Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07
|
|
- Åke Håkansson
- för 7 år sedan
- Visningar:
Transkript
1 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter 2.1 Grundbegrepp I sannolikhetsteorin sysslar man med händelser och deras sannolikheter. Man utgår från vissa sannolikheter, som man fått antingen från erfarenhet eller från situationer där alla fall är lika sannolika, och räknar från dessa ut andra sannolikheter Nya sannolikheter ur givna Betrakta, som i förra veckan, följande händelser, som vi kan kalla A och B: A : Det regnar i morgon B : Det blåser i morgon. Låt oss anta att man på grundval av erfarenhet bedömer sannolikheterna för händelserna till 0.7 resp Detta skrivs = 0.7, P(B) = 0.5, där bokstaven P kommer av det engelska probability. Tolkningen är att det regnar resp. blåser i 70 resp. 50 procent av dagarna vid den här årstiden och med hänsyn till dagens väder. Vilka siffror man kommer fram till beror 1
2 på vad man menar exakt, men hur man än gör detta gäller att i resten av dagarna regnar det inte resp. blåser inte, dvs. P(A c ) = = 0.3, P(B c ) = = 0.5, där c på en händelse betyder att den inte inträffar. Om man nu utbrister, om det regnar eller blåser i morgon }{{} A B så går jag inte ut, är det underförstått att om det både blåser och regnar, så går man naturligtvis inte heller ut. För att räkna ut sannolikheten för A B uttalas A union B eller A eller B, kan man inte bara lägga ihop 0.7 och 0.5, för då blir resultatet större än ett och det kan det inte vara om det skall representera andelen dagar. Felet är att de gånger det både regnar och blåser räknas med två gånger, eftersom de finns både i A och B, så vi får dra bort den ena. Säg att man har kommit fram till att det både regnar och blåser i 40 procent av dagarna. Då gäller, enligt förra veckan, P(A B) = + P(B) P(AB) = = 0.8. Istället för AB kan man skriva A B. Uttalet är A snitt B eller A och B Sannolikheter givna av symmetriskäl Som exempel på när sannolikheter är givna av symmetriskäl kan vi ta tärningskast. Mer användbara exempel kommer senare. Alla sex sidorna är likvärdiga, så vart och ett av utfallen har sannolikhet 1/6. Gör man två tärningskast finns det 36 utfall, etta etta, etta tvåa, osv. till etta sexa, sedan tvåa etta, tvåa tvåa, osv. enligt samma system och slutligen sexa sexa. Alla utfallen har sannolikheten 1/36. Vill man nu räkna ut t ex sannolikheten att summan av poängtalen är tre, får man P(summan = 3) = P(etta, tvåa) + P(tvåa, etta) = = = Här behöver man inte dra ifrån sannolikheten att bägge möjligheterna skall inträffa eftersom det är omöjligt; dess sannolikhet är noll. På liknande sätt är P(summan = 4) = P(etta, trea) + P(tvåa, tvåa) + P(trea, etta) = 2
3 = = Så kan man fortsätta. Störst sannolikhet har P(summan = 7) = 6 sedan minskar sannolikheten igen. Resultatet är 1 36 = 1 6, summa sannolikhet eller i formelspråk P(summan = k) = { k 1 36 om k = 2,3,4,5,6,7 13 k 36 om k = 8,9,10,11,12 Sådana här räkningar kommer igen senare i samband med stokastiska variabler, som är försök där utfallen är tal. Det kan till exempel vara antal bilar på en väg eller belastningen på en konstruktion. Exemplet med tärningarna är också en tillämpning på begreppet utfallsrum. Detta består här av de 36 utfallen. En delmängd av utfallsrummet t. ex de utfall som ger summan 4, definieras i matematiken som händelse. Sammanfattning Man utgår från givna sannolikheter och räknar ut nya enligt följande regler: 0 1. P(A c ) = 1. P(A B) = + P(B) P(AB). Om A och B inte kan inträffa samtidigt utgår termen P(AB). I nästa avsnitt skall vi betrakta fallet när A och B är oberoende och P(AB) = P(B), samt några sätt att räkna annars Sannolikheter givna av relativa frekvenser Detta kommer i laborationen i vecka 4. 3
