Lösningsförslag och svar Övningsuppgifter inför matte
|
|
- Cecilia Sundberg
- för 6 år sedan
- Visningar:
Transkript
1 Lösningsförslag och svar Övningsuppgifter inför matte =.... Multiplicera i valfri ordning. Man kan t.e. börja med att multiplicera in. Multiplicera i valfri ordning. Den här gången kan vi börja med att multiplicera parenteserna. Använder kvadreringsregeln
2 . =.... Enligt räknereglerna måste upphöjningen räknas före multiplikationen... Använder konjugatregeln.. a a a a a.. Minst jobb att köra konjugatregeln först och multiplicera med sen. Obs kvadreringsregeln eller..... =
3 multiplicera med mgn: förkorta,. multiplicera med mgn:,. multiplicera med mgn: Förkorta
4 . multiplicera med mgn:. mult. Med mgn. eller.. Vilket är de eakta svaren. Om svaren ska avrundas till t.e. värdesiffror fås,.. Om en produkt av två faktorer ska bli noll, räcker det med att en av faktorerna är noll. eller. ger ger ger. ger ger. Eftersom produkten inte ska bli noll kan vi inte använda att varje faktor ska vara noll. Löser med pq-formeln.
5 ... Ekvationen saknar reella lösningar eftersom det fås ett negativt tal under rottecknet. Det finns inget reellt tal multiplicerat med sig självt som blir -...
6 .. mgn: + Vilket är de eakta svaren. Vill man svara med tre värdesiffror fås,,. Om man tcker det är svårt att se vad är gemensamt i de båda termerna så kan man göra så här. Nu sns att finns i båda termerna. Därför kan brtas ut Svar: Du kan alltid kontrollera ditt svar, i detta fall genom att multiplicera in i parentesen och se att du får det uttrck som du hade från början. Här finns faktorn i båda termerna Därför kan brtas ut Svar:. Här finns både och i båda termerna så jag brter ut Svar:. Det finns ett och ett alla termer så jag brter ut Svar. Svar
7 .. Här finns inget som går att brta ut men man kan använda konjugatregeln baklänges i täljaren Förkorta med - Svar Här kan man använda kvadreringsregeln baklänges i täljaren Förkorta med + Svar:. Brter ut Nu löses denna ekvation som du tidigare gjort i t.e uppgift eller Svar. Brter ut eller Svar:. eller Svar och. Brter ut eller Svar: och. eller Svar och. eller Svar och
8 . faktoriserar med kvadreringsregeln eller använd pq-formeln eller och Kallas dubbelrot när =. m-värdet får man genom att titta var linjen skär -aeln. Denna linje skär -aeln där = - Därför får vi att m = - För att beräkna k värdet används formeln k Så man väljer två godtckliga punkter på linjen t.e, - och,. Om man väljer den första punkten som punkt så blir och. Den andra punkten blir då punkt så och Vi får k Så vi har m = - och k = Linjens ekvation blir =. m = Jag väljer punkterna, och, Vi får k Vi har m = och k = Linjens ekvation blir = +. m = Jag väljer punkterna, och, - Vi får k Vi har m = och k = Linjens ekvation blir som skrivs. m = Jag väljer punkterna, och, Vi får k, Vi har m = och k = -, Linjens ekvation blir = -, +. m = Jag väljer punkterna B =, och A =, Vi får k Vi har m = och k = Linjens ekvation blir = + som skrivs = +. Punkterna är, och,. Börjar med att beräkna k-värdet k Sätter in k-värdet och en av punkterna i k m Jag väljer punkten,. Så jag stoppar in k=, = och = i k m. Då fås: m m m m m Nu vet jag att k= och m= så ekvationen bli som skrivs Den sökta linjens ekvation är
9 . Punkterna är, och,. Börjar med att beräkna k-värdet k Sätter in k-värdet och en av punkterna i k m Jag väljer punkten,. Så jag stoppar in k=, = och = i k m. Då fås: m m m m m Nu vet jag att k= och m=- så ekvationen bli Den sökta linjens ekvation är. Punkterna är -, och,-. Börjar med att beräkna k-värdet k Sätter in k-värdet och en av punkterna i k m Jag väljer punkten -,. Så jag stoppar in k=-, =- och = i k m. Då fås: m m m m m Nu vet jag att k=- och m=- så ekvationen blir Den sökta linjens ekvation är. Punkterna är,- och -,-. Börjar med att beräkna k-värdet k Sätter in k-värdet och en av punkterna i k m Jag väljer punkten -,-. Så jag stoppar in k=, = - och = - i k m. Då fås: m m m m m Nu vet jag att k= och m= - så ekvationen bli Den sökta linjens ekvation är
