Kap 2: Några grundläggande begrepp
|
|
- Ann Svensson
- för 8 år sedan
- Visningar:
Transkript
1 Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de termerna: Försök, händelse, utfall, permutation och kombinatorik? Hur beräknar vi sannolikheten genom att använda additionssatsen? Vad menar vi med: betingad sannolikhet? Hur beräknar vi sannolikheten genom att använda multiplikationssatsen? 1
2 Varför sannolikhetslära är viktigt? För att kunna: dra statistiska slutsatser Används inom många vetenskaper Används till vardags 2
3 Exempel 1: Myntkastförsök Myntkast (krona, klave?): Antag att du har för avsikt att kasta ett mynt. Resultatet (utfallet) av detta slumpförsök är krona eller klave, och sannolikheten för klave är ½ vilken är sannolikheten för krona. Detta brukas skrivas på följande sätt: P(klave) = 0.5 P(krona) = 0.5 P kommer från latinets probabilitias. 3
4 Exempel 2: Tärningskastförsök Tärningskast (1,2,3,4,5,6?) När man kastar en tärning kan resultatet (utfallet) bli att sidan som hamnar upp 1, 2,, eller 6 prickar. Av symmetriskäl är sannolikheten för var och en av de 6 olika utfallen lika sannolika, vilket gör att var och en måste ha sannolikheten 1/6: P(1 prick) = P(2 prickar) = = P(6 prickar) = 1/6. 4
5 Träddiagram Ett alternativt sätt att få struktur på problemet Ett utmärkt redskap för att räkna ut sannolikheter för Ex: Dra två kort från en kortlek utan återläggning Exempel 2.1, sidan 39 5
6 Träddiagram för experimentet att dra två kort (utan återläggning) ur en kortlek 3/51 Ess 4/52 Ess 48/51 Ej Ess 4/51 Ess 48/52 Ej Ess 47/51 Ej Ess 6
7 Definitioner Försök: allmänt är att utföra någon handling och sedan invänta resultatet av den utförda handlingen Ex: att kasta en tärning och sedan notera hur många prickar som kommer up Deterministisk försök: ett försök som alltid ger samma resultat då upprepas under samma betingelser Ex: en ovanlig tärning där alla sidor har endast en prick Slumpmässigt försök: ett försök som vid upprepning under samma betingelser ger resultat som varierar från gång till gång Ex: Upprepade kast med en tärning 7
8 Definitioner forts Utfall: resultatet av ett slumpmässigt försök Ex forts: 5 prickar Utfallsrum: alla möjliga utfall som försöket kan ge Ex forts: {1, 2, 3, 4, 5, 6} Händelse: en samling av ett eller flera utfall Händelser betecknas med stora bokstäver A, B, C, Ex forts: låt händelsen (A) vara att få ett jämnt antal ögon upp. A = {2, 4, 6} 8
9 Definitioner forts Sannolikhet: är ett mått på hur säkert det är att en händelse skall inträffa Sannolikheten för en händelse är ett tal mellan 0 och 1 Subjektiva sannolikheter: sannolikheter är personliga och mäter grad av övertygelse Ex: chansen är 90% att du får jobbet (enligt min bedömning) 9
10 Klassiska sannolikheten Likformig sannolikhetsfördelning: Ett slumpförsök där varje utfall har samma sannolikhet. Om det totalt finns n möjliga utfall betyder att varje utfall har sannolikheten 1/n. Klassisk sannolikhet: För en likformig sannolikhetsfördelning gäller följande P( A) = antal gynsamma utfall antal möjliga utfall Exempel 2.2, sidan 42 10
11 Empiriska sannolikheten Som baserad på relativa frekvensen, som t ex vid kast med tärning P( att få 6:a ) = antalet kast som ger 6:a / totala antalet kast 11
12 Några viktiga händelser och termer (Venn-diagram) Utfallsrummet Händelsen A, A inträffar Komplementära händelsen ~A till A, A inträffar inte Unionhändelsen, A eller B eller båda inträffar B A Snitthändelsen, både A och B inträffar B A A och B oförenliga händelser, A och B kan inte inträffa samtidigt B A 12
13 Exempel 3 Försök: kasta en tärning och notera antalet prickar som kommer upp Utfallsrum S: S = {1, 2, 3, 4, 5, 6} Händelsen A: A = udda antal prickar dvs. A = {1, 3, 5} Händelsen B: B = antalet prickar är mindre än fyra dvs. B = {1, 2, 3} 13
14 Exempel forts Unionen: Händelsen C: C = A eller B inträffar C = A B = {1, 2, 3, 5} Snittet: Händelsen D: D = A och B inträffar D = A B = {1, 3} 14
15 Exempel forts Ibland kan vi vilja uttala oss om motsatta händelsen till A eller B eller C A c = {2, 4, 6} B c = {4, 5, 6} AUA c = S BUB c = S 15