4 2.2 Betingade sannolikheter och oberoende händelser Vi börjar med ett exempel: En urna innehåller 5 vita och 3 svarta kulor. Man drar 2 kulor. Vad är sannolikheten att bägge är vita? P(första vit) = = 5 8. När man drar den andra kulan har betingelserna ändrats, om den första blev vit finns det 4 vita och 3 svarta kvar. Den betingade sannolikheten är därför P(andra vit första vit) = = 4 7. Det lodräta trecket betyder att man betingar med avseende på det som står till höger om strecket. Rimligtvis gäller P(bägge vita) = P(första vit)p(andra vit första vit) = = Om händelserna betecknas med A resp. B har vi P(AB) = P(B A), vilket är en allmän formel. P(B A) kallas den betingade sannolikheten för B givet A. Man kan också vända på formeln och få I exemplet med vädret ger detta P(B A) = P(AB). P(blåser regnar) = P(B A) = P(AB) = = 4 7, vilket är större än P(blåser) = 0.5. Förklaringen till detta är att regn och blåst är beroende; har man det ena så har man ofta det andra också. Man kan också räkna ut P(regnar blåser) = P(A B) = P(AB) P(B) = 0.4 = 0.8 > 0.7 = P(regnar); 0.5 vaknar man på morgonen och hör blåsten vina, ökar det sannolikheten för regn. 4
5 Observera att med är det viktigt det roll vilket som står till höger och vänster, medan P(AB) = P(BA), det är ju samma händelse uttryckt på olika sätt. Ibland gäller P(B A) = P(B), vilket är samma sak som P(AB) = P(B). Detta kallas att A och B är oberoende. Exempel på detta är tärningskasten ovan, där t. ex. P(tvåa, femma) = P(tvåa)P(femma) = = Avslutningsvis skall vi räkna ut P(A B) när A och B är oberoende. P(A B) = + P(B) P(AB) = + P(B) P(B). Alternativt kan man använda tricket att övergå till komplementhändelser, dvs, att händelsen inte inträffar. Att A B inte inträffar är samma sak som att A inte inträffar och B inte inträffar. Nu är P(A B) = 1 P(A c B c ). Men om A och B är oberoende, så är deras komplement det också, så och alltså P(A c B c ) = P(A c )P(B c ) = (1 )(1 P(B)), P(A B) = 1 (1 )(1 P(B)). Som kontroll kan vi multiplicera ihop parenteserna och förkorta bort ettan, vilket ger samma formel som innan. Fördelen med den senare metoden är att den är lätt att generalisera till fler än två händelser. Sammanfattning P(AB) = P(B A), P(AB) = P(B)P(A B). P(B A) = P(AB), P(A B) = P(AB) P(B). 5
6 P(AB) = P(BA). Oberoende: P(AB) = P(B), dvs. P(B A) = P(B), dvs. P(A B) =. 2.3 Total sannolikhet och Bayes formel Det här är en teknik som används när man har en händelse som kan uppnås längs flera vägar. I exemplet med urnan skulle vi få först en vit kula och sedan en vit till. Om vi istället är intresserade av sannolikheten att få en av varje, finns två vägar; P(en av varje) = P(först vit sedan svart) + P(först svart sedan vit) = = = En typisk tillämpning är följande: Man köper något som helst skall fungera, till exempel belysning till sin cykel. Denna kan vara tillverkad 1) på en måndag, 2) på en fredag eller 3) på någon annan arbetsdag. Sannolikheterna för dessa fall antas vara 1/5, 1/5, resp. 3/5. Måndagsexemplar antas fungera med sannolikheten 0.5, medan de övriga fungerar med sannolikheterna 0.7, resp Sannolikheten att belysningen funderar är då P(fungerar) = = P(måndag och fungerar)+p(fredag och fungerar)+p(annan dag och fungerar) = = = = Med beteckningarna A H 1 H 2 H 3 fungerar tillverkad på måndag tillverkad på fredag tillverkad på annan dag blir räkningarna = P(AH 1 ) + P(AH 2 ) + P(AH 3 ) = = P(H 1 )P(A H 1 ) + P(H 2 )P(A H 2 ) + P(H 3 )P(A H 3 ) = = =
7 Detta är formeln för total sannolikhet. Antag nu att de visar sig att belysningen fungerar. Vad är då den betingade sannolikheten att det är ett måndagsexemplar? Vi vet att händelsen med sannolikhet har inträffat. De betingade sannolikheterna för de olika fallen bör då ha motsvarande proportioner, dvs. och P(måndag fungerar) = P(fredag fungerar) = P(annan dag fungerar) = = , = , = Lägg märke till att summan av dessa sannolikheter är ett. I formelspråk blir räkningarna. P(måndag fungerar) = P(H 1 A) = P(AH 1) = , osv. för H 2 och H 3. Detta är Bayes formel. = P(H 1)P(A H 1 ) = Sammanfattning Total sannolikhet: = n k=1 P(H k)p(a H k ). Bayes formel: P(H k A) = P(AH k) sannolikhet. = P(H k)p(a H k ) 2.4 kombinatorik och urnmodeller, där fås ur total Detta går vi igenom i samband med övningarna och binomialfördelningen i avsnitt 3. Där tar vi upp: Multiplikationsprincipen. Additionsprincipen. Antalet sätt att välja k element ur n utan hänsyn till ordning är ( n k). 7