10 . Punkterna är -,- och -,-. Börjar med att beräkna k-värdet k Sätter in k-värdet och en av punkterna i k m Jag väljer punkten -,-. Så jag stoppar in k=, = - och = - i k m. Då fås: m m m m m m Nu vet jag att k= och m= så ekvationen bli Den sökta linjens ekvation är. Om två linjer är parallella så måste de ha samma lutning. Detta innebär att de har samma k-värde. Så linje L har också k- värdet -. Sätter in k-värdet och punkten i k m Jag har punkten,. Så jag stoppar in k= -, = och = i k m. Då fås: m m m m m Nu vet jag att k= - och m= så ekvationen bli Den sökta linjens ekvation är. Linje L har samma k-värde som linje M. Men linje M är skriven i allmän form så man ser inte k-värdet. Men om man i linje M löser ut så ser man k-värdet. Linje M: Nu ser vi att k-värdet för de båda linjerna är Sätter in k-värdet och punkten i k m Jag har punkten -,-. Så jag stoppar in k=, = - och = - i k m. Då fås: m m m m m Nu vet jag att k= och m= så ekvationen bli Den sökta linjens ekvation är
11 . Om linjerna är parallella så har de samma k-värde. Linjerna är skrivna i allmän form så man ser inte k-värdet. Därför får man i båda linjerna lösa ut för kunna se k-värdena. Börjar med linje L. Vi se att linje L Har k = Fortsätter med linje M Vi ser att linje M har k = Eftersom linjerna har olika k-värden så är de inte parallella.. a Eftersom termen är positiv + framför så har kurvan formen av en glad mun vilket innebär att funktionen har minimipunkt. b Eftersom termen är negativ - framför så har kurvan formen av en ledsen mun vilket innebär att funktionen har maimipunkt. c Eftersom termen är positiv + framför så har kurvan formen av en glad mun vilket innebär att funktionen har minimipunkt.. a = när = eller = Nollställen = eller = b = - ligger mitt emellan nollställena. c = - är smmetrilinjen d Minsta -värdet när = - Minsta värdet är också - e Minpunkt -, -. a = när =- eller = Nollställen: = eller = b = ligger mitt emellan nollställena. c = är smmetrilinjen d Största -värdet när = Största värdet är e Mapunkt,. a Nollställen saknas eftersom funktionen aldrig skär -aeln b saknas c Smmetri kring minpunkten. = är smmetrilinjen d Minsta -värdet när = Minsta värdet är e Minpunkt, d Eftersom termen är negativ - framför så har kurvan formen av en ledsen mun vilket innebär att funktionen har maimipunkt.
12 . a + tecken framför innebär att funktionen har minpunkt. Söker nollställen genom att sätta = + = = = = = = + = Nollställen: = och = Smmetrilinje: = mitt mellan nollställena Minsta värde när = Stoppa in =, i ursprungsfunktionen = + = Minsta värde: = - Minpunkt, - b + tecken framför innebär att funktionen har minpunkt. Söker nollställen genom att sätta = + = dividerar med + = =,, =,, =,, = =, +, = Nollställen: = och = Smmetrilinje: =, mitt mellan nollställena Minsta värde när =, Stoppa in =, i ursprungsfunktionen, =,, + =, Minsta värde: = -, Minpunkt,, -, c - tecken framför innebär att funktionen har mapunkt. Söker nollställen genom att sätta = + = dividerar med - för att få + framför + = = =,, Saknar reella lösningar därför finns inga nollställen. Smmetrilinje finns dock i =, Nollställen: Saknas Smmetrilinje: =, Största värde när =, Stoppa in =, i ursprungsfunktionen, =, +, =, Största värde: = -, Mapunkt,, -, d + tecken framför innebär att funktionen har minpunkt. Söker nollställen genom att sätta = = faktoriserar = nollproduktmetoden = eller = = = Nollställen: = och = Smmetrilinje: = mitt mellan nollställena Minsta värde när = Stoppa in = i ursprungsfunktionen = = Minsta värde: = - Minpunkt, -