16 Axiom 1 För varje händelse A gäller att 0 P( A) 1 16
17 Axiom 2 För hela utfallsrummet S gäller att P(S)=1 17
18 Axiom 3 Om A och B är disjunkta gäller att P( A B) = P( A) + P( B) Dessa tre axiom utgör grunden för hela sannolikhetsteorin Från axiomen kan vi t.ex. härleda följande viktiga satser: ( A ) = 1 P( A) P c P( ) = 0 18
19 Några regler för att beräkna sannolikheten Additionssatsen Komplementsatsen Betingad sannolikhet Multiplikationssatsen 19
20 Additionssatsen P(A U B) = P(A) + P(B) P(A B) För disjunkta (ömsesidigt uteslutande) händelser gäller att P(A B) = 0, dvs. P(A U B) = P(A) + P(B) Ex: i exempel 3 kan P(A U B) då beräknas som P(A U B) =3/6 + 3/6 2/6 =4/6 Antal möjliga utfall P( A) = antal gynsamma utfall antal möjliga utfall 20
21 Komplementsatsen P(A) = 1 P(A c ) Ex: i exempel 3 kan P(A) då beräknas som P(A) = 1 3/6 = 3/6 Exempel 2.8, sidan 49 21
22 Betingad sannolikhet Ibland är man intresserad av att beräkna sannolikheten för en händelse A när man vet att en annan händelse B har inträffat Detta kallas för den Betingade sannolikheten för A givet att B har inträffat och definieras som P(A B) = P(A B)/P(B), P(B)>0 Betingad sannolikheten för B givet att A har inträffat P(B A) = P(A B)/P(A) 22
23 Exempel 4 I exempel 3 kan P(A B) då beräknas som P(A B) = P(A B)/P(B) = 2/6 / 3/6 = 2/3 Exempel 2.12, sidan 57 23
Introduktion till sannolikhetslära. Människor talar om sannolikheter :
F9 Introduktion till sannolikhetslära Introduktion till sannolikhetslära Människor talar om sannolikheter : Sannolikheten att få sju rätt på Lotto Sannolikheten att få stege på en pokerhand Sannolikheten
Föreläsning 2. Kapitel 3, sid Sannolikhetsteori
Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,
Föreläsning 1. Grundläggande begrepp
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 1 Sannolikhetsteori (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
F2 SANNOLIKHETSLÄRA (NCT )
Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive
Föreläsning 1, Matematisk statistik Π + E
Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Sannolikhetslära (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet
Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska
Matematisk statistik 9hp för: C,D,I, Pi
Matematisk statistik 9hp för: C,D,I, Pi Föreläsning 1, Sannolikhet Stas Volkov September 12, 2017 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F1: Sannolikhet 1/27 Tillämpningar Praktiska detaljer Matematisk
händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning
Matematisk statistik - Slumpens matematik
Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik
Grundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel uwe.menzel@slu.se 23 augusti 2017 Slumpförsök Ett försök
Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse
Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas
Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog
Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet
Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov
OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population
Kombinatorik och sannolikhetslära
Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i
TMS136. Föreläsning 2
TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast
Sannolikhetsbegreppet
Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34
Grundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de
SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 26 mars, 2015 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Reliability analysis in engineering applications
Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University
Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann
Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,
Föreläsning 1, Matematisk statistik för M
Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:
TMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker
TAMS79: Föreläsning 1 Grundläggande begrepp
TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.
