Övning 1 Sannolikhetsteorins grunder
|
|
- Klara Bergman
- för 6 år sedan
- Visningar:
Transkript
1 Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är parvis oföreneliga, innebär detta att {A i A j } = för j i. Kolmogorovs axiomsystem 1. Axiom 1: För en händelse A Ω, gäller 0 P (A) Axiom 2: För utfallsrummet Ω gäller, P (Ω) = Axiom 3: Additionsformeln: om A 1, A 2, A 3,..., A n är en ändlig, eller uppräkneligt oändlig, följd av disjunkta händelser så är P (A 1 A 2 A 3 A n ) = P (A 1 )+P (A 2 )+ +P (A n ). Därmed fås för två disjunkta händelser som bekant att: P (A B) = P (A) + P (B), ty deras snitt är tomma mängden. Additionssatsen för två godtyckliga mängder A Ω and B Ω gäller Ur detta följer Booles olikhet P (A B) = P (A) + P (B) P (A B) P (A B) P (A) + P (B). Ty om A och B disjunkta fås P (A B) = 0, och om de är icke-disjunkta fås P (A B) > 0. De Morgans regler är hjälpsamma då man ska hantera komplement eller snitt/unioner av ett flertal händelser. De är (A B) = A B, (A B) = A B A (B C) = (A B) (A C) A (B C) = (A B) (A C) Den klassiska sannolikhetsdefinitionen lyder: Vid likformigt sannolikhetsmått är sannolikheten för en händelse lika med kvoten mellan antalet för händelsen gynnsamma utfall och antal möjliga utfall. Där likformigt sannolikhetsmått innebär att P (ω i ) = 1/m, i = 1, 2,..., m. Ett exempel är ett tärningskast, här fås utfallsrummet Ω = {ω 1, ω 2, ω 3, ω 4, ω 5, ω 6 } = {1, 2, 3, 4, 5, 6}, där alla utfall har samma sannolikhet att inträffa och då fås att P (ω i ) = 1/6, då vi har m = 6. För teori kring kombinatorik vänligen se kursboken eller föreläsningsanteckningar. Övning 2 och 3 Betingade sannolikheter, oberoende händelser Betingade sannolikheter, låt A och B vara två händelser, den betingade sannolikheten för B, givet A motsvarar P (A B) P (B A) P (B A) = = P (A) P (A) Om P (A) = 0 låter vi ovanstående sannolikhet vara obestämd. Idén bakom betingade sannolikheter är att om vi vet att händelsen A inträffat så befinner vi oss i ett mindre och mer begränsat utfallsrum, således normerar vi alla sannolikheter med 1/P (A) för att summan av alla sannolikheter i A ska motsvara 1, i enlighet med Kolmogorovs andra axiom. Man kan tänka att P (A) = P (A Ω) = P (A Ω)/P (Ω) = P (A Ω) = P (A), d.v.s. att vi implicit betingar på hela utfallsrummet då bara sannolikheten för A söks. Betingade sannolikheter uppfyller axiomsystemet: P (B A) = 1 P (B A), då axiomsystemet säger att P (Ω) = P (B B ) = {B och B disjunkta} = P (B) + P (B ) = 1
2 Lagen om total sannolikhet lyder: Om händelserna H 1, H 2,..., H n är parvis oföreneliga och n i=1 H i = Ω, alltså att händelserna täcker hela utfallsrummet, gäller för varje händelse A Ω att P (A) = P (A H 1 ) + P (A H 2 ) + + P (A H n ) = = {använd formeln för betingad sannolikhet} = n P (A H i ) = i=1 n P (A H i )P (H i ) Tolkning av detta är att vi delar upp försöket då A kan inträffa i n delfall, motsvarande H 1, H 2,..., H n, där P (A H i ) är sannolikheten att A inträffar i varje delfall. Då fås P (A) som summan av snitten mellan A och vardera H i, vilket kan uttryckas i termer av betingade sannolikheter. Utifrån formeln för betingade sannolikheter och LOTS, lagen om total sannolikhet, kan vi formulera Bayes sats P (H i A) = P (A H i) P (A H i )P (H i ) = P (A) n i=1 P (A H i)p (H i ). i=1 Övning 4 Diskreta stokastiska variabler En stokastisk variabel betecknas ofta med en stor bokstav, ex. X eller Y. Den stokastiska variabeln X är en funktion från Ω R, det vill säga från utfallsrummet till reella linjen. Det mest allmänna sättet att beskriva hur X varierar är genom dess fördelningsfunktion, vilken ges utav P (X x); som ofta förkortas till F X (x) = P (X x). Tre viktiga egenskaper hos fördelningsfunktioner är att 1. De är icke-avtagande, d.v.s. om x y F X (x) F X (y). 