13 . a = = ger = = ger = måste alltså ligga mellan och testning med räknare ger, b = = ger = = ger = måste alltså ligga mellan och ganska nära verkar det som testning med räknare ger, c, = Om man testar med väande positiva tal så blir svaret bara mindre och mindre. Vi får prova med negativa tal = - ger, = = - ger, = måste alltså ligga mellan - och - testning med räknare ger,. a lg, b lg = c lg är det tal som ska upphöjas till för att bli se fråga b d lg = e lg = f lg är det tal som ska upphöjas till för att bli se fråga e g lg, h lg = i lg är det tal som ska upphöjas till för att bli se fråga h j lg = detta är ett viktigt samband som du senare kommer att använda för lösa logaritmekvationer. a lg + lg = lg = lg = b lg lg = lg = lg = c lg + lg lg = lg lg = lg lg = lg = lg = d lg = lg, e lg = lg detta är ett viktigt samband som du senare kommer att använda för lösa ekvationer där är eponent. a = logaritmerar båda led lg = lg anv log.lag i VL lg = lg dividerar med lg lg lg = lg förkortar i VL lg = lg eakt svar lg, avrundat svar b = lg = lg lg = lg = lg lg, c, = lg, = lg lg, = lg = lg lg,,
14 . a = dividerar med = förkortar = logarimerar båda led lg = lg anv log.lag i VL lg = lg dividerar med lg lg lg = lg lg förkortar i VL = lg eakt svar lg, avrundat svar b + = = = lg = lg lg = lg = lg lg, c + = = = Här ser man kanske att =?? Om inte så får man logaritmera lg = lg lg = lg = lg lg = d = lg = lg lg = lg = lg lg om man vill kan man anv log.lag i nämnaren och skriva: = lg lg = lg lg = lg lg,
15 e = = = lg = lg lg = lg = lg lg = lg lg, f + = lg + = lg + lg = lg + = lg lg = lg lg =, lg lg g + = = = = = lg = lg där lg = lg =
16 lg = lg lg = lg = lg + = lg +,. a lg = lg = b lg = lg + lg lg = lg lg = lg = c lg = lg + lg lg = lg lg = lg lg = lg lg = lg =, f lg + lg = lg + lg lg = lg lg = lg lg = lg lg = lg = g lg = lg lg = lg lg = lg = h lg = lg lg = lg lg = lg lg = lg lg = lg = i lg lg lg lg = lg lg = lg = = lg + lg = lg lg lg d lg = lg lg lg = lg lg = lg = e lg = lg lg lg = lg lg = lg lg = lg =
Lösningsförslag och svar Övningsuppgifter inför matte 3 1. 10. 11. 12. 13. 15.
Lösningsförslag och svar Övningsuppgifter inför matte........... =.... Multiplicera i valfri ordning. Man kan t.e. börja med att multiplicera in. Multiplicera i valfri ordning. Den här gången kan vi börja
Läs merAlgebra och rationella uttryck
Algebra och rationella uttryck - 20 Uppgift nr Förenkla x0 y 6 z 5 25 y 2 Uppgift nr 2 Uppgift nr 3 ab b 5a - a² 9a där a 0. där b 0. Uppgift nr 4 Multiplicera in i parentesen 2x(4 + 2x 3 ) Uppgift nr
Läs merKompletterande lösningsförslag och ledningar, Matematik 3000 kurs C, kapitel 1
Kompletterande lösningsförslag oc ledningar, Matematik 000 kurs C, kapitel Här presenteras förslag på lösningar oc tips till många uppgifter i läroboken Matematik 000 kurs C Komvu som vi oppas kommer att
Läs merAlgebra, exponentialekvationer och logaritmer
Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen
Läs merRäta linjens ekvation & Ekvationssystem
Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35
Läs merAndragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7
Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)
Läs merALGEBRA OCH FUNKTIONER
ALGEBRA OCH FUNKTIONER Centralt innehåll Hantering av algebraiska uttrck och ekvationer. Generalisering av aritmetikens lagar. Begreppen polnom och rationellt uttrck. Kontinuerlig och diskret funktion.
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merLÖSNINGAR TILL ÖVNINGAR I FÖRBEREDANDE KURS I MATEMATIK 1. Till detta kursmaterial finns prov och lärare på Internet.
LÖSNINGAR TILL ÖVNINGAR I FÖRBEREDANDE KURS I MATEMATIK Till detta kursmaterial finns prov och lärare på Internet. Detta material är en utskrift av delar av det webbaserade innehållet i wiki.math.se/wikis/forberedandematte
Läs merÖvningar - Andragradsekvationer
Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.
Läs merPlanering för kurs C i Matematik
Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.
Läs merRepetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18
Repetition kapitel,, 5 inför prov Ma NA7 vt8 Prov tisdag 5/6 8.00-0.00 Algebra När man adderar eller subtraherar uttryck, så räknar man ihop ensamma siffror för sig, x-termer för sig, och eventuella x
Läs merLösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Läs mervilket är intervallet (0, ).
Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten 2x > 4 och uttryck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3(2 x) < 2(3 + x), Multiplicera båda led med 2.
Läs merlim 1 x 2 lim lim x x2 = lim
Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att
Läs merRättelseblad till M 2b
Rättelseblad till M 2b 47-08592-7 Trckfel (första eller andra trckningen) Sida Var Står Skall stå 5 Rad nerifrån Ekvationen 209 Ekvationen 2 = 3 209 65 Uppg 269...tillsamman tillsammans 44 Eempel 2 2 2
Läs merÖvning log, algebra, potenser med mera
Övning log, algebra, potenser med mera Uppgift nr 1 Förenkla uttrycket x 3 + x 3 + x 3 + x 3 + x 3 Uppgift nr 2 Förenkla x x x+x x x Uppgift nr 3 Skriv på enklaste sätt x 2 x x x 8 x x x Uppgift nr 4 Förenkla
Läs merSvar och anvisningar till arbetsbladen
Svar och anvisningar till arbetsbladen Repetitionsmaterial (Facit) Anders Källén Notera att detta är första versionen av svaren Både felräkningar och feltrck kan förekomma! Fingeröfningar Övning,, c) 0,
Läs merlena Alfredsson kajsa bråting patrik erixon hans heikne Matematik kurs 3c blå lärobok natur & kultur
lena Alfredsson kajsa bråting patrik erion hans heikne Matematik 5000 kurs c blå lärobok natur & kultur NATUR & KULTUR Bo 7, 0 5 Stockholm Kundtjänst: Tel 08-5 85 00, order@nok.se Redaktion: Tel 08-5 86
Läs merUppföljning av diagnostiskt prov HT-2016
Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri
Läs mer6. Samband mellan derivata och monotonitet
34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för
Läs merFörändringshastighet ma C
DOP-matematik Copright Tord Persson Förändringshastighet ma C 2012-01-0 Uppgift nr 1 Givet funktionen f() 2 + 8 Beräkna f() Uppgift nr 2 Givet funktionen f() 9 + 1 Beräkna f(7) Uppgift nr 6 Uppgift nr
Läs mervilket är intervallet (0, ).
Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten > 4 och uttrck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3( ) < (3 + ), och uttrck lösningen som ett intervall
Läs merDOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7
Övning Bråkräkning Uppgift nr 1 Vilket av bråken 1 och 1 är Uppgift nr Vilket av bråken 1 och 1 är Uppgift nr Skriv ett annat bråk, som är lika stort som bråket 1. Uppgift nr Förläng bråket med Uppgift
Läs merProv 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:
Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse
Läs merSidor i boken
Sidor i boken 0- Dagens mängdträning gäller ekvationer. Med den algebraträning vi nu har i ryggen bör även de mest komplicerade ekvationerna gå att reda ut. Tillsammans med övningarna i föreläsning 6 täcker
Läs mer3.1 Derivator och deriveringsregler
3. Derivator och deriveringsregler Kort om derivator Eempel derivatans definition deriveringsregler numerisk derivering andraderivatan På höjden km kan lufttrcket mbar beskrivas med funktionen = 03 e 0,
Läs merMA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.
Läs merKapitel 1. y 4. Pythagoras: Se facit. b 2, 4 (3,2; 2, 4) bh A = 2 Q =? Samma metod som i a). Se facit. Sök höjden: h = sin 41 8,2. Se facit.
Kapitel 8 9 b A Sök öjden: sin 8,, cm (,7968),, A cm cm Se viktigruta i eempel s. >. Den undre vinkeln u är tan, 8 u + v är tan v,8 9, v 9 y sin7 y sin7, Pytagoras:, P (,;, ) Q? Samma metod som i. Kalla
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna
Läs merAvsnitt 1, introduktion.
KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen
Läs merRepetition ekvationer - Matematik 1
Repetition ekvationer - Matematik 1 Uppgift nr 1 I en 2-barnsfamilj är alla tillsammans 107 år. Sonen är 7 år yngre än dottern. Mamman är 4 år äldre än pappan. Pappan är 4 gånger äldre än dottern. Hur
Läs merMoment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73
Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar
Läs merGamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Läs merAllmänna Tredjegradsekvationen - version 1.4.0
Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra
Läs merHantera andragradskurvor del 2
Hantera andragradskurvor del I den första aktiviteten om andragradsfunktioner tittade vi på hur utseendet på kurvorna när vi hade olika värden på k, a och b i ut- trcket k ( x a) b. Se nedan. Vi ser att
Läs mer9 Skissa grafer. 9.1 Dagens Teori
9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om
Läs merSidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.
Sidor i boken 119-11 Andragradsekvationer Dagens tema är ekvationer, speciellt andragradsekvationer. Men först några ord om ekvationer i allmänhet. En ekvation är en likhet som innehåller ett (möjligen
Läs merHåkan L. (Skriv som en produkt. Gör uppdelningen i faktorer så långt det går.) 1. Faktorisera 25x Faktorisera 1. 3.
Övningsuppgifter för att stödja repetition av gymnasiets matematik Har sammanställt ett antal övningsuppgifter som hjälp att repetera några väsentliga delar av gymnasiets matematik På slutet finns uppgifter
Läs mersin (x + π 2 ) = sin x cos π 2 + cos x sin π 2 = cos π 2 = 0 sin π 2 = 1 Svar: cos x
33 a Använd additionsformel för sinus sin(x + 55 ) = sin x cos 55 + cos x sin 55 cos 55 och sin 55 beräknas med tekniskt hjälpmedel TI-räknare c Använd additionsformel för sinus sin (x + π ) = sin x cos
Läs merRepetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Läs merVÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER
Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVEXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER EXTREMPUNKTER OCH EXTREMVÄRDEN Definition (Globalt maimum)
Läs merTATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter
TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför
Läs merMa B - Bianca Övning lektion 1. Uppgift nr 10. Uppgift nr 1 Givet funktionen f(x) = 4x + 9 Beräkna f(6) Rita grafen till ekvationen.
Ma - ianca 2011 Uppgift nr 1 Givet funktionen f() = + 9 eräkna f(6) Uppgift nr 2 Givet funktionen f() = 5 + 3 eräkna f(7) Uppgift nr 3 Givet funktionen f() = -5 + 5 eräkna f(-3) Uppgift nr 10 Rita grafen
Läs merFöreläsning 3: Ekvationer och olikheter
Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta
Läs merDOP-matematik Copyright Tord Persson. Logövningar. Slumpad ordning. Uppgift nr 10 Lös ekvationen 10 y = 0,001. Uppgift nr 13 Lös ekvationen lg x = 4
Logövningar Uppgift nr 1 lg y -2 Uppgift nr 2 Huvudräkna lg200 + lg5 Uppgift nr 3 71 z 70 Uppgift nr 4 Ange derivatan till y e x Uppgift nr 5 Skriv 3 lg5 som en logaritm utan faktor framför. Uppgift nr
Läs merFormelhantering Formeln v = s t
Sidor i boken KB 6-8 Formelhantering Formeln v = s t där v står för hastighet, s för sträcka och t för tid, är långt ifrån en nyhet. Det är heller ingen nyhet att samma formel kan skrivas s = v t eller
Läs merEkvationer och olikheter
Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När
Läs merDenna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som
Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik
Läs mer1 Addition, subtraktion och multiplikation av (reella) tal
Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b
Läs merTalmängder. Målet med första föreläsningen:
Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt
Läs merNamn Klass Personnummer (ej fyra sista)
Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Läs merd) cos ( v) = a Se facit. Se facit. b) Se facit. sin x har maxvärdet 1 och minvärdet 1. c) ymax ymin
d) cos ( v) a Kapitel 7 Rita t.e. figur enligt s 9 fel. Rita t.e. figur enligt s 9 rätt. c) Huvudräkning: 8 6 Tredje kvadranten fel. d) tan v tan (v + n 8 ) rätt 8 Pythagoras: motstående katet sin v /,6
Läs merEn vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas.