8 2.5 Ett exempel på oändligt utfallsrum Exemplet är hämtat från en klassisk bok: B. W. Gnedenko: Kurs i sannolikheternas teorier (1950). Två personer kommer överens om att träffas på en bestämd plats mellan klockan 12 och 13 och att den som kommer först väntar högst 20 minuter och sedan går därifrån. Under förutsättning att de kan komma lika gärna när som helst i tidsintervallet och oberoende av varandra, hur stor är sannolikheten att de träffas? Utfallsrummet är nu en kvadrat där x-koordinaten är den ena personens ankomsttid och y-koordinaten den andras. Om x-personen kommer först, dvs om x < y, träffas de om y < x + 20 och motsvarande om y-personen kommer först. Händelsen att de träffas är alltså området mellan linjerna y = x 20 och y = x + 20, som är inritade i figuren. I figuren är kvadraten också indelad i 36 småkvadrater med sidan Figure 1: A:s och B:s ankomsttider i minuter efter kl 12 Enligt antagandet gäller att om man delar in kvadraten i likadana småkvadrater, har dessa samma sannolikhet. Delar man en kvadrat på diagonalen, har de bägge trianglarna samma sannolikhet. Nu är det bara att räkna antalet hela 8
9 och halva rutor inom träffområdet. Sannolikheten att träffas är alltså /2 36 = 5 9. Det här är naturligtvis ingenting annat än arean av händelsen dividerad med arean av hela utfallsrummet, så P(träffas) = / / = 5 9. Man kan lika gärna räkna ut 1 P(inte träffas) eller räkna i timmar och få samma resultat. I avsnittet om stokastiska variabler kommer situationen när man inte har likformig sannolikhetsfördelning. Man kan åskådliggöra detta som att sannolikheten för en händelse är proportionell mot dess vikt och räkna enligt vikt = densitet dxdy. 9
Kombinatorik och sannolikhetslära
Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i
Läs merOm sannolikhet. Bengt Ringnér. August 27, Detta är introduktionsmaterial till kursen i matematisk statistik för lantmätarprogrammet
Om sannolikhet Bengt Ringnér August 27, 2007 1 Inledning Detta är introduktionsmaterial till kursen i matematisk statistik för lantmätarprogrammet vid LTH hösten 2007. 2 Sannolikhetsteori Sannolikhetsteori,
Läs merMatematisk statistik - Slumpens matematik
Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på
Läs merhändelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning
Läs merSF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Läs merSannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann
Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,
Läs mer1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
Läs merMatematisk statistik 9hp för: C,D,I, Pi
Matematisk statistik 9hp för: C,D,I, Pi Föreläsning 1, Sannolikhet Stas Volkov September 12, 2017 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F1: Sannolikhet 1/27 Tillämpningar Praktiska detaljer Matematisk
Läs merFöreläsning 1, Matematisk statistik Π + E
Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori
Läs merFöreläsning 2. Kapitel 3, sid Sannolikhetsteori
Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,
Läs merMatematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare
Läs merMatematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet
Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel uwe.menzel@slu.se 23 augusti 2017 Slumpförsök Ett försök
Läs merTAMS79: Föreläsning 1 Grundläggande begrepp
TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.
Läs merKap 2: Några grundläggande begrepp
Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de
Läs merFöreläsning 1, Matematisk statistik för M
Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:
Läs merUtfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse
Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas
Läs merS0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist
Föreläsning 1 4.1 Slumpässighet 4.2 Sannolikhetsmodeller Viktiga grundbegrepp Slumpmässig (eng: random) Ett fenomen är slumpmässigt om individuella resultat är osäkra, men resultat alltid förekommer med
Läs merTMS136. Föreläsning 2
TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 26 mars, 2015 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Läs merKolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog
Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet
Läs merBetingad sannolikhet och oberoende händelser
Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger
Läs merTMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de
Läs merFöreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
Läs merÖvning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
Läs merF2 SANNOLIKHETSLÄRA (NCT )
Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive
Läs merSannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om
Läs merSF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att
Läs merSF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Läs merTMS136. Föreläsning 2
TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen
Läs merF5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Läs merTMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns
Läs merReliability analysis in engineering applications
Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 65 Många tänker på tabeller 1 när de hör ordet statistik.
Läs mer7-1 Sannolikhet. Namn:.
7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Läs merNågot om kombinatorik
Något om kombinatorik 1. Inledning Kombinatoriken är den gren av matematiken som försöker undersöka på hur många olika sätt något kan utföras. Det kan vara fråga om mycket olika slag av problem. Kombinatoriska
Läs mer1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5
1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler
Läs merStatistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik
Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten
Läs merSannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14
1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet
Läs merSannolikhetsbegreppet
Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34
Läs mer1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Läs merStatistikens grunder HT, dagtid Statistiska institutionen
Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet
Läs merIntroduktion till sannolikhetslära. Människor talar om sannolikheter :
F9 Introduktion till sannolikhetslära Introduktion till sannolikhetslära Människor talar om sannolikheter : Sannolikheten att få sju rätt på Lotto Sannolikheten att få stege på en pokerhand Sannolikheten
Läs merSF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Läs mer4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Läs merAnna: Bertil: Cecilia:
Marco Kuhlmann 1 Osäkerhet 1.01 1.02 1.03 1.04 1.05 Intelligenta agenter måste kunna hantera osäkerhet. Världen är endast delvist observerbar och stokastisk. (Jmf. Russell och Norvig, 2014, avsnitt 2.3.2.)
Läs merF3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att
Stat. teori gk, ht 2006, JW F3 SANNOLIKHETSLÄRA (NCT 4.3-4.4) Ordlista till NCT Complement rule Addition rule Conditional probability Multiplication rule Independent Komplementsatsen Additionssatsen Betingad
Läs mer{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}
Mängder grundbegrepp En mängd är en samling objekt Ex: { } { } A = 0, 1 B = 0 C = { 7, 1, 5} tomma mängden (har inga element) D = { 1, 2, 3,, 10} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} kallas element i mängden
Läs merInstitutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).
UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om kombinatorik Mikael Hindgren 24 september 2018 Vad är kombinatorik? Huvudfråga: På hur många sätt kan en viss operation utföras? Några exempel: Hur många gånger
Läs mer7-2 Sammansatta händelser.
Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och
Läs merLinjära ekvationer med tillämpningar
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Läs merStatistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov
OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl
Läs merÖvningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler
Läs merFöreläsning G70, 732G01 Statistik A
Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde
Läs merProbabilistisk logik 1
729G43 Artificiell intelligens / 2016 Probabilistisk logik 1 Marco Kuhlmann Institutionen för datavetenskap Osäkerhet 1.01 Osäkerhet Agenter måste kunna hantera osäkerhet. Agentens miljö är ofta endast
Läs mer3 Grundläggande sannolikhetsteori
3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket
Läs merKapitel 2. Grundläggande sannolikhetslära
Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.
Läs merSF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
Läs merFÖRELÄSNING 3:
FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data
Läs merSannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?
Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer
Läs mer8-1 Formler och uttryck. Namn:.
8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?
Läs merJörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Läs merSTA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och
Läs merSTA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och
Läs merkvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.
Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att
Läs merBonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad
Läs merExempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift
Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan
Läs merLösningar och lösningsskisser
Lösningar och lösningsskisser Diskret matematik för gymnasiet, :a upplagan, Liber AB Kapitel, Sannolikhetslära och Kombinatorik 0. a) ( ) ( ) h!! ( )!!! 9!! 9!!! h! ( h)!! h! ( h)!! h! ( h)! Likheten är
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
Läs merLärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Läs merExtramaterial till Matematik X
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ TVÅ Sannolikhet ELEV Du kommer nu att få bekanta dig med Google Kalkylark. I den här uppgiften får du öva dig i att skriva
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,
Läs merKap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Sannolikhetslära (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Läs merFMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet Anna Lindgren 18 januari 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Tillämpningar Praktiska
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2015 Jan Grandell & Timo Koski () Matematisk statistik 21.01.2015 1 / 1 Repetition:
Läs merVeckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology Mars 23, 2015 Lärare och kurslitteratur : Rum: E-mail: Anders Hildeman: Rum: E-mail: Kursansvarig och föreläsare H3018
Läs merFinansiell statistik, vt-05. Sannolikhetslära. Mängder En mängd är en samling element (objekt) 1, 2,, F2 Sannolikhetsteori. koppling till verkligheten
Johan, Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F2 Sannolikhetsteori Sannolikhetslära koppling till verkligheten mängdlära räkna med sannolikheter definitioner
Läs merSF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:
Läs merKOMBINATORIK. Exempel 1. Motivera att det bland 11 naturliga tal finns minst två som slutar på samma
Explorativ övning 14 KOMBINATORIK Kombinatoriken används ofta för att räkna ut antalet möjligheter i situationer som leder till många olika utfall. Den används också för att visa att ett önskat utfall
Läs merDenna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 23 mars, 2015 KURSINFORMATION Blom m.fl. Sannolokhetsteori och statistikteori
Läs mer4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Läs mer4-7 Pythagoras sats. Inledning. Namn:..
Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman
Läs merFöreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology August 29, 2016 Lärare : Rum: E-mail: Anders Hildeman: Rum: E-mail: Sandra Eriksson Barman: Rum: E-mail: Kursansvarig
Läs merKombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1
Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 70 Många tänker på tabeller 1 när de hör ordet statistik.
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Läs merSTOKASTIK Sannolikhetsteori och statistikteori med tillämpningar
2007-10-08 sida 1 # 1 STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar Sven Erick Alm och Tom Britton Typsatt med liber1ab 2007-10-08 1 2007-10-08 sida 2 # 2 2007-10-08 sida i # 3 Innehåll
Läs mer