2. Högerkontinuerlig, vilket kan tolkas som att det inte finns några hopp om man närmar sig gränsvärdet från höger (om det finns ett sådant). 3. Samt att F x (x) 1 när x, och F x (x) 0 när x. Diskreta stokastiska variabler antar värden i diskreta utfallsrum. Ett exempel på en diskret stokastisk variabel är: Vi satsar pengar då vi singlar slant. Säg att vi satsar 100 kronor på att få klave, så att vi därmed får betala 100 kronor om det blir krona. Vi ser alltså att vårt utfallsrum ges utav Ω = {ω 1, ω 2 } = {krona, klave} Om vi låter den stokastiska variabeln X motsvara den vinst vi gör fås att { 100, om ω = ω 1 X(ω) = 100, om ω = ω 2. Detta är ett konkret exempel på hur en stokastisk variabel mappar mellan utfallsrummet och den reella linjen. Vidare har vi att P (a < X b) = P (X b) P (X a) = F X (b) F X (a). Notera dock att för en diskret stokatiskt variabel har vi att P (a < X b) P (a X b) = P (a < X b) + P (X = a), där P (X x) = k x P (X = k).
3 Ofta förkortas P (X = k) till p X (k), som kallas sannolikhetsfunktionen för X. Från Kolmogorvs axiom har vi därefter att p X (k) 0, k. k Ω p X(k) = 1. P (X > b) = 1 P (x b) = 1 F X (b), b R. Det finns ytterligare två mått som beskriver egenskaperna för vår stokastiska variabel X, och det är dess väntevärde och varians. Väntevärdet kan löst tolkas som tyngdpunkten för sannolikhetsfunktionen, och variansen som ett mått på hur mycket X sprider ut sig kring sitt väntevärde. Vi har att väntevärdet för en diskret s.v. X motsvarar µ = E[X] = k Ω k p X (k). Väntevärdet har linjära egenskaper och således fås att Variansen för en diskret s.v X motsvarar E[aX + b] = ae[x] + b. σ 2 = V (X) = E[(X µ) 2 ] = {efter utveckling av uttrycket och förenkling fås} = E[X 2 ] (E[X]) 2. Vidare har vi att E[g(X)] = k Ω g(k)p X (k) E[X 2 ] = k Ω X k 2 p X (k). Ytterligare ett mått på spridning är standardavvikelsen: σ = D(X) = V (X). Variansen har, till skillnad från väntevärdet, inga linjära egenskaper utan: V (ax + b) = a 2 V (X). Konstanten b försvinner från uttryycket då den endast förskjuter fördelningen i sidled, och inte påverkar dess spridning. Några exempel på diskreteta fördelningar är: Poissonfördelning: Används ofta för att beskriva antalet händelser som inträffar, oberoende av varandra, under ett givet tidsintervall. En Poissonfördelad variabel antar positiva diskreta värden. Man betecknar att X Po(λ), där λ är fördelningens parameter, tillika väntevärde. Ofta kallas λ intensitet. Binomialfördelning: Låt oss beteckna antal lyckade försök i ett experiment med den stokastiska variabeln X. Vid n oberoende upprepningar av ett och samma försök, där vardera försök har en sannolikhet p att lyckas, sägs X var binomialfördelad. Detta betecknas med X Bin(n, p). För första gångs-fördelning: Betrakta ett oberoende försök, sådant att ett visst resultat uppträder med en sannolikhet p vardera gång försöket utförs. Låt X vara antalet gånger man upprepar försöket innan resultatet uppträder. Givet detta, så vet vi att X är för första gångsfördelad, X ffg(p).
