läs merKomplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...
Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa
Läs merS n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och
Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4
Läs merReferens :: Komplexa tal version
Referens :: Komplexa tal version 0.5 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer
Läs mer1. (a) Formulera vad som skall bevisas i basfallet och i induktionssteget i ett induktionsbevis av påståendet att. 4 5 n för alla n = 0, 1, 2, 3,...
UPPSALA UNIVERSITET PROV I MATEMATIK Matematiska institutionen Baskurs i matematik Vera Koponen 2008-02-2 Skrivtid: 8-. Tillåtna hjälpmedel: Inga, annat än pennor, radergum och papper det sista tillhandahålles).
Läs merExempel. Komplexkonjugerade rotpar
TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck
Läs merManipulationer av algebraiska uttryck
Manipulationer av algebraiska uttryck Valentina Chapovalova SMaL-kursen i Mullsjö 19 juni 2018 Kluring 1 Bestäm produkten (x a) (x b) (x c)... (x z) Lösning kluring 1 Bestäm produkten (x a) (x b) (x c)..
Läs merA B A B A B S S S S S F F S F S F S F F F F
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla
Läs merSJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Femtegradsekvationen av Niklas Fransson 2017 - No 44 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM
Läs merUppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
Läs merLösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
Läs merOm komplexa tal och funktioner
Analys 360 En webbaserad analyskurs Grundbok Om komplexa tal och funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om komplexa tal och funktioner 1 (11) Introduktion De komplexa talen
Läs merFöreläsning 3: Ekvationer och olikheter
Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta
Läs mer4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y
UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas
Läs merSJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Ett försök att generalisera konjugatregeln av Ulrika Söderberg 2016 - No 17 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,
Läs merSF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
Läs merPolynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion
Polynom över Under baskursen bekantade du dig med polynomen över de komplexa talen. Nedanstående material är till stora delar en repetition av detta stoff. DEFINITION Ett polynom över är ett uttryck av
Läs merFinaltävling i Uppsala den 24 november 2018
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Finaltävling i Uppsala den 4 november 018 1. Låt ABCD vara en fyrhörning utan parallella sidor, som är inskriven i en cirkel. Låt P och Q vara skärningspunkterna
Läs merKontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Läs merMatematiska Institutionen KTH. Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09.
1 Matematiska Institutionen KTH Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09. 1. Betrakat gruppen G = (Z 19 \ {0}, ). (a) Visa att G är en cyklisk grupp.
Läs merPolynomekvationer (Algebraiska ekvationer)
Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har
Läs merComplex numbers. William Sandqvist
Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den
Läs merTal och polynom. Johan Wild
Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................
Läs mer3. Bestäm med hjälpa av Euklides algoritm största gemensamma delaren till
UPPSALA UNIVERSITET Matematiska institutionen Isac Hedén, isac@math.uu.se Prov i matematik Vi räknar ett urval av dessa uppgifter vid vart och ett av de tio lektionstillfällena. På kurshemsidan framgår
Läs merGaussiska heltal. Maja Wallén. U.U.D.M. Project Report 2014:38. Department of Mathematics Uppsala University
U.U.D.M. Project Report 014:38 Gaussiska heltal Maja Wallén Examensarbete i matematik, 15 hp Handledare och examinator: Gunnar Berg Juni 014 Department of Mathematics Uppsala University Innehållsförteckning
Läs merVIII. Om komplexa tal och funktioner
Analys 360 En webbaserad analyskurs Grundbok VIII. Om komplexa tal och funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com VIII. Om komplexa tal och funktioner 1 (15) Introduktion De komplexa
Läs merKAPITEL 5. Komplexa tal. 1. Introduktion.
KAPITEL 5 Komplexa tal. Your momma thinks square roots are vegetables (förolämpning i ett Calvin och Hobbesalbum) 1. Introduktion. 1.1. Bakgrund. Att något är ett tal innebär löst sagt att det ska gå att
Läs merRita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
Läs merLäsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 15 Ringar, kroppar och polynom Det fjortonde kapitlet behandlar ringar. En ring har till skillnad
Läs merc d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)
1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab
Läs merBASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson
Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.
Läs merSommarmatte. del 2. Matematiska Vetenskaper
Sommarmatte del 2 Matematiska Vetenskaper 7 april 2009 Innehåll 5 Ekvationer och olikheter 1 5.1 Komplea tal.............................. 1 5.1.1 Algebraisk definition, imaginära rötter............. 1
Läs merSJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Gaussiska primtal och andra prima faktorer av Jenny Arthur 2016 - No 13 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,
Läs merAnalys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Läs merMatematik för sjöingenjörsprogrammet
Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............