Max och min för trigonometriska funktioner En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Ta t.ex y = 12 sin(3x-90) När man ska studera
Läs merAlgebra, kvadreringsregler och konjugatregeln
Algebra, kvadreringsregler och Uppgift nr 1 Multiplicera in i parentesen x(9 + 2y) Uppgift nr 2 Multiplicera in i parentesen 3x(7 + 5y) Uppgift nr 3 x² + 3x Uppgift nr 4 xy + yz Uppgift nr 5 5yz + 2xy
Läs mer6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Läs merStudieplanering till Kurs 2b Grön lärobok
Studieplanering till Kurs 2b Grön lärobok Den här studieplaneringen hjälper dig att hänga med i kursen. Planeringen följer lärobokens uppdelning i kapitel och avsnitt. Ibland får du tips på en inspelad
Läs merSammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
Läs merKOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Läs merf(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
Läs merP03. (A) Visa, att om en aritmetisk serie med differensen d har a som första och b som sista term, så är seriens summa b + a 2.
Kap P. P0. (A) Rita följande kurvor a. = + = c. = [ + ], där [a] betecknar heltalsdelen av talet a d. sgn( ), där sgn(a) betecknar tecknet av talet a. P0. (B) För vilka reella gäller + + + 4? P0. (A) Visa,
Läs merMoment Viktiga exempel Övningsuppgifter I
Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter
Läs merDOP-matematik Copyright Tord Persson Potenser. Matematik 1A. Uppgift nr 10 Multiplicera
Potenser Uppgift nr Skriv 7 7 7 i potensform Uppgift nr 2 Vilket tal är exponent och vilket är bas i potensen 9 6? Uppgift nr 3 Beräkna värdet av potensen (-3) 2 Uppgift nr 4 Skriv talet 4 i potensform
Läs merf(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
Läs merYlioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIKPROV KORT LÄROKURS..0 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte
Läs merDOP-matematik Copyright Tord Persson. Gränsvärden. Uppgift nr 10 Förenkla bråket h (5 + h) h. Uppgift nr 11 Förenkla bråket 8h + h² h
DOP-matematik Copyrigt Tord Persson Gränsvärden Uppgift nr 1 f(x) x². Gör denna värdetabell komplett genom att i tur oc ordning ersätta x i funktionen med de olika talen / uttrycken i tabellen. Första
Läs merEkvationslösning genom substitution, rotekvationer
Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar
Läs merBedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Läs merx 4 a b X c d Figur 1. Funktionsgrafen y = f (x).
Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på
Läs merATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan
Läs merTalmängder N = {0,1,2,3,...} C = {a+bi : a,b R}
Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att
Läs merInledande kurs i matematik, avsnitt P.4
Inledande kurs i matematik, avsnitt P.4 P.4. Bestäm definitionsmängd och värdemängd till funktionen f() = +. så ser vi att den har värdemängden [0, ). Eftersom funktionen G har utseendet någonting där
Läs mer4 Fler deriveringsregler
4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x
Läs mer1.2 Polynomfunktionens tecken s.16-29
Detta avsnitt handlar om olikheter. < mindre än > större än mindre än eller lika med (< eller =) större än eller lika med (> eller =) Vilka tal finns mellan 2 och 5? Alla tal som är större än 2. Och samtidigt
Läs merTentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
Läs mer7. Max 0/1/1. Korrekt kombinerad ekvation och påstående i minst två fall med korrekt svar
7. Max 0/1/1 Korrekt kombinerad ekvation och påstående i minst två fall med korrekt svar +1 C PL +1 A PL 8. Max 0/1/1 a) Korrekt svar (Alternativ E: 5 y 3 ) +1 C B b) Godtagbart svar (0) +1 A B 9. Max
Läs merSvar till S-uppgifter Endimensionell Analys för I och L
Svar till S-uppgifter Endimensionell Anals för I och L S a) ja, ja, ja, nej, ja S4 N = A(I σ MZ), Z = I (σ A N), A = I MA S5 Du har väl inte verkligen multiplicerat ut alla termer? a) resp. b) 4 resp.
Läs merDOP-matematik Copyright Tord Persson. Potensform. Uppgift nr 10. Uppgift nr 11 Visa varför kan skrivas = 4 7
Potensform Uppgift nr Vad menas i matematiken med skrivsättet 3 6? (Skall inte räknas ut.) Uppgift nr 2 värdet av potensen 3 2 Uppgift nr 3 Skriv 8 8 8 i potensform Uppgift nr 4 Skriv 4 3 som upprepad
Läs merNpMa2a ht Max 0/0/3
14. Max 0/0/3 Godtagbar ansats, t.ex. sätter ut lämpliga beteckningar och tecknar någon ekvation som krävs för bestämning av a +1 A PL med i övrigt godtagbar lösning med korrekt svar ( a = 12 ) +1 A PL
Läs merH1009, Introduktionskurs i matematik Armin Halilovic ============================================================
H9, Introduktionskurs i matematik EXTREMPUNKTER ============================================================. EXTREMPUNKTER OCH EXTREMVÄRDEN Definition. (Globalt maimum) Låt vara en punkt definitionsmängden
Läs merRepetition av matematik inför kurs i statistik 1-10 p.
Karlstads universitet Leif Ruckman Summasymbolen. Repetition av matematik inför kurs i statistik 1-10 p. I stället för att skriva en lång instruktion att vissa värden skall summeras brukar man använda
Läs merIII. Analys av rationella funktioner
Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu
Läs merFacit Läxor. hur många areaenheter som får plats cm 2 cm och 12 4 cm samt 3 cm 16 cm och 6 cm 8 cm.
Läa a) b) c) a) 6,8 b) 8, c) 66 a),99,09,,8,8 b) 0,0 Hon får 9 kr tillbaka. a) 00 b) 00 c) 00 6 a) 0 längder b) 7 m c) kr 7 Decimaltecknet skiljer heltalen från decimaltalen. Placeringen avgör om siffran
Läs merx 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
Läs merBASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson
Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.
Läs merKomposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Läs merTATM79: Föreläsning 1 Notation, ekvationer, polynom och summor
TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q
Läs merTATM79: Föreläsning 4 Funktioner
TATM79: Föreläsning 4 Funktioner Johan Thim augusti 08 Funktioner Vad är egentligen en funktion? Definition. En funktion f är en regel som till varje punkt i en definitionsmängd D f tilldelar precis ett
Läs merPlanering för kurs A i Matematik
Planering för kurs A i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs A Antal timmar: 90 (80 + 10) I nedanstående planeringsförslag tänker vi oss att A-kursen studeras på 90 klocktimmar.
Läs merFÖRBEREDANDE KURS I MATEMATIK 1. Till detta kursmaterial finns prov och lärare på Internet.
FÖRBEREDANDE KURS I MATEMATIK Till detta kursmaterial finns prov och lärare på Internet. Detta material är en utskrift av det webbaserade innehållet i wiki.math.se/wikis/forberedandematte Studiematerialet
Läs merSidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom
Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett
Läs merBedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Läs merLÖSNINGAR TILL ÖVNINGAR I FÖRBEREDANDE KURS I MATEMATIK 1. Till detta kursmaterial finns prov och lärare på Internet.
LÖSNINGAR TILL ÖVNINGAR I FÖRBEREDANDE KURS I MATEMATIK Till detta kursmaterial finns prov och lärare på Internet. Detta material är en utskrift av delar av det webbaserade innehållet i wiki.math.se/wikis/forberedandematte
Läs merLösningsförslag till Tentamen: Matematiska metoder för ekonomer
Matematiska Institutionen Tentamensskrivning STOKHOLMS UNIVERSITET kurskod: MM Eaminator: Åsa Ericsson 5-- Lösningsförslag till Tentamen: Matematiska metoder för ekonomer aril 5, kl 9:-: (a) Vi använder
Läs merFöreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.
Läs merMa C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm
Exponentialekvationer, potensekvationer, logaritmlagar Uppgift nr 1 10 z Uppgift nr 2 10 z = 0,0001 Uppgift nr 3 10 5y 000 Uppgift nr 4 10-4z Uppgift nr 5 Skriv talet 6,29 i potensform med 10 som bas.
Läs merEuklides algoritm för polynom
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma
Läs merx 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.
. Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig
Läs merdär x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r.
Lektion 4, Envariabelanals den 30 september 1999 där 0 < ξ 0 är högerledet alltid större än 2.6.2 Åskådliggör medelvärdessatsen genom att finna en punkt i det öppna intervallet (1, 2) där
Läs mer