4 Övning 5 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler antar värden i ett kontinuerligt utfallsrum. Vi kan, i likhet med diskreta s.v., karakterisera en kontinuerlig stokastisk variabel med hjälp av dess fördelningsfunktion F x (x) = P (X x) = x f X (t)dt, och utifrån denna kan vi definiera variabelns täthetsfunktion f x (x) = d dx (F X(x)). För kontinuerliga s.v så kan man tänka att vi fördelar ut sannolikhetsmassan 1 på reella linjen i Ω, enligt täthetsfunktionen f X (x). Och sannolikheten att X antar värden inom ett intervall A motsvarar: P (X A) = A f X (x)dx P (a < X b) = b a f X (x)dx. Här ser vi alltså sannolikheten som integralen av vår sannolikhetsmassa, över intervallet av intresse. Sannolikheten att X antar ett distinkt värde motsvarar alltså 0 eftersom det blir arean under en punkt och inte under ett intervall. Vidare har vi, från Kolmogorov, att f X (x) 0 och att R f X(x) = 1. Såsom för diskreta s.v. kan vi beräkna väntevärde, standardavvikelse och varians av vår kontinuerliga s.v X µ = E[X] = xf x (x)dx Ω X och standardavvikelsen ges av σ = D(X) = V (X) där variansen V (x) ges av σ 2 = E[X 2 ] (E[X]) 2 = { } ( ) 2 E[g(X)] = g(x)f X (x)dx = x 2 f x (x)dx xf x (x)dx Ω X Ω X Ω X Övning 6 Flerdimensionella stokastiska variabler En tvådimensionell stokastisk variabel, (X, Y ) karakteriseras också av dess fördelningsfunktion F XY (x, y) = P (X x, Y y) = P (X x Y y). För diskreta tvådimensionella stokastiska variabel fås följande sannolikhetsfunktion, då X och Y antas anta diskreta heltalsvärden: p XY (j, k) = P (X = j, Y = k) = P (X = j Y = k), j, k = 0, 1, 2, 3,... Således kan vi formulera fördelningsfunktionen såsom: F XY (x, y) = j x,k y p XY (j, k) Om vi vill beräkna sannolikheten att (X, Y ) antar värden i en delmängd A Ω XY beräknar vi detta på följande vis P ((X, Y ) A) = p XY (j, k) (j,k) A Som innan har vi att j Ω X k Ω Y p XY (j, k) = 1 och att 0 p XY (j, k) 1, j, k Ω XY. För en kontinuerlig tvådimensionell stokastisk variabel har vi att fördelningsfuntionen motsvarar F XY (x, y) = P (X x, Y y) = x y f XY (x, y)dydx, där f XY (x, y) är täthetsfunktionen för (X, Y ). Vi har att f(x, y) 0, x, y Ω XY och Ω XY f(x, y)dxdy = 1, dvs att täthet är en positiv storhet och vi kan tolka att den totala sannolikhetsvolymen under f XY (x, y) motsvarar 1.