Läs merUppföljning av diagnostiskt prov HT-2016
Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri
Läs merPlanering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
Läs mer10! = =
Algebra II: Gamla tentor Algebra II: Lösningar till tentan den 28. maj 2012 Hjälpmedel: Papper skrivdon samt miniräknare. 1. Låt ϕ : N N vara Eulers ϕ-funktion. (a) Primfaktorisera ϕ(10!). Lösning: Faktoriseringen
Läs merMaterial till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning
Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal
Läs merDugga 2 i Matematisk grundkurs
Linköpings tekniska högskola Matematiska institutionen Tillämpad matematik Kurskod: TATA68 Provkod: TEN Inga hjälpmedel är tillåtna. Dugga i Matematisk grundkurs 013 16 kl 8.00 1.00 Lösningarna skall vara
Läs merM0043M Integralkalkyl och Linjär Algebra, H14, Integralkalkyl, Föreläsning 4
M0043M Integralkalkyl och Linjär Algebra, H14, Integralkalkyl, Föreläsning 4 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 26 Integralkalkyl - Föreläsning
Läs merTATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
Läs merSF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
Läs merFöreläsning 9: Komplexa tal, del 2
ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns
Läs merAnalys 2 M0024M, Lp
Analys 2 M0024M, Lp 4 2013 Lektion 1 Staffan Lundberg Luleå Tekniska Universitet 4 april 2013 Staffan Lundberg (LTU) Analys 2 M0024M, Lp 4 2013 4 april 2013 1 / 17 Kursinformation m.m. Examinator: Lennart
Läs merSidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom
Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett
Läs mer(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C
Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B
Läs merRepetitionsmaterial för kompletteringskurs i matematik (5B1114)
Institutionen för matematik KTH petitionsmaterial för kompletteringskurs i matematik (5B4) Innehåll. Potenser och logaritmer. Trigonometriska funktioner. Komplexa tal 4. Polynom 0 5. Derivator 6 6. Differentialekvationer
Läs merTATM79: Föreläsning 1 Notation, ekvationer, polynom och summor
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q
Läs mer3. Analytiska funktioner.
33 Fysikens matematiska metoder : Studievecka 3. 3. Analytiska funktioner. Varför komplexa tal? Syfte : Att ur vissa funktioners uppträdande utanför reella axeln ( Nollställen poler m.m) kunna sluta sig
Läs merMatematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Läs merRadien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen
Läs merExperimentversion av Endimensionell analys 1
Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker
Läs merMatematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering
Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a, b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,
Läs merKTHs Matematiska Cirkel. Talteori. Andreas Enblom Alan Sola
KTHs Matematiska Cirkel Talteori Andreas Enblom Alan Sola Institutionen för matematik, 2008 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 0 Mängdlära 1 0.1 Mängder...............................
Läs merExtraproblem Uppsalas matematiska cirkel
Extraproblem Uppsalas matematiska cirkel Gustav Hammarhjelm Våren 2019 Kapitel 1 Ett primtal p är ett heltal skilt från ±1 vars enda heltalsfaktorer är ±1 och ±p. I alla uppgifter på detta blad betraktar
Läs mer1. (a) Lös ekvationen (2p) ln(x) ln(x 3 ) = ln(x 6 ). (b) Lös olikheten. x 3 + x 2 + x 1 x 1
Högskolan i Halmstad Tentamensskrivning 6 hp ITE/MPE-lab MA2047 Algebra och diskret matematik Mikael Hindgren Onsdagen den 26 oktober 2016 035-167220 Skrivtid: 9.00-13.00 Inga hjälpmedel. Fyll i omslaget
Läs merTATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför
Läs merTentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om heltal Mikael Hindgren 17 september 2018 Delbarhet Exempel 1 42 = 6 7 Vi säger: 7 är en faktor i 42 eller 7 delar 42 Vi skriver: 7 42 Definition 1 Om a, b
Läs merBlandade A-uppgifter Matematisk analys
TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x
Läs merIntroduktion till Komplexa tal
October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Läs merLite om räkning med rationella uttryck, 23/10
Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen
Läs merRita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Läs merTATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Läs merHela tal LCB 1999/2000
Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm
Läs merFaktorisering av polynomuttryck har alltid utgjort en väsentlig del av algebran.
Per-Eskil Persson Visst kan man faktorisera x 4 +1 Att faktorisera polynom är inte alltid helt enkelt men inte dess mindre en väsentlig del av den algebra som elever möter i slutet av högstadiet och senare
Läs merA-del. (Endast svar krävs)
Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i
Läs merNågra saker att tänka på inför dugga 2
LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades
Läs merk=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och
Läs merDiofantiska ekvationer
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 19. Diofantiska ekvationer Vi börjar med en observation som rör den största gemensamma delaren till
Läs merElteknik. Komplexa tal
Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare
Läs merRepetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Läs mer