Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Storlek: px
Starta visningen från sidan:

Download "Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2"

Transkript

1 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 008) 1 Stokastisk Variabel En stokastisk variabel (slumpvariabel) är en kvantitativ variabel vars värde bestäms av ett slumpförsök. Utfallet av slumpförsöket bestämmer vilket värde den stokastiska variabeln skall anta. Innan slumpförsöket äger rum, vet vi inte vilket värde den kommer att anta. Men vi kan i förväg säga vilka som är dess möjliga värden. Eempel: (vilka är de möjliga värdena?) Antal prickar vid ett kast med en tärning Summan av antal prickar vid två tärningskast Antal kast tills man för första gången får en sea Antal krona vid två myntkast Antal flickor i en slumpmässigt vald trebarnsfamilj Längden hos ett slumpmässigt valt nyfött barn Livslängden hos en slumpmässigt vald glödlampa Årsinkomsten i ett slumpmässigt valt hushåll.

2 Diskret eller Kontinuerlig? Stokastiska variabler kan vara diskreta eller kontinuerliga. En diskret stokastisk variabel kan anta ett ändligt (eller uppräkneligt oändligt) antal möjliga värden. En kontinuerlig stokastisk variabel kan anta alla värden inom ett intervall på den reella talaeln (intervallet kan ha oändlig utsträckning). Eempel Stokastiska Variabler Kap. 6 Diskreta Kontinuerliga Kap. 7 & 9 Stokastiska Variabler Stokastiska Variabler 3 Diskreta Stokastiska Variabler kan anta ett ändligt (eller uppräkneligt oändligt) antal möjliga värden. Eempel: Kasta en tärning två ggr Låt vara # ggr man får 4 prickar ( kan anta värdena 0, 1, eller ) Kasta ett mynt 5 ggr. Låt Y vara # krona (Heads) (Y kan anta värdena 0, 1,, 3, 4, eller 5) 4

3 Diskreta sannolikhetsfördelningar (Sannolikhetsfördelningar för diskreta stokastiska variabler) Slumpförsök: Kasta mynt ggr. Låt # heads. Visa P(), dvs, P( ), för alla möliga värdena på : 4 möjliga utfall T T T H H T H H Sannolikhetsfördelning -värde sannolikhet 0 1/4.5 1 /4.50 1/4.5 Sannolikhet Diskret Sannolikhetsfördelning: Egenskaper P() 0 för alla möjliga värde på Sannolikheterna på alla möjliga värde adderas till 1; P() 1 6

4 Fördelningsfunktionen Fördelningsfunktion (eng. cumulative probability distribution function) betecknas med F( 0 ), och är sannolikheten att är mindre eller lika med 0: F( 0 ) P( 0 ) Med andra ord, F( 0 ) P() 0 7 Väntevärde Väntevärde (eller genomsnittvärde) av en diskret stokastisk variabel är den viktade medelvärde: E() Eempel: Kasta mynt ggr, # of heads, Beräkna väntevärde av : P() E() (0.5) + (1.50) + (.5) 1.0 P()

5 Varians & Standardavvikelse Varians för en dieskret stokastisk variabel defineras som E( ) ( Standardavvikelse för en dieskret stokastisk variabel defineras som ) P() ( ) P() 9 Standardavvikelse: Eempel Eempel: Kasta mynt (eller en mynt ggr) och låt # heads. (Vi minns E() 1 ). Därför får vi ( ) P() (0 1) (.5) + (1 1) (.50) + ( 1) (.5) Möjliga # heads 0, 1, or 10

6 Några speciella Sannolikhetsfördelningar Kap. 6 Diskreta Kontinuerliga Kap. 7 Sannolikhetsfördelningar Sannolikhetsfördelningar Sannolikhetsfördelningar Bernoulli Binomial Hypergeometriska Poisson Likformig Normal Standard Normal Eponential 11 Bernoullifördelningen Diskreta Sannolikhetsfördelningar Bernoulli Sannolikhetsfördelningar Binomia l Hypergeometriska Poisson 1