5 Om vi har fördelningsfuntionen och vill erhålla täthetsfuntionen gör vi det på följande vis: vi deriverar alltså med avseende på både X och Y. f XY (x, y) = 2 (F XY (x, y)), x y Om den simultana fördelningen f XY (x, y) är given, kan man återfå f X (x) respektive f Y (y) genom att marginalisera, vilket innebär att man integrerar bort en av variablerna, på följande vis f X (x) = f XY (x, y)dy, respektive f Y (y) = f XY (x, y)dx För oberoende stokastiska variabler kan man erhålla den simultana täthetsfunktionen enligt: och om X och Y är oberoende fås att f XY (x, y) = f X (x) f Y (y) P (X C, Y D) = P (X C Y D) = P (X C)P (Y D), D Ω X, C Ω Y. Utifrån ovanstående resomenang fås redskap då man ska behandla fördelningen för max och min av oberoende stokastiska variabler. Säg att X 1 och X 2 är två oberoende stokastiska variabler, vars fördelningar är kända. Låt oss sedan bilda en ny stokastiska variabel Y = max(x 1, X 2 ). Vilken fördelning har Y? Detta kan vi svara på genom F Y (y) = P (Y y) = P (max(x 1, X 2 ) y) = {Om den största y, är båda y} = = P ({X 1 y} {X 2 y}) = {X 1 och X 2 är oberoende} = P (X 1 y)p (X 2 y) = F X1 (y) F X2 (y) Då vi känner till fördelningarna för X 1 och X 2, kan denna sannolikhet enkelt beräknas. Om vi istället har U = min(x 1, X 2 ) kan vi bestämma fördelningen för U genom F U (u) = P (U u) = P (min(x 1, X 2 ) u) = 1 P (min(x 1, X 2 ) > u) = {Om den minsta är större än u, är båda större än u} = 1 P ({X 1 > u} {X 2 > u}) = {X 1 och X 2 är oberoende} = 1 P (X 1 > u)p (X 2 > u) = 1 (1 F X1 (u))((1 F X2 (u)). Sammanställt av: Hanna Fredenklo Jansson
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det
Matematisk statistik för D, I, Π och Fysiker
max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se
SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.
SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
Exempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
Väntevärde och varians
TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 26 mars, 2015 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Lärmål Sannolikhet, statistik och risk 2015
Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på
Föresläsningsanteckningar Sanno II
Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här
Satsen om total sannolikhet och Bayes sats
Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om
Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
Föreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
TAMS79: Matematisk statistik vt 2013
TAMS79: Matematisk statistik vt 3 Föreläsningsanteckningar Johan Thim, MAI.5. 5 3 3 TAMS79: Föreläsning Grundläggande begrepp Johan Thim 3 januari 3. Begrepp Ett slumpförsök är ett försök där resultatet
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator
Grundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel uwe.menzel@slu.se 23 augusti 2017 Slumpförsök Ett försök
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Några extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog
Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet
Föreläsning 2. Kapitel 3, sid Sannolikhetsteori
Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,
Stokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
Matematisk statistik - Slumpens matematik
Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik
4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
TMS136. Föreläsning 2
TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast
4. Stokastiska variabler
4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen
Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen Denna föreläsning kommer mest att vara en repetition av stoff från grundkursen. Längden på detta dokument kan tyckas vara oproportionerligt
6. Flerdimensionella stokastiska variabler
6 Flerdimensionella stokastiska variabler 61 Simultana fördelningar Den simultana fördelningsfunktionen av X och Y, vilka som helst två stokastiska variabler, definieras F(a,b) = F X,Y (a,b) = P(X a,y
F7 forts. Kap 6. Statistikens grunder, 15p dagtid. Stokastiska variabler. Stokastiska variabler. Lite repetition + lite utveckling av HT 2012.
F7 forts. Kap 6 Statistikens grunder, 15p dagtid HT 01 Lite repetition + lite utveckling av Stokastisk variabel Diskreta och kontinuerliga sv Frekvensfunktion (diskr.), Täthetsfunktion (kont.) Fördelningsfunktion
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition
Föreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende
Sannolikheter och kombinatorik
Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter
TAMS79: Föreläsning 1 Grundläggande begrepp
TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.
Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse
Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Oberoende stokastiska variabler
Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen
Repetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Bengt Ringnér. September 20, Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07.
Väntevärden Bengt Ringnér September 0, 007 1 Inledning Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07. Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt
SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Föreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:
Föreläsning 8 för TNIU23 Integraler och statistik
Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad
Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Bengt Ringnér. October 30, 2006
Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller
Kap 2: Några grundläggande begrepp
Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Kapitel 5 Multivariata sannolikhetsfördelningar
Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara
Föreläsning 15: Försöksplanering och repetition
Föreläsning 15: Försöksplanering och repetition Matematisk statistik Chalmers University of Technology Oktober 19, 2015 Utfall och utfallsrum Slumpmässigt försök Man brukar säga att ett slumpmässigt försök
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje