Explorativ övning 7 KOMPLEXA TAL
|
|
- Axel Lindström
- för 6 år sedan
- Visningar:
Transkript
1 Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska ekvationer som t ex x = 0, x 2 2x + 2 = 0 osv. Man kände redan till existensen av en allmän formel för kvadratiska ekvationer: x 2 + px + q = 0 har två reella lösningar x 1 = p 2 p 2 4 q och x 2 = p 2 + p 2 4 q om bara diskriminanten = p 2 4q 0 (om = 0 så är uttrycket under rottecknet i lösningarna lika med 0 så att det finns en så kallad dubbelrot x 1 = x 2 = p 2 ). Om man t ex försöker lösa ekvationen x 2 2x + 2 = 0 i enlighet med dessa formler så får man x 1 = 1 1, x 2 = Detta verkar vara meningslöst, men om man betecknar 1 = i, accepterar att i 2 = 1 och sätter in t ex x 1 i ekvationen så får man V.L. = (1 i) 2 2(1 i) + 2 = 1 2i + i i + 2 = 0 = H.L., dvs x 1 satisfierar ekvationen. Även x 2 är en lösning. Observera att vi inte bara har accepterat symbolen i och dess egenskap i 2 = 1, utan också de vanliga räknelagarna för de gamla talen i samband 1
2 2 Explorativ övning 7 med t ex kvadrering. Under 1400-talet och i början av 1500-talet började man lösa kvadratiska ekvationer och även ekvationer av högre grad med dessa nya tal. Tänk Dig ett barn som endast känner till de naturliga talen och plötsligt kommer i kontakt med ett problem som leder till ekvationen 2x = 1 (att dela något i två lika delar). Då dyker ett behov upp av ett nytt tal 1 2. Det var ungefär samma situation, fast på en mer avancerad nivå, som ledde till komplexa tal. Det tog drygt 300 år innan man kom underfund med en helt tillfredsställande definition av de komplexa talen som från början definierades som: uttryck på formen a + bi, där a, b R och i 2 = 1. a kallas vanligen realdelen och b imaginärdelen av z. Vi bekantar oss med den formella definitionen i avsnittet om Talsystem. I detta avsnitt kommer vi att arbeta med komplexa tal precis som man har arbetat med dessa tal under flera hundra år genom att acceptera definitionen ovan. Observera att två komplexa tal a + bi och c + di betraktas som lika då och endast då a = c och b = d. Man utför alla vanliga operationer: addition, subtraktion, multiplikation och division på precis samma sätt som för vanliga reella tal det enda som tillkommer är villkoret i 2 = 1. Syftet med denna övning är att bekanta sig med de grundläggande egenskaperna hos de komplexa talen: de fyra räknesätten, konjugat och absolutbelopp, geometrisk tolkning av komplexa tal, polär framställning, lösning av ekvationer: kvadratiska och binomiska, enhetsrötter. Vi följer Kapitel 6 i Vretblads bok. Övning A 1. Lös följande uppgifter i Vretblads bok: 6.1 (601), 6.2 (602), 6.6 (605). 2. Låt z 1 = a 1 +b 1 i och = a 2 +b 2 i beteckna två komplexa tal. Hur definieras summan z 1 +, skillnaden z 1, produkten z 1 och kvoten z 1 (här antas 0)? Skriv ut definitionerna med ledning av avsnitt 6.2 i Vretblads bok.
3 3 Övning B 1. Låt z = a + bi. Vad menas med det konjugerade talet z (se avsnitt 6.2 i Vretblads bok). 2. Låt z = 3 + 5i. Beräkna z. 3. Låt z, z 1, beteckna komplexa tal. Bevisa formlerna: (a) z = z, (b) z 1 + = z 1 +, (c) z 1 = z 1, (d) ( z 1 ) = z 1 z2 ( 0), Övning C 1. Låt z = a + bi. Vad menas med absolutbeloppet z? 2. Låt z, z 1, beteckna komplexa tal. Bevisa formlerna: (a) z 2 = z z, (b) z = z, (c) z 1 = z 1, Ledning. Kvadrera likheten och använd (a)! (d) z 1 = z 1 ( 0). 3. Beräkna två heltal k, l så att ( )( ) = k 2 + l 2. Använd komplexa tal och (c). Kan Du generalisera Ditt resultat? 4. Lös följande uppgifter i Vretblads bok: 6.5 c), d), e), f) (603 c), d), e), f)). Övning D Man tolkar det komplexa talet z = a + bi som punkten (a, b) i ett vanligt rätvinkligt koordinatsystem (se avsnitt 6.4 i Vretblads bok). Man identifierar z med punkten (a, b) man säger ofta punkten z om (a, b). Ibland vill man se talet z som en vektor oftast från (0, 0) till punkten (a, b). 1. Rita ett rätvinkligt koordinatsystem och tolka geometriskt följande tal: (a) z = a + bi och z = a bi (försök beskriva deras läge i förhållande till varandra); (b) Re z = a, Im z = b och z = a 2 + b 2. Kan Du se ett samband mellan z och en känd sats? (c) z 1 + då z 1 = a + bi och = c + di. Tolka därefter z 1 +, z 1 och ; Ledning. Summan z 1 + svarar mot diagonalen i den parallellogram som har sina hörn i (de punkter som svarar mot) (0, 0), z 1, och z 1 +.
4 4 Explorativ övning 7 2. Kan Du förklara hur triangelolikheten z 1 + z 1 + kan tolkas geometriskt med hjälp av förra uppgiften? (för ett algebraiskt bevis av denna olikhet se boken eller föreläsningsanteckningar). 3. Hur tolkas z 1 då z 1 och uppfattas som vektorer från (0, 0) till punkterna z 1 och? Använd samma bild som i förra uppgiften. Hur tolkas z 1? Låt z 1 = a + bi, = c + di och skriv ut z 1 känner Du igen en känd formel? 4. Lös övningar 6.22 a), b), c), f) (616 a), b), c), f)) i Vretblads bok. Övning E 1. Betrakta figuren b z = a + bi z θ a och förklara varför a = z cos θ och b = z sin θ. Vi förutsätter att z 0. Anmärkning. Vinkeln θ kallas ett argument för z och betecknas θ = arg z. Ofta väljer man denna vinkel så att 0 θ < 2π. Om θ är ett argument, så är både θ + 2π och θ 2π argument för z. Man kan skriva Den sista framställningen kallas polär form. 2. Skriv på polär form (a) z = 1 + i, (b) z = 3 + i. z = a + bi = z (cos θ + i sin θ). 3. Låt z 1 = z 1 (cos θ 1 + i sin θ 1 ) och = (cos θ 2 + i sin θ 2 ) vara komplexa tal på polär form. Beräkna produkten z 1 och kvoten z 1. Skriv dessa tal på polär form. Förklara vad som händer med beloppen och med argumenten då man multiplicerar eller dividerar två komplexa tal (se avsnitt 6.4 i boken). 4. Lös uppgift 6.18 (611) i Vretblads bok. 5. Tolka geometriskt förhållandet mellan ett komplext tal z 0 och talet iz? 6. Om z = z (cos θ + i sin θ), så är z n = z n (cos nθ + i sin nθ), vilket kallas de Moivres formel (se Vretblads bok avsnitt 6.4). Lös med hjälp av denna formel uppgifterna 6.39 (628), 6.19 (612) och 6.20 a) (613 a)) i boken.
5 5 Övning F Kvadratrötter och kvadratiska ekvationer. 1. Vad menas med beteckningen 1? Lös ekvationen = 1? Anmärkning. Med a + bi menas vanligen en godtycklig lösning till ekvationen = a + bi. Denna ekvation har två olika lösningar om a + bi 0. Ibland fixerar man en lösning genom lämpliga villkor. Man skriver mycket ofta 1 för att just beteckna talet i (och ej i). Vi ger en sträng definition av talet i senare i kursen. 2. Beräkna: (a) 3 + 4i, (b) 7 24i (se boken om Du vill), (c) i. 3. I början av denna stencil finns allmänna formler för lösningar av kvadratiska ekvationer. Använd dessa formler för att lösa ekvationerna 6.25 (619) och 6.27 (621) i Vretblads bok. Övning G Binomiska ekvationer. Ekvationerna av typen z n = A, där A är ett komplext tal, kallas binomiska. Läs om dessa ekvationer i avsnitt 6.6 i boken. Om A = A (cos α + i sin α) så ges alla lösningar på formen där k = 0, 1,..., n 1. z k = n A (cos α + 2πk n + sin α + 2πk ), n 1. Lös ekvationen z 4 = 16. Se exempel 1 i avsnitt 6.6. Läs noga. Använd formeln ovan för att lösa denna ekvation. 2. Lös ekvationen z 3 = 2i 2. Övning H Enhetsrötter. Lösningarna till ekvationerna z n = 1 kallas enhetsrötter. Dessa komplexa tal har många anmärkningsvärda egenskaper och spelar en stor roll i matematiken. 1. Beräkna enhetsrötterna för n = 2, 3, 4, 5, 6 och tolka dessa komplexa tal geometriskt (en bild för varje n). 2. Beräkna summan av alla fjärde enhetsrötter dvs alla lösningar till ekvationen z 4 = 1. Visa att Ditt resultat kan generaliseras (studera enhetsrötterna i uppgiften ovan).
6 6 Explorativ övning 7 3. Rita enhetscirkeln i det komplexa planet och välj en godtycklig punkt a på denna cirkel. Låt z 1,, z 3, z 4 beteckna lösningarna till ekvationen z 4 = 1. Beräkna summan av kvadraterna av avstånden mellan a och z k dvs summan z 1 a 2 + a 2 + z 3 a 2 + z 4 a 2. Försök generalisera Ditt resultat till enhetsrötterna z n = 1 för godtyckliga n. Följande övningar i Vretblads bok rekommenderas: Vretblad: 6.5 (603), 6.9 (606), 6.29 (622), 6.30 (623), 6.32 (625), 6.44, 6.47 (634), 6.48 (635), 6.49 (636).
Övningshäfte 2: Komplexa tal
LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet
Övningshäfte 2: Komplexa tal (och negativa tal)
LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa
Komplexa tal: Begrepp och definitioner
UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
Introduktion till Komplexa tal
October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Matematik 4 Kap 4 Komplexa tal
Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet
1.1 Den komplexa exponentialfunktionen
TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
Komplexa tal. z 2 = a
Moment 3., 3.2.-3.2.4, 3.2.6-3.2.7, 3.3. Viktiga exempel 3.-3.8, 3.9,3.20 Handräkning 3.-3.0, 3.5a-e, 3.7, 3.8, 3.25, 3.29ab Datorräkning Komplexa tal Inledning Vi skall i följande föreläsning utvidga
forts. Kapitel A: Komplexa tal
forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab
Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med
Complex numbers. William Sandqvist
Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den
TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer
TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
Referens :: Komplexa tal
Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen
Referens :: Komplexa tal version
Referens :: Komplexa tal version 0.6 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer
Komplexa tal. Sid 1: Visa att ekvationerna på sid 1 saknar reella lösningar genom att plotta funktionerna.
Komplexa tal Komplexa tal stötte vi på redan i kurs 2 i samband med lösningar till andragradsekvationer. Detta är startpunkten för denna ganska omfattande aktivitet om komplexa tal, som behandlas i kurs
Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...
Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa
29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana
Analys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Lösningsförslag TATM
Lösningsförslag TATM79 016-09-6 1 a) Vi isolerar x + och kvadrerar ekvationen observera att det då bara blir en implikation!): + x + = x x + = x ) x + = x ) = x 1x + 1 x 1 x + 10 = 0 x = 1 6 ± 7 6 Eftersom
den reella delen på den horisontella axeln, se Figur (1). 1
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella
Referens :: Komplexa tal version
Referens :: Komplexa tal version 0.5 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer
Kompletteringskompendium
Kompletteringskompendium Tomas Ekholm Institutionen för matematik Innehåll 0 Notationer och inledande logik 3 0.1 Talmängder............................ 3 0. Utsagor.............................. 3 1 Induktion
Matematik för sjöingenjörsprogrammet
Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............
TATM79: Föreläsning 3 Komplexa tal
TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig
Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
Föreläsning 9: Komplexa tal, del 2
ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns
1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
x2 6x x2 6x + 14 x (x2 2x + 4)
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den
6.1 Heltal och delbarhet Primtal Största Gemensamma Delaren och Minsta Gemensamma Multipeln... 38
Innehåll 1 KOMPLEXA TAL 3 2 TALSYSTEM POSITIONSSYSTEM 9 3 MATEMATIKENS SPRÅK 15 4 MÄNGDER OCH MÄNGDOPERATIONER 21 5 FUNKTIONER OCH FUNKTIONSBEGREPPET 25 6 DELBARHET, PRIMTAL, DIVISIONSALGORITMEN 29 6.1
Elteknik. Komplexa tal
Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare
Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.
1 Tal, mängder och funktioner
1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk
INDUKTION OCH DEDUKTION
Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk
4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y
UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas
Dugga 2 i Matematisk grundkurs
Linköpings tekniska högskola Matematiska institutionen Tillämpad matematik Kurskod: TATA68 Provkod: TEN Inga hjälpmedel är tillåtna. Dugga i Matematisk grundkurs 013 16 kl 8.00 1.00 Lösningarna skall vara
Lösningsförslag TATM
Lösningsförslag TATM9 0-0-0. a) Summan är geometrisk med kvoten q = / och termer. Alltså, 50 k = 50 k+ = k ) ) ) ) =. k= k= b) Från definitionen av binomialkoefficienter ser vi att ) ) n n nn ) 6 = = =
Planering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet
Läsanvisningar till kapitel Komplexa tals algebraiska struktur
Läsanvisningar till kapitel 1.1. Jag tänkte bara kort berätta hur strukturen hos dessa läsanvisningar kommer vara innan vi kör gång på allvar. Jag kommer i dessa läsanvisningar säga vad jag anser är viktigt
Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)
Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen
Allmänna Tredjegradsekvationen - version 1.4.0
Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra
Analys 2 M0024M, Lp
Analys 2 M0024M, Lp 4 2013 Lektion 1 Staffan Lundberg Luleå Tekniska Universitet 4 april 2013 Staffan Lundberg (LTU) Analys 2 M0024M, Lp 4 2013 4 april 2013 1 / 17 Kursinformation m.m. Examinator: Lennart
Tentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
Några saker att tänka på inför dugga 2
LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades
POLYNOM OCH POLYNOMEKVATIONER
Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.
BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson
Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi
A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall
Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.
Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät
5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA
5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering
e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är
1. (a) Formulera vad som skall bevisas i basfallet och i induktionssteget i ett induktionsbevis av påståendet att. 4 5 n för alla n = 0, 1, 2, 3,...
UPPSALA UNIVERSITET PROV I MATEMATIK Matematiska institutionen Baskurs i matematik Vera Koponen 2008-02-2 Skrivtid: 8-. Tillåtna hjälpmedel: Inga, annat än pennor, radergum och papper det sista tillhandahålles).
KAPITEL 5. Komplexa tal. 1. Introduktion.
KAPITEL 5 Komplexa tal. Your momma thinks square roots are vegetables (förolämpning i ett Calvin och Hobbesalbum) 1. Introduktion. 1.1. Bakgrund. Att något är ett tal innebär löst sagt att det ska gå att
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =
62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
! &'! # %&'$# ! # '! &!! #
56 6 MATRISER 6.6. Tillämpningar I exemplen nedan antar vi att {e, e 2 } är en ON-bas i planet och Oe e 2 ett högerorienterat system i detta plan. Exempel 6.39. Antag att u e + e 2 e är en vektor i planet
Övningshäfte 3: Polynom och polynomekvationer
LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med
TALSYSTEM OCH RESTARITMETIKER. Juliusz Brzezinski
TALSYSTEM OCH RESTARITMETIKER Juliusz Brzezinski MATEMATISKA INSTITUTIONEN CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET GÖTEBORG 2002 FÖRORD Detta häfte handlar om talsystem, restaritmetiker och polynomringar
Om komplexa tal och funktioner
Analys 360 En webbaserad analyskurs Grundbok Om komplexa tal och funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om komplexa tal och funktioner 1 (11) Introduktion De komplexa talen
c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)
1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
Instuderingsfrågor för Endimensionell analys kurs B1
Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande
Euklides algoritm för polynom
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma
TALBEGREPPET AVSNITT 11
AVSNITT 11 TALBEGREPPET Vi har redan mött olika typer av tal: naturliga, hela, rationella, reella och komplexa, betecknade med N, Z, Q, R resp. C. Vad är det som skiljer olika talmängder? Finns det andra
Introduktion till Komplexa tal
October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Veckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Explorativ övning Vektorer
Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken
Sommarmatte. del 2. Matematiska Vetenskaper
Sommarmatte del 2 Matematiska Vetenskaper 7 april 2009 Innehåll 5 Ekvationer och olikheter 1 5.1 Komplea tal.............................. 1 5.1.1 Algebraisk definition, imaginära rötter............. 1
Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.
Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö
Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa
MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför
= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5)
Matematikcentrum Matematik NF Räta linjen. Ange riktningskoefficient och skärningspunkter me alarna för följane linjer. a) y = 5 b) = y + 5 c) y = 5 + ) + y + = 0 e) y 4 = 0 f) + y = g) y 5 = h) y = 4
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grundkurs Tentamen 05-0-0 - Lösningsskiss. a) Vi löser ekvationen x + x = x + 4 genom att studera tre fall. Fall : x 0. Vi får ekvationen: x + x = x + 4 x =, som duger ty x = tillhör
A-del. (Endast svar krävs)
Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
Instuderingsfrågor för Endimensionell analys kurs B1 2011
Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
INFÖR TENTAN (Av Göran Rundqvist, goranr@math.kth.se) Allmänna råd: Gör inte för mycket av dina räkningar i huvudet, skriv ner dem istället!
INFÖR TENTAN (Av Göran Rundqvist, goranr@math.kth.se) Allmänna råd: Gör inte för mycket av dina räkningar i huvudet, skriv ner dem istället! Ska du t ex förenkla 2(a + b) 2 3(b a) 2 utför först kvadreringarna
Komplexa tal med Mathematica
Komplexa tal med Mathematica Vi startar med att lösa en andragradsekvation Solve[x^ - x + == 0] Vi får de komplexa rötterna x 1 = 1 i och x = 1 + i. När vi plottar funktionen f(x) = x x+ ser vi tydligt
RÄKNEOPERATIONER MED VEKTORER LINJÄRA KOMBINATIONER AV VEKTORER ----------------------------------------------------------------- Låt u vara en vektor med tre koordinater, u = x, Vi säger att u är tredimensionell
Utvidgad aritmetik. AU
Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och
Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1)
Förberedelser inför lektion 1 (första övningen läsvecka 1) Läs kapitel 0.10.3. Mycket av detta är nog känt sedan tidigare. Om du känner dig osäker på något, läs detta nogrannare. Kapitel 0.6 behöver inte
Exempel. Komplexkonjugerade rotpar
TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7
Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)
Matematik 1B. Taluppfattning, aritmetik och algebra
Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier
P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE ht999 för Ma4 (7) Innehåll Förord Kursprov i matematik, kurs E ht999 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig
Inociell Lösningsmanual Endimensionell analys. E. Oscar A. Nilsson
Inociell Lösningsmanual Endimensionell analys E. Oscar A. Nilsson January 31, 018 Dan Brown "The path of light is laid, a secret test..." Tillägnas Mina vänner i Förord Detta är en inociell lösningsmanual