7 Bernoullifördelningen En stokastisk variabel har en Bernoullifördelning, om den antar endast värdena 0 och 1 (mots. Failure och Success ), med sannolikheter 1-p respektive p. (0 p 1). Sannolikhetsfördelningen ser alltså ut så här: : 0 1 P(): 1 p Väntevärde och varians E() P() (0)(1 p) + (1)p p E[( ) ] (0 p) ( (1 p) + (1 p) ) p p p() p(1 p) 13 Bernoullifördelningen: typisk användning Vi har ett slumpförsök där vi bara är intresserade av ifall en viss händelse A inträffar eller ej. Låt P(A) p och P( A) 1-p. Låt vara en indikatorvariabel för händelsen A. Dvs. om A inträffar, så blir 1, och om A inte inträffar, så blir 0. Alltså är en stokastisk variabel som anger om händelsen A inträffar eller ej. Då har en Bernoullifördelning med P(A) P(1) p. 14

8 Bernoullifördelningen: eempel Slumpförsök: ett kast med en tärning. Låt vara indikatorvariabel för händelsen att få sea. Dvs. 1 om vi får en sea, och 0 om vi inte får en sea. Då har en Bernoullifördelning med p 1/6 E() p 1/6 Var() p(1-p) (1/6) (5/6) 5/36 15 Binomialfördelningen Sannolikhetsfördelningar Diskreta Sannolikhetsfördelningar Bernoulli Binomial Hypergeometriska Poisson 16

9 Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje gång två möjliga resultat: A (Success) och icke- A (Failure). Sannolikheten för A (Success) är densamma varje gång, P(A) p. antalet gånger som A inträffar totalt. Då är en binomialfördelad stokastisk variabel med parametrar n och p. ~Bin(n, p) Hur ser sannolikhetsfunktionen, P(), ut? 17 Binomial sannolikhetsfunktion n P() p ( 1-p) n! för 0,1,..., n. n! ( n - ) p! ( 1-p) n P() Sannolikheten att få successes i n försök, med sannolikhet för successes p vid varje försök. # successes bland n försök ( 0, 1,,..., n) n p stickprovsstorleken (# försök eller # observationer) sannolikheten för success vid varje försök Eempel: Kasta ett mynt 4 ggr. och låt # heads: n 4 p p (1-0.5) 0.5 0, 1,, 3, 4

10 Binomial sannolikhetsfunktion: mer eempel Vad är sannolikheten att få 1 success i 5 försök om sannolikheten för success vid varje försök är 0.1? n 5, p 0.1, och 1 P( 1) n! n P (1 P)!(n )! 5! 1 (0.1) (1 0.1) 1!(5 1)! (5)(0.1)(0.9) Binomialfördelningen: form Formen (eng. shape) på binomialfördelningen Mean beror på n och p: Här, n 5 och p 0.1 P() n 5 p Här, n 5 och p 0.5 n 5 p 0.5 P()

11 Binomialfördelningen: Väntevärde & varians Väntevärde: E() np Varians (och) standardavvikelse: np(1 np(1 - p) - p) där n stickprovsstorlek p sannolikheten för success (1 p) sannolikheten för failure 1 Väntevärde & varians: eempel np (5)(0.1) 0.5 Mean np(1- p) (5)(0.1)(1 0.1) np (5)(0.5) np(1- p) (5)(0.5)(1 0.5) P() n 5 p n 5 p 0.5 P()

12 Binomial-tabell (LLL Table A1, sid. A) N p.0 p.5 p.30 p.35 p.40 p.45 p Eempel: n 10, 3, P 0.35: P( 3 n 10, p 0.35).5 n 10, 8, P 0.45: P( 8 n 10, p 0.45).09 3 Binomial-tabellen (forts.) Tabell A1 i LLL ger sannolikheterna P() P() ( 0, 1,,, n) för n 1,,, 0 och p 0.05, 0.10, 0.15,, Hur gör man när p > 0.5? Man söker för sannolikheten för # Failuire istället (eempel kommer senare). Hur gör man när n > 0? Approimation med hjälp av normalfördelningen (kommer längre fram). Binomialsannolikheter kan även enkelt erhållas med Ecel eller Minitab (för många fler värden på n och p).

13 Mer eempel (övning) Vi gör 0 kast med ett mynt. Oberoende mellan kasten antas. (a) Vilken fördelning har antalet krona? (b) Bestäm P( 1). (c) Bestäm P( 1). (d) Bestäm P( 15). (e) Bestäm P(8 1). (f) Vad är det förväntade antalet krona? Svar: a) är Bin(0; 0.5). b) P( 1) c) P( 1) d) P( 15) 1 P( 14) e) P(8 1) P( 1) P( 7) f) E() np 0 (0.5) 10. Mer eempel (övning) Man utför en serie om 1 oberoende försök. Varje gång är sannolikheten 0.8 för att det skall bli ett lyckat försök. (a) Vilken fördelning har antalet lyckade försök? (b) Bestäm P( 10). (c) Bestäm P( 10). (d) Bestäm P(5 < 10). Svar: a) är Bin(1; 0.8). Här kan tabellerna inte användas direkt, eftersom p>0.5. Vi ser i stället på Y antalet misslyckade försök. Vi inser att Y är Bin(1; 0,). Alltså kan tabellerna användas för att bestämma sannolikheter med avseende på Y. b) P( 10) P(10 lyckade försök) P( misslyckade) P(Y ) c) P( 10) P(Y ) 1 P(Y 1) d) P(5 < 10) P( Y 6) P(Y 6) P(Y 1)

14 Hypergeometriska fördelningen Diskreta Sannolikhetsfördelningar Bernoulli Binomial Sannolikhetsfördelningar Hypergeometriska Poisson 7 Hypergeometriska fördelningen: Typisk situation Population med N individer, varav N 1 har en viss egenskap, medan de övriga N N N 1 saknar egenskapen. Från populationen väljs (utan återläggning) ett stickprov med n individer. antal individer i stickprovet, som har den aktuella egenskapen. Då är en hypergeometriskt fördelad stokastisk variabel. ~ Hyp(n; N 1 ; N). Varför INTE använda Binomial fördelningen? Hur ser sannolikhetsfunktionen, p(), ut? 8

15 Hypergeometriska sannolikhetsfunktionen N 1 N n P() N n N 1! N!!(N 1 )! (n )!(N N! n!(n n)! ( n ) )! där N populationsstorlek N 1 # i populationen med en viss egenskap N N N 1 # i populationen utan egenskapen n stickprovsstorleken # i stickprovet med egenskapen n - # i stickprovet utan egenskapen 9 Hypergeometriska sann. funktion: eempel 1 3 datorer undersöks från 10 vid ett institution. 4 av de 10 datorer har programvara som installerats illegalt. Vad är sannolikheten att av de 3 undersökta datorer har den illegala programvaran? N 10 n 3 N 1 4 N 1 N 4 6 n - 1 (6)(6) P( ) 0.3 N n 3 Sannolikheten att av de 3 undersökta datorer har den illegala programvaran är 0.30, eller 30%. 30

16 Hypergeometriska sann. funktion: eempel En låda innehåller tio lampor varav tre är felaktiga. Fem lampor väljs ut slumpmässigt (utan återläggning). (a) Vad är slh att högst en utvald lampa är felaktig? (b) Vad är slh att åtm. en utvald lampa är felaktig? N 10 n 5 N 1 3 < (a) > 0 (b) P( < ) P( 0) + P( 1) P( > 0) 1 P( 0) Poissonfördelningen Diskreta Sannolikhetsfördelningar Bernoulli Binomial Sannolikhetsfördelningar Hypergeometriska Poisson 3

17 Poissonfördelningen Används ibland som sannolikhetsmodell, när man studerar hur många gånger en händelse inträffar under ett givet tidsintervall. Inträffandena antas ske i viss mening slumpmässigt i tiden. Inträffandena kan ske vid vilka tidpunkter som helst, oberoende av varandra, och hela tiden med samma intensitet, λ (lambda). antal gånger som händelsen inträffar under ett tidsintervall av given längd. Då är en Poissonfördelad stokastisk variabel med parameter λ. ~ Poisson(λ). 33 Sannolikhetsfunktionen för Poissonfördelning P() e! där: antal gånger som händelsen inträffar under ett tidsintervall av given längd (# success ) λ intensiteten, dvs. förväntade antalet gånger som händelsen kommer att inträffa under en tidsperiod av given längd e base of the natural logarithm system ( ) 34

18 Poissonfördelning: Väntevärde och varians Väntevärde E() Varians och standardavvikelse E[( µ) ] Dvs. för Poissonfördelning är väntevärde och varians lika. 35 Poisson-tabellen (LLL Tabell A, sid. A7) λ Eempel: Beräkna P( ) om λ.50 e λ λ e 0.50 (0.50) P( ).0758!! 36

19 Graf för Poissonsannolikheter Grafisk: λ λ P() P( ) Poissonfördelningen: form Formen (eng. shape) på Poissonfördelningen beror på parametern λ: 0.70 λ 0.50 λ P() P()

20 Simultant fördelade stokastiska variabler Ibland vill vi samtidigt studera flera olika stokastiska variabler, vilkas värde bestäms i ett och samma slumpförsök. Ofta är vi intresserade av hur variablerna eventuellt samvarierar. Eempel: a) Välj slumpmässigt en man från en population av män. den valde mannens vikt Y den valde mannens längd b) Gör två kast med en tärning. antal prickar i första kastet Y antal prickar i andra kastet c) Välj slumpmässigt en familj från en population av familjer. antal pojkar i den valda familjen Y antal flickor i den valda familjen Vi säger att och Y är simultant fördelade. 39 Simultant sannolikhetsfunktioner Låt och Y vara två diskreta stokastiska variabler, som uppträder tillsammans. De har då en simultan sannolikhetsfunktion: P(, y) P( Y y) Den simultana slh-funktionen ger alltså slh för att få olika kombinationer av värden på och Y. Vi säger att den ger oss den simultana sannolikhetsfördelningen för och Y. 40

21 Marginella sannolikhetsfunktioner De marginella sannolikheter får vi enligt nedan: P() P(,y) y P(y) P(,y) Eempel: 41 Betingad sannolikhetsfunktioner Den betingade sannolikhetsfunktionen för Y ger sannolikheten att Y antar värde y för ett specificerat värde på : P(,y) P(y ) P() På liknande sätt, den betingade sannolikhetsfunktionen för ger sannolikheten att antar värde för ett specificerat värde på Y: P(,y) P( y) P(y) 4

22 Oberoende och Y är oberoende om den simultan sannolikhetsfunktion är lika som produkten av de marginella sannolikhetsfunktionerna : P(, y) P()P(y) för alla värde av och y. Detta kan generaliseras till k stokastiska variabler: 1,,, k är oberoende om P(1,, L,k ) P(1)P( ) LP( k ) 43 Kovarians Låt och Y vara diskreta stokastiska variabler med väntevärde resp. Y Kovarians mellan och Y definieras som väntevärdet av ( - )(Y - Y): Cov(, Y) E[( )(Y Y )] ( )(y y )P(, y) y eller Cov(, Y) E(Y) yp(, y) y y y 44

23 Kovarians och Oberoende Kovarians mäter linjär samband mellan två variabler: Om två stokastiska variabler är statistisk oberoende, är kovariansen dem emellan 0. Omvänd är det inte alltid sant 45 Korrelation Korrelationen mellan och Y är: Corr(, Y) Cov(, Y) 0 ingen linjär samband mellan och Y > 0 positiv linjär samband mellan och Y när is hög (låg) är det mer sannolikt att Y också är hög (låg) +1 perfekt positiv linjär samband < 0 negativ linjär samband mellan and Y när är hög (låg) är det mer sannolikt att Y är låg (hög) -1 perfekt negativ linjär samband Y 46

24 Funktioner av Stokastiska Variabler p() är sannolikhetsfördelning för en stokastisk variable g() är någon funktion av Då är väntevärdet för g() E[g()] g()p() 47 Linjära funktioner av stokastiska variabler Låt a och b vara konstanter. Då gäller E(a) a och Var(a) 0 dvs, om en stokastisk variabel antar endast ett värde a då blir väntevärdet (medelvärde) a och variansen blir 0 (det finns ju inga variation!) Vidare gäller E(b) b och Var(b) b dvs, väntevärde (medelvärde) för b är b gånger väntevärdet för, medan variansen för b är b gånger variansen för (diskutera!) 48

25 Linjära funktioner av stokastiska variabler Låt vara en stokastisk variabel med väntevärde µ och varians Låt a och b vara konstanter. Låt Y a + b Då gäller det att Y E( Y) E(a+ b) E(a) + be() a + b Y Var( Y) Var(a + b) Var(a) + Var(b) b så att standardavvikelsen för Y blir Y b 49 Linjära funktioner av stokastiska variabler: eempel antal arbetsdagar i ett framtida projekt. antas vara en stokastisk variabel med följande sannolikhetsfördelning: ( antal arbetsdagar) P() Kostnaden för projektet består av dels en fast kostnad på $5 000, dels en arbetskostnad på $900 per arbetsdag. Beräkna väntevärde, varians och standardavvikelse för projektets totalkostnad. Med användning av givna definitioner av väntevärde och varians får vi (se nästa sida för detaljerna) 50

26 Linjära funktioner av stokastiska variabler: eempel Låt nu Y totalkostnaden. Eftersom Y , blir och Y ( antal arbetsdagar) Y P() P() 10(0.1) + 11(0.3) + 1(0.3) + 13(0.) + 14(0.1) E( ) ( ) P() ( ) (0.1) + ( ) (0.3) + ( ) (0.3) + ( ) (0.) + ( ) (0.1) E( Y ) E( ) E() (11.90) Var( Y ) Var( ) ( 900) ( 1.9) ( 900) Y 1.9 Var( Y) ( 900) Tillämpning (eempel) Låt den stokastiska variabeln vara värdet på aktie A Låt den stokastiska variabeln Y vara värdet på aktie B Marknadsvärde, W, för portföljen ges av den linjär funktion W a + by där a # aktie A b # aktie B 5

27 Tillämpning (forts.) Väntevärdet för W: E[W] E[a + by] W a Varians för W: + b W a + b Y + abcov(,y) eller W a + b Y + abcorr(, Y) Y Y 53 Tillämpning (forts.) Avkastning per $1,000 för två investeringstyp Investeringstyp P( i y i ) Marknadsföruts. Passiv fond () Aktiv fond (Y). lågkonjunktur - $ 5 - $00.5 Stadig konjunktur högkonjunktur E() (-5)(.) +(50)(.5) + (100)(.3) 50 E(Y) y (-00)(.) +(60)(.5) + (350)(.3) 95 54

28 Tillämpning (forts.) Standardavvikelse för Avkastning Investeringstyp P( i y i ) Marknadsföruts. Passiv fond () Aktiv fond (Y). lågkonjunktur - $ 5 - $00.5 Stadig konjunktur högkonjunktur ( ) (0.) + (50 50) (0.5) + (100 50) (0.3) y (-00 95) (0.) + (60 95) (0.5) + (350 95) (0.3) Tillämpning (forts.) Kovarians för Avkastning Investeringstyp P( i,y i ) Marknadsföruts. Passiv fond () Aktiv fond (Y). lågkonjunktur - $ 5 - $00.5 Stadig konjunktur högkonjunktur Cov(, Y) (-5 50)(-00 95)(.) + (50 50)(60 95)(.5) + (100 50)(350 95)(.3) 850 Cov(, Y) 850 Corr(, Y) Y ( 43.30)( 193.1) 56

29 Tillämpning (forts.) Investment : Investment Y: y 95 y y 850 Om 40% av portföljen (P) är investerad i och 60% i Y, då får vi E(P).4(50) + (.6)(95) 77 P (.4) (43.30) + (.6) (193.1) + (.4)(.6)(850) Tillämpning (forts.) Den aktiva fonden har högre förväntad avkastning, men också mycket högre risk (variabilitet) y 95 > 50 men y > Kovariansen på 850 (eller korrelationen på 0.986) visar att de passiva och aktiva investeringar samvarierar starkt i samma inriktning. 58

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Föreläsning 2 (kap 3): Diskreta stokastiska variabler

Föreläsning 2 (kap 3): Diskreta stokastiska variabler Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

1.1 Diskret (Sannolikhets-)fördelning

1.1 Diskret (Sannolikhets-)fördelning Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.

SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök. Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Exempel för diskreta och kontinuerliga stokastiska variabler

Exempel för diskreta och kontinuerliga stokastiska variabler Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga

Läs mer

4. Stokastiska variabler

4. Stokastiska variabler 4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser

Läs mer

Jörgen Säve-Söderbergh

Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

F7 forts. Kap 6. Statistikens grunder, 15p dagtid. Stokastiska variabler. Stokastiska variabler. Lite repetition + lite utveckling av HT 2012.

F7 forts. Kap 6. Statistikens grunder, 15p dagtid. Stokastiska variabler. Stokastiska variabler. Lite repetition + lite utveckling av HT 2012. F7 forts. Kap 6 Statistikens grunder, 15p dagtid HT 01 Lite repetition + lite utveckling av Stokastisk variabel Diskreta och kontinuerliga sv Frekvensfunktion (diskr.), Täthetsfunktion (kont.) Fördelningsfunktion

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

1.1 Diskret (Sannolikhets-)fördelning

1.1 Diskret (Sannolikhets-)fördelning Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Dahlbom, U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Dahlbom, U. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. Sannolikhet: P(ξ = ) = e λ λ! Väntevärde: E(ξ) = λ Varians:

Läs mer

Föreläsning 12: Repetition

Föreläsning 12: Repetition Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk

Läs mer

7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR

7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR 7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR Några sannolikhetsfördelningar förekommer ofta i tillämpade problem. Eftersomdeförekommeroftahardefåttspeciellanamn. Idettakapitelskallvi studera några

Läs mer

FÖRELÄSNING 3:

FÖRELÄSNING 3: FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

Föreläsning 3. Sannolikhetsfördelningar

Föreläsning 3. Sannolikhetsfördelningar Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska

Läs mer

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden

Läs mer

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall

Läs mer

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Sannolikhetslära (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska

Läs mer

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

F10 Kap 8. Statistikens grunder, 15p dagtid. Binomialfördelningen 4. En räkneregel till. Lite repetition HT Sedan

F10 Kap 8. Statistikens grunder, 15p dagtid. Binomialfördelningen 4. En räkneregel till. Lite repetition HT Sedan 01-09-7 F10 Kap 8 Statistikens grunder, 15p dagtid HT 01 Lite repetition Kovarians Binomial- och Poissonfördelning Täthetsfunktion (kont.) Fördelningsfunktion (kont.) Arean under en kurva Sedan Normalfördelningen

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

1 Föreläsning IV; Stokastisk variabel

1 Föreläsning IV; Stokastisk variabel 1 FÖRELÄSNING IV; STOKASTISK VARIABEL 1 Föreläsning IV; Stoastis variabel Vi har tidigare srivit P (1, 2, 3, 4, 5) = P (C) för sannoliheten för att få 1, 2, 3, 4 eller 5 vid ett tärningsast. Vi sall använda

Läs mer

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

Stokastiska signaler. Mediesignaler

Stokastiska signaler. Mediesignaler Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

Föreläsning 2, FMSF45 Slumpvariabel

Föreläsning 2, FMSF45 Slumpvariabel Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR

7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR 7. NÅGRA SPECIELLA DISKRETA SANNOLIKHETSFÖRDELNINGAR Några sannolikhetsfördelningar förekommer ofta i tillämpade problem. Eftersomdeförekommeroftahardefåttspeciellanamn. Idettakapitelskallvi studera två

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 8. Approximationer av sannolikhetsfördelningar Jan Grandell & Timo Koski 11.02.2016 Jan Grandell & Timo Koski Matematisk statistik 11.02.2016 1 / 40 Centrala

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

1. Du slår en tärning två gånger. Låt A vara händelsen att det första kastet blir en sexa och låt B vara händelsen att summan av kasten blir sju.

1. Du slår en tärning två gånger. Låt A vara händelsen att det första kastet blir en sexa och låt B vara händelsen att summan av kasten blir sju. Projekt MVE49 Del 1 Det är tillåtet att sammarbeta, men alla lösningar skall lämnas in individuellt. Sista inlämningsdag är 4de oktober på föreläsningen. Det är ok att lämna in elektroniskt genom att maila

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

Föreläsning 6, Repetition Sannolikhetslära

Föreläsning 6, Repetition Sannolikhetslära Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Centrala gränsvärdessatsen (CGS). Approximationer

Centrala gränsvärdessatsen (CGS). Approximationer TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination

Läs mer

Föreläsning 1. Grundläggande begrepp

Föreläsning 1. Grundläggande begrepp Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 1 Sannolikhetsteori (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

SF1901: Sannolikhetslära och statistik. Mer om Approximationer

SF1901: Sannolikhetslära och statistik. Mer om Approximationer SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 9

ÖVNINGSUPPGIFTER KAPITEL 9 ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess

Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 9

ÖVNINGSUPPGIFTER KAPITEL 9 ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer