Sidor i boken
|
|
- Jan-Olof Åberg
- för 6 år sedan
- Visningar:
Transkript
1 Sidor i boken 0- Dagens mängdträning gäller ekvationer. Med den algebraträning vi nu har i ryggen bör även de mest komplicerade ekvationerna gå att reda ut. Tillsammans med övningarna i föreläsning 6 täcker vi upp allt stoff inför KS. Kämpa på! Förstagradsekvationer Läa. Lös enkel förstagradsekvation = Läa. Det blir väl inte så mycket svårare när det finns parenteser i ekvationen 3( ) (3 ) ( ) = 3(+) Läa 3. Nu blandar vi in bråk, men fortfarande ekvation av första graden = Läa. En ganska svår förstagradsekvation + = 0 Läa 5. Nu blir det riktigt svårt! Förresten, är det här verkligen en förstagradsekvation? = Andragradsekvationer Läa 6. En enkel andragradsekvation + 35 = 0 Håkan Strömberg KTH STH
2 Läa 7. En lite svårare ( ) + = (+) Är det här en andragradare? Läa = Läa = 3 ++ Läa 0. Andragradare med i nämnaren + + = Tredjegradsekvationer Läa. Lös ekvationen = 0 Läa. ( )( 5+6) = 0 Läa 3. 3 = 5 Läa. Denna ekvation har en reell rot. Kan du hitta den? 3 +8 = + Fjärdegradsekvationer Läa 5. Lös ekvationen (+)( )(+3)( ) = 0 Läa 6. Lös ekvationen 6 +5 = 0 Läa 7. Lös ekvationen + = 0 Håkan Strömberg KTH STH
3 Rotekvationer Läa 8. Lös ekvationen = 9 Läa 9. Lös ekvationen = Läa 0. Lös ekvationen + = 3+5 Läa. Lös ekvationen + + = Läa. Lös ekvationen 5 = 0 Läa 3. Lös ekvationen 3 = +5 Faktorisera polynom Läa. Faktorisera polynomet + Faktorisera polynomet Läa Läa 6. Faktorisera så lång möjligt ( )( +5+6) Läa 7. Faktorisera polynomet så långt möjligt Läa 8. Lös en speciell jobbig rotekvation 3 = Håkan Strömberg 3 KTH STH
4 Läa Lösning. Läa Lösning. Läa Lösning = = 0 5 = 5 = 3 3( ) (3 ) ( ) = 3(+) (3 6) (6 ) ( ) = (3+6) = = 3+6 = 6+8 = = ( ) = = 5 = = 5 = 5 = 5 = 5 Läa Lösning. + = 0 ( ) (+) ( )(+) = 0 ( ( )(+) ( ) (+) (+) ( ) ( )(+) = = 0 + = 0 3 = ( )(+) ) = 0 = 3 Svar: = 3 Håkan Strömberg KTH STH
5 Läa Lösning = = = 8 (3 8)(3+8) 8 (3 8)(3+8) ( 3+8 (3 8)(3+8) (3+8) (3 8) = = 8 (3 8)(3+8) ) ( ) 8 = (3 8)(3+8) (3 8)(3+8) (3+8) (3 8) = (9 8+6) = = 6 8 = 3 Svar: = 3 Läa Lösning 6. Svar: = 5, = 7 Läa Lösning 7. Svar: = 0, = = 0 = ± +35 = ±6 = 5 = 7 ( ) + = (+) ++ = ++ + = 8 = 0 ( 8) = 0 Håkan Strömberg 5 KTH STH
6 Läa Lösning 8. Svar: = 0, = 6 Läa Lösning = (+0) ( + +0 ) (+0)+ = (+0) +0+ = +0 0 = 0 = 7± 9+0 = 7±3 = 0 = 6 ( ) = (+0) + + = 3 ++ ( ) + ( )(+) = 3 ( (+) ) ( ) ( ) (+) ( ) + = ( ) (+) 3 ( )(+) (+) (+) +( )(+) = 3( ) +++( ) = 3( +) +++8 = = 0 ( ) = 0 = 0 = Svar: = 0, = Läa Lösning 0. Svar: = och = (+) ( + + = = ( + ) ( ) + 3(+) + = 6 + 3(+) + + 3(+) ) ( = (+) 6 + 3(+) + + 3(+) (+) = (+)+6+(+)+ +8 = = = 0 = 5± 5+ = 5±7 = = ) Håkan Strömberg 6 KTH STH
7 Läa Lösning. Den här ekvationen kan vi lösa därför att den saknar konstant term = 0 ( ++) = 0 (+) = 0 (+)(+) = 0 Det är bra att känna igen första kvadreringsregeln, så slipper man en del jobb. Vi har funnit tre reella rötter, varav en dubbelrot. Svar:, =, = 0 Läa Lösning. Multiplicerar man samman parenteserna kommer man att se att det verkligen handlar om en 3:e-gradsekvation. Men utför vi det får vi en besvärligare situation. Nej, istället förstår vi att = är en rot. De andra två får vi genom att lösa 5+6 = 0 Svar: =, = och 3 = 3 Läa Lösning = 0 5 = 5 ± 6 = 5 ± = 3 = 3 3 = 5 = 3 5 = 5 En tredjegradsekvation har, som vi känner till, tre rötter, reella och imaginära tillsammans. Här är endast en reell, = 5. De andra två behöver vi inte bry oss om! Svar: = 5 Läa Lösning. Vi har inget bättre verktyg än att gissa oss fram. Det ska inte behövas så många gissningar förrän men hittar =, som är en rot, ty Svar: = V.L. ( ) H.L. ( )+ 0 Läa Lösning 5. Ekvationen, som är av :e graden är faktoriserad så långt möjligt (+)( )(+3)( ) = 0 och därför är det mycket enkelt att bestämma rötterna. Svar: =, =, 3 = 3, = Håkan Strömberg 7 KTH STH
8 Läa Lösning 6. Denna ekvation är en av alla :e-gradsekvationer vi kan lösa. Anledningen är att den saknar 3 och -term. Vi substituerar t = och får ekvationen t 6t+5 = 0 t = 3± 9 5 t = 3± t = 5 t = Med dessa två rötter går vi vidare och löser de två ekvationerna Svar: = 5, = 5, 3 =, =, = 5 = ± 5 = 5 = 5 = = ± 3 = = Läa Lösning 7. Ekvationen + = 0 kan lösas genom att substituera = t. t +t = 0 t = ± + 8 t = ± 3 t = t = = = ± = = = = ± reell lösning saknas Ekvationen har endast två reella rötter. En :e-gradsekvation kan endast ha, eller 0 reella rötter (alltså aldrig ett udda antal). Svar: = och = Läa Lösning 8. = 9 ( ) = 9 = 8 Vi testar och ser att 8 = 9, vilket betyder att = 8 är en äkta rot Svar: = 8 Läa Lösning 9. = ( ) = ( ) = 6 Vi testar roten = 6 och får 6, ty. = 6 är en falsk rot. Svar: Ekvationen saknar lösningar. Håkan Strömberg 8 KTH STH
9 Läa Lösning 0. + = 3+5 ( +) = (3+5) + = = 0 Ekvationen har inga reella rötter. Svar: Ekvationen saknar lösning Läa Lösning. Vi testar rötterna först = 3 = 3 är äkta. Vi testar = 8 vilket betyder att = 8 är falsk. Svar: = 3 Läa Lösning. Vi testar = och = 6 Båda rötterna är äkta! Svar: = och = = 0 (9 = 9 8 ± ) 8 9 = 9 8 ± = 9 8 ± = + = 5 ( +) = (5 ) + = = 0 = ± = ± 5 = ± 5 = 3 = = 0 5 = 5 = ( 5) = ( 5 = = = 0 = 0± 0 8 = 0± = = 6 ) Håkan Strömberg 9 KTH STH
10 Läa Lösning 3. 3 = +5 (3 ) = ( +5) = +5 6 = 3 3 ( ) = ( ) = ( ) ( ) = + = = 0 = 3± 9 5 = 3± = 5 = Vi kan i ett tidigt stadium se att =, något vi inte utnyttjat här. Först testar vi = 5 = 5 är falsk. Däremot är = äkta Svar: = Läa Lösning. Eftersom termerna inte har någon gemensam faktor finns inget att bryta ut. Återstår bara att lösa ekvationen + = 0 Svar: + ( 3)(+) = ± + = ± 9 = ± 7 = = 3 Läa Lösning 5. Vi inleder med att bryta ut så långt det går ( + ) För att få tag i faktorerna har vi att lösa + = 0 + = 0 = ± + = ±5 = = 6 Som ger ( )(+6). Tillsammans med den utbrutna 3 får vi så till sist Svar: 3( )(+6) Håkan Strömberg 0 KTH STH
11 Läa Lösning 6. Här måste vi lösa två andragradsekvationer och Vi kan nu skriva ner de fyra faktorerna. Svar: ( )(+)(+)(+3) ( )( +5+6) = 0 = ± + 8 = ± 3 = = +5+6 = 0 = 5 ± 5 = 5 ± = 3 = Läa Lösning 7. Vi startar att bryta ut så mycket vi kan ur och får 5( ++). I nästa steg löser vi ekvationen ++ = = 0 = ± 8 = ± 7 Ekvationen saknar reella rötter, vilket i sin tur betyder att polynomet inte kan faktoriseras. Svar: Ingen faktorisering möjlig. Läa Lösning 8. 3 = 3 = ( 3) = ( ) 3 = + 3+ = 0 (3 = 3 ± ) 33 = 3 ± = = Vi har hittat två rötter som vi måste testa och det verkar inte speciellt enkelt. Vi har att testa om och Om vi tillåter oss att använda de approimativa rötterna och kan vi anta att det finns en äkta rot och att den är Svar: Håkan Strömberg KTH STH
12 Problem. a 3 +3a +3a+ a +a+ + a 0a+5 5 a Lösning: a 3 +3a +3a+ a +a+ + a 0a+5 5 a (a+) 3 (a+) + (a 5) 5 a (a+)+ (a 5) ( )(a 5) 3 (a+) (a 5) (a 5) (a+) (a 5) 5 6 Här gäller det att se att a 3 + 3a + 3a + (a + ) 3, vilket är lite ovanligare än de två andra uttrycken som vi identifierar som uttryck i första och andra kvadreringsregeln (). I () och (3) fiar vi till parentesen i andra termens nämnare så att det går att förkorta. Svar: 6. Figur : Håkan Strömberg KTH STH
13 Problem. Lösning: a+b a b b+a + b a a+b a b b+a + b a (a b) (a+b) a b (b a)+(b+a) b a b a b b (b a)(b+a) 3 b a b (b a)(b+a) b (a b)(a+b) ( )(a b)(a+b) 5 ( )( ) Ett dubbelbråk där vi först hanterar täljare och nämnare för sig () och (). Nu är det dags att skriva om bråket som en multiplikation i stället för en division. Förkortning av parenteserna är ej direkt möjlig innan vi använder att ( y) ( )(y ). Svar: Problem 3. 3a+(+a) a+ + 3a a + a a Håkan Strömberg 3 KTH STH
14 Lösning: 3a+(+a) a+ + 3a a + a a (a )(3a+(+a) ) (a )(a+) + ( 3a)(a+) (a )(a+) + a (a )(a+) (a )(3a+(+a) )+( 3a)(a+)+a (a )(a+) 3 ( a+a +a 3 )+( a 3a )+a (a )(a+) a 3 +a a (a )(a+) a (a+) (a+) (a )(a+) (a )(a+) (a )(a+) (a )(a+)(a+) (a )(a+) 5 a+ Med den vana vi nu har, ser vi direkt att minsta gemensamma nämnaren är (a + )(a ). Vi förlänger de tre bråken () och eftersom nämnarna redan från början är ganska komplicerade får vi en del jobb i (), (3). I () kan det dock bli stopp eftersom vi har svårigheter att faktorisera a 3 +a a. Vi delar upp uttrycket i två delar och kan till sist bryta ut (a+). Efter förkortning får vi Svar: a+. Figur : Håkan Strömberg KTH STH
15 Problem. Lösning: a b + b a + a +b ab a b + b a + a +b ab a a a b + b b b a + ab ab a +b ab a a+b b+ab (a +b ) ab 3 a +b +ab a b ab Borde nu efter all träning vara ganska enkelt. Den gemensamma nämnaren blir ab. Vi förlänger och skriver uttrycket på gemensamt bråkstreck () och (). Vi reducerar sedan nämnaren i (3) och får efter förkortning Svar:. Håkan Strömberg 5 KTH STH
Ekvationslösning genom substitution, rotekvationer
Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar
Läs merSidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.
Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna
Läs merLektionsanteckningar. för kursen Matematik I:1
Lektionsanteckningar för kursen Matematik I: 5 0 5 4 4 6 5 0 till mina studenter i TBASA-AV VT05 Håkan Strömberg TBASA-GH4 Planering i matematik I: P 4/5 Lärare: Niclas Hjelm niclas.hjelm@sth.kth.se 08-790
Läs merMoment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Läs merAlgebra och rationella uttryck
Algebra och rationella uttryck - 20 Uppgift nr Förenkla x0 y 6 z 5 25 y 2 Uppgift nr 2 Uppgift nr 3 ab b 5a - a² 9a där a 0. där b 0. Uppgift nr 4 Multiplicera in i parentesen 2x(4 + 2x 3 ) Uppgift nr
Läs merlim 1 x 2 lim lim x x2 = lim
Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att
Läs merTATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför
Läs merSidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom
Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett
Läs merTalmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
Läs merPolynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas
Läs merTalmängder N = {0,1,2,3,...} C = {a+bi : a,b R}
Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att
Läs mer1 Addition, subtraktion och multiplikation av (reella) tal
Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b
Läs merLösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.
1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer
Läs merTATM79: Föreläsning 1 Notation, ekvationer, polynom och summor
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q
Läs merLösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Läs merIntroduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt
KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar
Läs merPolynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Handräkning.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Datorräkning.6-.3 Ett polynom vilket som helst
Läs merFöreläsning 3: Ekvationer och olikheter
Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta
Läs merger rötterna till ekvationen x 2 + px + q = 0.
KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip
Läs merKOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Läs merf(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
Läs merDOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7
Övning Bråkräkning Uppgift nr 1 Vilket av bråken 1 och 1 är Uppgift nr Vilket av bråken 1 och 1 är Uppgift nr Skriv ett annat bråk, som är lika stort som bråket 1. Uppgift nr Förläng bråket med Uppgift
Läs merLösningar och kommentarer till Övningstenta 1
Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)
Läs merAndragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7
Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)
Läs merRepetitionskurs i. elementär algebra, matematik. för DAI1 och EI1 ht 2014
Repetitionskurs i elementär algebra, matematik för DAI och EI ht 04 Chalmers Tekniska Högskola Reimond Emanuelsson II August 5, 04 Förord Detta kompendium är tänkt som en repetition av elementär algebra
Läs merRepetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Läs merFöreläsning 1 5 = 10. alternativt
Föreläsning 1 101 a) Beräkna 5 + ( 8) = ( ) Kommentar: Vi använder parenteser för att förtydliga negativa tal, här ( 8) och ( ). 101 b) Beräkna 9 16 = 5 Kommentar: Egentligen borde man skriva 9 som ( 9),
Läs merAvsnitt 1, introduktion.
KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen
Läs merSidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
Läs merKomposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Läs merEkvationer och system av ekvationer
Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.
Läs merNär vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1
Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna
Läs merf(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
Läs merAvsnitt 2, introduktion.
KTHs Sommarmatematik Introduktion 2:1 2:1 Bråkstreck Avsnitt 2, introduktion. Gemensamt bråkstreck. Två fall: Ingen gemensam faktor i nämnarna (Ex: ) Se Exempel 1 Gemensam faktor i nämnarna (Ex: ) Se Exempel
Läs merEkvationer och olikheter
Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När
Läs merAllmänna Tredjegradsekvationen - version 1.4.0
Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra
Läs merExempel. Komplexkonjugerade rotpar
TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck
Läs merKonsten att lösa icke-linjära ekvationssystem
Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse
Läs mer1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Läs merMoment Viktiga exempel Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a
Moment 5.1-5.5 Viktiga exempel 5.1-5.10 Övningsuppgifter I Ö5.1b, Ö5.2b, Ö5.3b, Ö5.6, Ö5.7, Ö5.11a Kvadratiska linjära ekvationssystem Vi startar vår utredning med det vi känner bäst till, ekvationssystem
Läs merTATM79: Föreläsning 3 Komplexa tal
TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig
Läs merMoment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.
Läs merRepetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merf (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1
Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: Derivatan blir: f(x) = x 4 x + x + 8 f (x) = 8x x + Men hur
Läs merUppföljning av diagnostiskt prov HT-2016
Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri
Läs merAlgebra, exponentialekvationer och logaritmer
Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen
Läs merKompletterande lösningsförslag och ledningar, Matematik 3000 kurs C, kapitel 1
Kompletterande lösningsförslag oc ledningar, Matematik 000 kurs C, kapitel Här presenteras förslag på lösningar oc tips till många uppgifter i läroboken Matematik 000 kurs C Komvu som vi oppas kommer att
Läs merLösningsförslag och svar Övningsuppgifter inför matte 3 1. 10. 11. 12. 13. 15.
Lösningsförslag och svar Övningsuppgifter inför matte........... =.... Multiplicera i valfri ordning. Man kan t.e. börja med att multiplicera in. Multiplicera i valfri ordning. Den här gången kan vi börja
Läs mersanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är
PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.
Läs merAvsnitt 3, introduktion.
KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar
Läs merLösningsförslag och svar Övningsuppgifter inför matte
Lösningsförslag och svar Övningsuppgifter inför matte........... =.... Multiplicera i valfri ordning. Man kan t.e. börja med att multiplicera in. Multiplicera i valfri ordning. Den här gången kan vi börja
Läs merLÖSNINGAR TILL ÖVNINGAR I FÖRBEREDANDE KURS I MATEMATIK 1. Till detta kursmaterial finns prov och lärare på Internet.
LÖSNINGAR TILL ÖVNINGAR I FÖRBEREDANDE KURS I MATEMATIK Till detta kursmaterial finns prov och lärare på Internet. Detta material är en utskrift av delar av det webbaserade innehållet i wiki.math.se/wikis/forberedandematte
Läs merDOP-matematik Copyright Tord Persson. Potensform. Uppgift nr 10. Uppgift nr 11 Visa varför kan skrivas = 4 7
Potensform Uppgift nr Vad menas i matematiken med skrivsättet 3 6? (Skall inte räknas ut.) Uppgift nr 2 värdet av potensen 3 2 Uppgift nr 3 Skriv 8 8 8 i potensform Uppgift nr 4 Skriv 4 3 som upprepad
Läs merÖvningar - Andragradsekvationer
Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.
Läs merGamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Läs merPolynomekvationer (Algebraiska ekvationer)
Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har
Läs merFör att räkna upp, numrera, räkna antal och jämföra används ofta naturliga tal. Med vår vanliga decimalnotation (basen 10) skrivs dessa
Avsnitt Olika typer av tal För att räkna upp, numrera, räkna antal och jämföra används ofta naturliga tal. Med vår vanliga decimalnotation (basen 0) skrivs dessa 0,,2,3,...,9,0,,... Samma naturliga tal
Läs merMoment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73
Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar
Läs mer9 Skissa grafer. 9.1 Dagens Teori
9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om
Läs merf(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 =
Moment.5,.5.,.5.,.5. Viktiga eempel.0,.,.,.,.,.5,.,.7 Övningsuppgifter.8,.0 abc Inversfunktioner Givet: y = f(), y uttryckt i Sökt : = g(y), uttryckt i y När kan man lösa ut som funktion av y? Sats. Om
Läs merDOP-matematik Copyright Tord Persson Potenser. Matematik 1A. Uppgift nr 10 Multiplicera
Potenser Uppgift nr Skriv 7 7 7 i potensform Uppgift nr 2 Vilket tal är exponent och vilket är bas i potensen 9 6? Uppgift nr 3 Beräkna värdet av potensen (-3) 2 Uppgift nr 4 Skriv talet 4 i potensform
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merMatematik för sjöingenjörsprogrammet
Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll Ekvationer 1.1 Förstagradsekvationer.......................... 5.1.1 Övningar............................ 6. Andragradsekvationer..........................
Läs merBlandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
Läs merx2 6x x2 6x + 14 x (x2 2x + 4)
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den
Läs merRationella uttryck. Förlängning och förkortning
Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing
Läs merRepetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Läs merpolynomfunktioner potensfunktioner exponentialfunktioner
Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,
Läs merFÖRBEREDANDE KURS I MATEMATIK 1. Till detta kursmaterial finns prov och lärare på Internet.
FÖRBEREDANDE KURS I MATEMATIK Till detta kursmaterial finns prov och lärare på Internet. Detta material är en utskrift av det webbaserade innehållet i wiki.math.se/wikis/forberedandematte Studiematerialet
Läs mer8 + h. lim 8 + h = 8
Nu ar vi kretsat kring oc förberett oss på begreppet derivata i två föreläsningar. Nu är tiden inne! Men innan dess ska vi diskutera gränsvärde, ett annat begrepp. Om vi ar uttrycket 8 + oc låter gå mot
Läs merLite om räkning med rationella uttryck, 23/10
Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen
Läs merTal och polynom. Johan Wild
Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................
Läs merM0043M Integralkalkyl och Linjär Algebra, H14, Integralkalkyl, Föreläsning 4
M0043M Integralkalkyl och Linjär Algebra, H14, Integralkalkyl, Föreläsning 4 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 26 Integralkalkyl - Föreläsning
Läs mer= a) 12 b) -1 c) 1 d) -12 [attachment:1]räkneoperation lektion 1.odt[/attachment] = a) 0 b) 2 c) 2 d) 1
Lektion. + 8= 0 0. := 0 0. : = 8. : ( )= 8. 0/0 = 8. +(+ ) = 8. + = 0 8. ( )+0= 0 8. 8/ = - 0 8 0 0. = - - [attachment:]räkneoperation lektion.odt[/attachment]. = 0. /( )= - -. ( )= 0. 0 (0 0: )+ = 0.
Läs merLektion 1. Förenklingar. Valentina Chapovalova. vårterminen IT-Gymnasiet. Valentina Chapovalova Lektion 1
Lektion 1 Förenklingar Valentina Chapovalova IT-Gymnasiet vårterminen 2011 Valentina Har magisterexamen i matematik Undervisar på mattekollo varje sommar Tycker om brädspel Matematiken förenklar Matematikens
Läs merInociell Lösningsmanual Endimensionell analys
Inociell Lösningsmanual Endimensionell analys Erik Oscar A. Nilsson 06, Juli Oscar Något smart och inspirerande citat Tillägnas Mina vänner i Förord Detta är en inociell lösningsmanual för: Övningar -
Läs merHar du förstått? I De här talen är primtal a) 29,49 och 61 b) 97, 83 och 89 c) 0, 2 och 3.
PASS 5. FAKTORISERING AV POLYNOM 5. Nyttan av faktorisering och faktorisering av heltal Har vi nytta av att kunna faktorisera polynom? Ja det har vi. Bra kunskaper i faktorisering av polynom möjliggör
Läs merÖvning log, algebra, potenser med mera
Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla
Läs merCrash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
Läs merKomplexa tal med Mathematica
Komplexa tal med Mathematica Vi startar med att lösa en andragradsekvation Solve[x^ - x + == 0] Vi får de komplexa rötterna x 1 = 1 i och x = 1 + i. När vi plottar funktionen f(x) = x x+ ser vi tydligt
Läs merSvar till vissa uppgifter från första veckan.
Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!
Läs merx = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z
Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning
Läs merAlgebra, kvadreringsregler och konjugatregeln
Algebra, kvadreringsregler och Uppgift nr 1 Multiplicera in i parentesen x(9 + 2y) Uppgift nr 2 Multiplicera in i parentesen 3x(7 + 5y) Uppgift nr 3 x² + 3x Uppgift nr 4 xy + yz Uppgift nr 5 5yz + 2xy
Läs merSAMMANFATTNING TATA41 ENVARIABELANALYS 1
SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3
Läs merNotera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.
OLIKHETER Egenskaper:.Om a < b då gäller a+ c < b +c. Om a < b < c då gäller a+d < b+d < c+d. Om a < b och k > 0 då gäller ka < kb. 4. Om a < b och k < 0 då gäller ka > kb. Notera att tecknet < ändras
Läs merSekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?
I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient
Läs merKOKBOKEN 3. Håkan Strömberg KTH STH
KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Läs merTeori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:
Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd
Läs merVi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då
Läs mersin (x + π 2 ) = sin x cos π 2 + cos x sin π 2 = cos π 2 = 0 sin π 2 = 1 Svar: cos x
33 a Använd additionsformel för sinus sin(x + 55 ) = sin x cos 55 + cos x sin 55 cos 55 och sin 55 beräknas med tekniskt hjälpmedel TI-räknare c Använd additionsformel för sinus sin (x + π ) = sin x cos
Läs merBlock 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
Läs merH1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
Läs mer6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Läs merKontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Läs merFormelhantering Formeln v = s t
Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller
Läs merRepetition ekvationer - Matematik 1
Repetition ekvationer - Matematik 1 Uppgift nr 1 I en 2-barnsfamilj är alla tillsammans 107 år. Sonen är 7 år yngre än dottern. Mamman är 4 år äldre än pappan. Pappan är 4 gånger äldre än dottern. Hur
Läs mer