Föreläsning G70, 732G01 Statistik A
Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde
Statistikens grunder HT, dagtid Statistiska institutionen
Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet
F3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att
Stat. teori gk, ht 2006, JW F3 SANNOLIKHETSLÄRA (NCT 4.3-4.4) Ordlista till NCT Complement rule Addition rule Conditional probability Multiplication rule Independent Komplementsatsen Additionssatsen Betingad
3 Grundläggande sannolikhetsteori
3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare
SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på
Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14
1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet
TMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att
TMS136. Föreläsning 2
TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5
1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler
Betingad sannolikhet och oberoende händelser
Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger
S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist
Föreläsning 1 4.1 Slumpässighet 4.2 Sannolikhetsmodeller Viktiga grundbegrepp Slumpmässig (eng: random) Ett fenomen är slumpmässigt om individuella resultat är osäkra, men resultat alltid förekommer med
{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}
Mängder grundbegrepp En mängd är en samling objekt Ex: { } { } A = 0, 1 B = 0 C = { 7, 1, 5} tomma mängden (har inga element) D = { 1, 2, 3,, 10} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} kallas element i mängden
Finansiell statistik, vt-05. Sannolikhetslära. Mängder En mängd är en samling element (objekt) 1, 2,, F2 Sannolikhetsteori. koppling till verkligheten
Johan, Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F2 Sannolikhetsteori Sannolikhetslära koppling till verkligheten mängdlära räkna med sannolikheter definitioner
Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik
Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten
SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 23 mars, 2015 KURSINFORMATION Blom m.fl. Sannolokhetsteori och statistikteori
Kapitel 2. Grundläggande sannolikhetslära
Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet Anna Lindgren 18 januari 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Tillämpningar Praktiska
Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om
Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga
Matematisk statistik
Matematisk statistik för STS vt 2004 2004-03 - 23 Bengt Rosén Matematisk statistik Ämnet matematisk statistik omfattar de två delområdena Sannolikhetsteori Statistikteori Bloms A - bok behandlar sannolikhetsteori,
STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar
2007-10-08 sida 1 # 1 STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar Sven Erick Alm och Tom Britton Typsatt med liber1ab 2007-10-08 1 2007-10-08 sida 2 # 2 2007-10-08 sida i # 3 Innehåll
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter
7-1 Sannolikhet. Namn:.
7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 65 Många tänker på tabeller 1 när de hör ordet statistik.
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad
Slumpförsök för åk 1-3
Modul: Sannolikhet och statistik Del 3: Att utmana elevers resonemang om slump Slumpförsök för åk 1-3 Cecilia Kilhamn, Göteborgs Universitet Andreas Eckert, Linnéuniversitetet I följande text beskrivs
Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).
UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel
MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus
MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar
14.1 Diskret sannolikhetslära
14.1 Diskret sannolikhetslära 14.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av utfall kallas försökets utfallsrum. Varje delmängd av
Matematisk statistik för D, I, Π och Fysiker. Matematisk statistik slumpens matematik. Tillämpningar för matematisk statistik.
Matematisk statistik för D, I, Π och Fysiker Föreläsning 1 Johan Lindström 4 september 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F1 2/29 Matematisk statistik slumpens matematik Sannolikhetsteori:
Kapitel 2. Grundläggande sannolikhetslära
Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Kursinformation 13 föreläsningar: Måns Thulin, mans.thulin@statistik.uu.se 3 h: normalt 2 h föreläsning + 1 h räknestuga 7 räkneövningar:
Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se
May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment
F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
7-2 Sammansatta händelser.
Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och
SF1914/SF1916: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.
SF1914/SF1916: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 27 augusti, 2018 KURSINFORMATION Blom m.fl. Sannolikhetsteori
5. BERÄKNING AV SANNOLIKHETER
5. BERÄKNING V SNNOLIKHETER 5.1 dditionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt
Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?
Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer
MATEMATIKSPELET TAR DU RISKEN
MATEMATIKSPELET TAR DU RISKEN 1. Kasta en tärning 20 gånger. Målet är att minst 10 gånger få ögontalet 4, 5 eller 6. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 2. Kasta
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2015 Jan Grandell & Timo Koski () Matematisk statistik 21.01.2015 1 / 1 Repetition:
Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift
Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan
Grundläggande matematisk statistik
Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Lösningar och lösningsskisser
Lösningar och lösningsskisser Diskret matematik för gymnasiet, :a upplagan, Liber AB Kapitel, Sannolikhetslära och Kombinatorik 0. a) ( ) ( ) h!! ( )!!! 9!! 9!!! h! ( h)!! h! ( h)!! h! ( h)! Likheten är
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,
SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.
Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Något om sannolikheter, slumpvariabler och slumpmässiga urval
LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form
1 Mätdata och statistik
Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology Mars 23, 2015 Lärare och kurslitteratur : Rum: E-mail: Anders Hildeman: Rum: E-mail: Kursansvarig och föreläsare H3018
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor
Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt
Experimentera i sannolikhet från teoretisk sannolikhet till data
Modul: Sannolikhet och statistik Del 3. Sannolikhet kopplingen mellan teoretisk modell och data Experimentera i sannolikhet från teoretisk sannolikhet till data Per Nilsson, Örebro universitet Sannolikhet
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 3. TK 3.11.2017 TK Matematisk statistik 3.11.2017 1 / 53 Probability: What is it? Probability is a number between 0 and 1 that predicts the (relative) frequency
15.1 Mer om betingad sannolikhet
15.1 Mer om betingad sannolikhet Exempel 1. En vanlig tärning kastas Låt A tärningen visar 1 Låt B tärningen visar ett udda poängantal Bestäm P(A). Bestäm P(A B), det vill säga: Hur stor är sannolikheten
Uppgifter 6: Kombinatorik och sannolikhetsteori
Grunder i matematik och logik (2017) Uppgifter 6: Kombinatorik och sannolikhetsteori Marco Kuhlmann Kombinatorik Nivå A 6.01 En meny består av tre förrätter, fem huvudrätter och två efterrätter. På hur
FÖRELÄSNING 3:
FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data
5. BERÄKNING AV SANNOLIKHETER
5. BERÄKNING AV SANNOLIKHETER 5.1 Additionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt
SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 28 augusti, 2017 KURSREGISTRERING Det är viktigt att du kursanmäler
STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och
Satsen om total sannolikhet och Bayes sats
Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om
Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material,
Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material, Hur stor är chansen? NAMN Ni kommer att utvärdera olika spel för att hjälpa er förstå sannolikheten. För varje spel, förutsäga vad som
Finansiell statistik, vt-05. Bayes sats. Bayes sats; forts. F3 Sannolikhetsteori. Exempel: antag att vi har tre skålar P( ) = 0 P( ) = 2/5 P( ) = 4/5
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt- F Sannolikhetsteori Bayes sats Exempel: antag att vi har tre skålar / 4/ och någon väljer skål m slh: / /6 /
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
Vad kan hända? strävorna
strävorna 4D Vad kan hända? föra, följa och värdera matematiska resonemang sannolikhet Avsikt och matematikinnehåll Innebörden i sannolikhet är en viktig kunskap för alla. Det finns gott om exempel på
Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning
Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel
Dagens Teori. A) Försöket att kasta en tärning har sex utfall, vilka vi kan beteckna 1, 2, 3, 4, 5, 6. Utfallsrummet
Dagens Teori 8.1 Diskret sannolikhetslära 8.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av alla utfall kallas försökets utfallsrum. Varje