Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1

Storlek: px
Starta visningen från sidan:

Download "Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1"

Transkript

1 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Sannolikhetslära (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 1 Grundläggande begrepp Slumpförsök är ett försök, som kan upprepas under likartade förhållanden, och där resultatet vid varje enskild upprepning inte kan förutsägas med säkerhet Utfall resultat av ett slumpförsök Utfallsrum mängden (samling) av alla möjliga utfall av ett försök (Betecknas S) Händelse delmängd av utfallsrummet ( en samling av ett eller flera utfall) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 2

2 Exempel: Slumpförsök: Tärningskast Utfall: 1, 2, 3, 4, 5, eller 6 Utfallsrum: S [1, 2, 3, 4, 5, 6] Låt A vara händelsen att få ett jämnt antal prickar Låt B vara händelsen att få minst 4 prickar Då är A [2, 4, 6] och B [4, 5, 6] 3 Exempel (forts): Slumpförsök: Tärningskast Utfall: 1, 2, 3, 4, 5, eller 6 Utfallsrum: S [1, 2, 3, 4, 5, 6] Låt C vara händelsen att få ett udda antal prickar D vara händelsen att få högst 3 prickar E vara händelsen att få sexa F vara händelsen att inte få sexa G vara händelsen att få en sjua 4

3 Mer om händelserh Med symboler och begrepp från mängdläran kan vi bilda nya händelser och uttrycka egenskaper hos händelser Tex: Snitt A B är händelsen att både A och B inträffar: S A A B B 5 Mer om händelserh A och B är disjunkta (varandra uteslutande, ömsesidigt uteslutande) om de kan inte inträffa samtidigt dvs, A B är tommängd (empty set) S A B 6

4 Mer om händelserh Union A B är händelsen att A eller B (eller båda) inträffar: S A B Den rosa färgen ger AUB 7 Mer om händelserh Händelserna E 1, E 2, E k är Uttömmande om E 1 U E 2 U U E k S Komplement: A är händelsen att A inte inträffar (se nedan) Obs: A och A är Uttömmande eftersom AU A S Dessutom är de ömsesidigt uteslutande (varför?) S A A 8

5 Exempel Slumpförsök: Tärningskast Utfall: 1, 2, 3, 4, 5, eller 6 S [1, 2, 3, 4, 5, 6] Låt A vara händelsen att få ett jämnt antal prickar Let B vara händelsen att få minst 4 prickar A [2, 4, 6] och B [4, 5, 6] 9 Exempel (forts) S [1, 2, 3, 4, 5, 6] A [2, 4, 6] B [4, 5, 6] Komplementer: A [1, 3, 5] B [1, 2, 3] Snitt: Union: A B [4, 6] A B [2, 4, 5, 6] A B [5] A A [1, 2, 3, 4, 5, 6] S 10

6 Exempel (forts) S [1, 2, 3, 4, 5, 6] A [2, 4, 6] B [4, 5, 6] ömsesidigt uteslutande? A och B är INTE ömsesidigt uteslutande A B [4, 6] är inte tommängd (de har två gemensam utfall - 4 och 6) Uttömmande? A och B är INTE Uttömmande A U B [2, 4, 5, 6] S (1 och 3 fattas) 11 Sannolikhet av ett händelseh Sannolikheten, P(A), för f r händelsen h A är r ett slags mått m påp hur säkert s det är r att händelsen h skall inträffa 1 säker P(A) är r ett tal mellan 0 och 1 5 Tre olika definitioner av sannolikhet: 0 omöjlig Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 12

7 1 Den klassiska sannolikhetsdefinitionen Ett slumpförsök har n möjliga utfall, alla lika möjliga Av dessa utfall är det n A stycken som innebär att händelsen A inträffar Då är n A P( A) n antal "gynnsamma" utfall antal möjliga utfall Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 13 Kommentar: Vad menas med att de möjliga utfallen skall vara lika möjliga? Oklart Om det betyder att utfallen skall ha lika sannolikhet, så förutsätter ju den klassiska sannolikhetsdefinitionen att man redan vet vad sannolikhet är Då är det egentligen inte fråga om någon definition utan snarare en regel som talar om hur man kan beräkna sannolikheten för en händelse, ifall man redan vet att alla utfall har lika sannolikhet Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 14

8 2 Den frekventistiska sannolikhetsdefinitionen Sannolikheten för händelsen A uppfattas som den relativa frekvens med vilken A inträffar vid en mycket lång serie upprepningar av slumpförsöket: P(A) relativa frekvensen för händelsen A i det långa loppet Man tänker sig att den relativa frekvensen för A i det långa loppet tenderar att stabilisera sig på en viss nivå Hur vet man att det är så? Man brukar hänvisa till gjorda iakttagelser av de relativa frekvensernas stabilitet Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 15 Den frekventistiska sannolikhetsdefinitionen Relativ frekvens krona vid växande antal kast med ett mynt 1,0 0,9 Rel frekv krona 0,8 0,7 0,6 0,5 0,4 0,5 0,3 0, Kast nr Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 16

9 3 Den subjektiva sannolikhetsdefinitionen Sannolikhet antas uttrycka grad av tilltro: P(A) mått på hur starkt en person tror Kommentar: på påståendet att A skall inträffa (1) Olika personer kan ha olika stark tilltro till ett och samma påstående (2) Inget krav att slumpförsöket skall kunna upprepas Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 17 Att räkna antal möjliga utfall Ett arrangemang av n olika objekt i en bestämd ordning kallas för en permutation av objekten Hur många olika permutationer kan man bilda av n olika objekt? n! n (n-1) n! kallas n-fakultet ; eng n factorial 0! 1 (definition) Ex: På hur många olika sätt kan vi permutera de tre objekten A, B, C? 3! 3*2*1 6 ABC, ACB, BAC, BCA, CAB, CBA 18

10 Att räkna antal möjliga utfall (forts) Permutationer: Antalet olika sätt att välja ut r objekt från n objekt (r n), när dragningsordningen är viktigt är: P n r n! (n r)! Kombinationer: Antalet olika sätt att välja ut r objekt från n objekt (r n), ifall vi struntar i dragningsordningen är: n r C n r n! r! (n r)! 19 Att räkna antal möjliga utfall (exempel) Ex: På hur många sätt kan man välja ut tre objekt från de fem objekten A, B, C, D, E? - Om dragningsordningen är viktigt har vi: n n! 5 5! 5! 120 P r P 3 (n r)! (5 3)! 2! 2 60 C Om dragningsordningen är INTE viktigt har vi: n n! 5 5! 5! 120 r C 3 r! (n r)! 3! (5 3)! 3! 2! 6 * 2 10 ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE 20

11 Att räkna antal möjliga utfall (exempel) På hur många olika sätt kan man välja ut 5 kort från en vanlig kortlek med 52 kort? En förening har 20 medlemmar Bland dessa skall väljas en ordförande, en sekreterare och en kassör På hur många olika sätt kan detta göras? Hur många kommitté av 3 personer från 5 personer? Hur många olika flagor med tre färg från 5 färger? Ändra permutation eller Ändra kombination när man tar bild? 21 Några räkneregler för sannolikheter Vi utgår från tre grundantaganden: 1 Vi har ett slumpförsök med utfallsrummet S [O 1, O 2,, O n ] 2 Varje utfall, O i, har en sannolikhet P(O i ) (i 1, 2,, n) 3 Dessa sannolikheter uppfyller villkoren 0 P(O i ) 1 (i 1, 2,, n) P(O 1 ) + P(O 2 ) + + P(O n ) P( O i ) 1 Av dessa antaganden, följer formellt ett antal resultat, vilka i fortsättningen får betraktas som etablerade räkneregler vid lösning av sannolikhetsproblem n i 1 22

12 Sannolikhetsregler För varje händelse A är 0 P(A) 1 P(S) 1 Komplementsatsen: P( A) 1 P(A) Additionssatsen: dvs, P(A) + P(A) 1 För två händelser A och B gäller att P(A B) P(A) + P(B) P(A B) Specialfall: om A och B är disjunkta, så är P(A B) P(A) + P(B) 23 Ett Sannolihetstabell Sannolikheter för två händelser A och B kan sammanfattas enligt tabellen nedan: B B A P(A B) P(A B) P(A) A P( A B) P( A B) P(A) P(B) P(B) P(S) 10 24

13 Additionssatsen: Exempel Kortdragning från 52 kort med fyra typ: Låt A Kortet är rött Låt B Kortet är ett ess 25 Additionssatsen exempel (forts) P(A U B) P(A) + P(B) - P(A B) P(Rött U Ess) P(Rött) + P(Ess) - P(Rött Ess) 26/52 + 4/52-2/52 28/52 Färg Typ Rött Svart Total Ess Ej Ess Total Räkna inte de två röda ess två gånger! 26

14 Additionssatsen: Exempel (forts) Vid tillverkning av en produkt kan två slags fel, A och B, uppkomma, ibland båda felen tillsammans Vi vet att P(A) 0,01, P(B) 0,02 och P(A B) 0,005 a) Vad är slh att en produkt skall ha minst ett av de två felen? b) Vad är slh att en produkt skall vara felfri? c) Vad är slh att en produkt skall ha exakt ett fel? 27 Betingad Sannolikhet Ibland vill vi veta hur stor sannolikheten är för en händelse B, ifall vi vet att en annan händelse A redan har inträffat Detta kallas för den betingade sannolikheten för B, givet att A har inträffat Betecknas P(B A) Den betingade sannolikheten för B, givet A, definieras som: P(A B) P(B A) P(A) Den betingade sannolikheten för A, givet B, definieras som: P(A B) P(A B) P(B) 28

15 Betingad Sannolikhet: Exempel Anta att 70% av bilar har AC (air conditioning), 40% har CD spelare, och att 20% har både och Vad är sannolikheten att en bil med AC har CD spelare? dvs, vi är ute efter P(CD AC) 29 Betingad Sannolikhet: Exempel 70% AC 40% CD 20% både CD Ej CD Total AC Ej AC Total P(CD AC) 2 P(CD AC) 2857 P(AC) 7 30

16 Betingad Sannolikhet: Exempel Givet AC, vi begränsar oss till den övre raden (70% av bilarna) Av dessa, 20% har CD spelare 20% av 70% ger 2857% CD No CD Total AC No AC Total P(CD AC) 2 P(CD AC) 2857 P(AC) 7 Multiplikationssatsen För två händelser A och B gäller att P(A B) och/eller P(A)P(B P(A B) P(B)P(A B) A) 32

17 Multiplikationssatsen: Exempel P(Rött Ess) P(Rött)P(Ess Rött) P(Ess)P(Rött Ess) # ess med rött färg total # kort 2 52 Färg Typ Rött Svart Total Ess Ej Ess Total Oberoende händelser Ordet oberoende kan betyda olika saker Vi skall här tala om sannolikhetsteoretiskt oberoende mellan händelser: Två händelser, A och B, sägs vara oberoende (i sannolikhetsteoretisk mening), om det gäller att P(A B) P(A)P(B) Om A och B är oberoende händelser, gäller att P(A B) P(A) om P(B)>0 P(B A) P(B) om P(A)>0 34

18 Oberoende händelser: exempel Anta att 70% av bilar har AC (air conditioning), 40% har CD spelare, och att 20% har både och CD No CD Total AC No AC Total Är händelserna AC och CD oberoende? 35 Oberoende händelser: exempel (forts) CD Ej CD Total AC Ej AC Total P(AC CD) 02 P(AC) 07 P(CD) 04 P(AC)P(CD) (07)(04) 028 P(AC CD) 02 P(AC)P(CD) 028 Händelserna A och B är INTE oberoende (de är beroende) 36

19 Utfall från bivariata händelser B 1 B 2 B k A 1 P(A 1 B 1 ) P(A 1 B 2 ) P(A 1 B k ) A 2 P(A 2 B 1 ) P(A 2 B 2 ) P(A 2 B k ) A h P(A h B 1 ) P(A h B 2 ) P(A h B k ) 37 Simultan- och marginell sannolikheter Simultant-sannolikhet, P(A B): P(A B) # utfall som "gynnar" både A och B total # utfall Beräkning av marginella sannolikheter: P(A) P(A B1) + P(A B2) + L+ P(A B där B 1, B 2,, B k are k ömsesidigt uteslutande och uttömmande händelser k ) 38

20 Marginell sannolikheter: exempel P(Ess) 2 2 P(Ess Rött) + P(Ess S vart) färg Typ Rött Svart Total Ess Ej Ess Total Givet AC eller Ej: Alla bilar Har AC Har inte AC P(AC) 7 P(AC) 3 Träddiagram Har CD Har inte CD Har CD P(AC CD) 2 P(AC CD) 5 P(AC CD) 2 Har inte CD 1 3 P(AC CD) 1 40

21 Bayessats P(E i A) P(E i )P(A E i ) P(A) P(E i )P(A E i ) P(E 1 )P(A E 1 ) + P(E 2 )P(A E 2 ) + + P(E k )P(A E k ) där E 1, E 2,, E k är k ömsesidigt uteslutande och uttömmande händelser 41 Bayessats: exempel Mobiltelefoner tillverkas av 3 fabriker, E 1, E 2, E 3, i andel 35: 40: 25 2%, 4% resp 5% av produkterna i de tre fabrik är defekt a) Vad är sannolikheten att ett slumpmässigt vald mobil är defekt? b) Givet att ett slumpmässigt vald mobil är defekt vad är sannolikheten att det är tillverkad av fabrik E 1? 42

22 Bayessats: exempel Låt A vara händelsen att ett slumpmässigt vald mobil är defekt Då har vi P(E 1 ) 035, P(E 2 ) 040, P(E 3 ) 025 P(A E 1 ) 002, P(A E 2 ) 004, P(A E 3 ) 005 och vi söker a) och b) P(A) P(E 1 A) 43 Bayessats: exempel (a) P(A) P(E 1 I A) + P(E 2 I A) + P(E 3 I A) P(E 1 )P(A E 1 ) + P(E 2 )P(A E 2 ) + P(E 3 )P(A E 3 ) som ger P(A) 035* * *

23 P(E 1 A) Bayessats: exempel (b) P(E 1 )P(A E 1 ) P(A) P(E1)P(A E1) P(E 1 )P(A E 1 ) + P(E 2 )P(A E 2 ) + P(E 3 )P(A E 3 ) som ger P(E 1 A) 035 * * * *

Föreläsning 1. Grundläggande begrepp

Föreläsning 1. Grundläggande begrepp Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 1 Sannolikhetsteori (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

F2 SANNOLIKHETSLÄRA (NCT )

F2 SANNOLIKHETSLÄRA (NCT ) Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive

Läs mer

Introduktion till sannolikhetslära. Människor talar om sannolikheter :

Introduktion till sannolikhetslära. Människor talar om sannolikheter : F9 Introduktion till sannolikhetslära Introduktion till sannolikhetslära Människor talar om sannolikheter : Sannolikheten att få sju rätt på Lotto Sannolikheten att få stege på en pokerhand Sannolikheten

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

Föreläsning 2. Kapitel 3, sid Sannolikhetsteori

Föreläsning 2. Kapitel 3, sid Sannolikhetsteori Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,

Läs mer

F3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att

F3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att Stat. teori gk, ht 2006, JW F3 SANNOLIKHETSLÄRA (NCT 4.3-4.4) Ordlista till NCT Complement rule Addition rule Conditional probability Multiplication rule Independent Komplementsatsen Additionssatsen Betingad

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel uwe.menzel@slu.se 23 augusti 2017 Slumpförsök Ett försök

Läs mer

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population

Läs mer

Matematisk statistik - Slumpens matematik

Matematisk statistik - Slumpens matematik Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik

Läs mer

Matematisk statistik 9hp för: C,D,I, Pi

Matematisk statistik 9hp för: C,D,I, Pi Matematisk statistik 9hp för: C,D,I, Pi Föreläsning 1, Sannolikhet Stas Volkov September 12, 2017 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F1: Sannolikhet 1/27 Tillämpningar Praktiska detaljer Matematisk

Läs mer

Föreläsning 1, Matematisk statistik Π + E

Föreläsning 1, Matematisk statistik Π + E Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori

Läs mer

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

Föreläsning G70, 732G01 Statistik A

Föreläsning G70, 732G01 Statistik A Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde

Läs mer

Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19

Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare

Läs mer

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist Föreläsning 1 4.1 Slumpässighet 4.2 Sannolikhetsmodeller Viktiga grundbegrepp Slumpmässig (eng: random) Ett fenomen är slumpmässigt om individuella resultat är osäkra, men resultat alltid förekommer med

Läs mer

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas

Läs mer

{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}

{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} Mängder grundbegrepp En mängd är en samling objekt Ex: { } { } A = 0, 1 B = 0 C = { 7, 1, 5} tomma mängden (har inga element) D = { 1, 2, 3,, 10} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} kallas element i mängden

Läs mer

Kombinatorik och sannolikhetslära

Kombinatorik och sannolikhetslära Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i

Läs mer

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet

Läs mer

Föreläsning 1, Matematisk statistik för M

Föreläsning 1, Matematisk statistik för M Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns

Läs mer

TMS136. Föreläsning 2

TMS136. Föreläsning 2 TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de

Läs mer

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,

Läs mer

3 Grundläggande sannolikhetsteori

3 Grundläggande sannolikhetsteori 3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket

Läs mer

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5 1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler

Läs mer

Finansiell statistik, vt-05. Sannolikhetslära. Mängder En mängd är en samling element (objekt) 1, 2,, F2 Sannolikhetsteori. koppling till verkligheten

Finansiell statistik, vt-05. Sannolikhetslära. Mängder En mängd är en samling element (objekt) 1, 2,, F2 Sannolikhetsteori. koppling till verkligheten Johan, Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F2 Sannolikhetsteori Sannolikhetslära koppling till verkligheten mängdlära räkna med sannolikheter definitioner

Läs mer

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14 1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 65 Många tänker på tabeller 1 när de hör ordet statistik.

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

TMS136. Föreläsning 2

TMS136. Föreläsning 2 TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen

Läs mer

Reliability analysis in engineering applications

Reliability analysis in engineering applications Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University

Läs mer

TAMS79: Föreläsning 1 Grundläggande begrepp

TAMS79: Föreläsning 1 Grundläggande begrepp TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 26 mars, 2015 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket

Läs mer

FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet

FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet Anna Lindgren 18 januari 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Tillämpningar Praktiska

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,

1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, 1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt

Läs mer

Matematisk statistik för D, I, Π och Fysiker. Matematisk statistik slumpens matematik. Tillämpningar för matematisk statistik.

Matematisk statistik för D, I, Π och Fysiker. Matematisk statistik slumpens matematik. Tillämpningar för matematisk statistik. Matematisk statistik för D, I, Π och Fysiker Föreläsning 1 Johan Lindström 4 september 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F1 2/29 Matematisk statistik slumpens matematik Sannolikhetsteori:

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Vad vi ska gå igenom Mängdlära Absolutbelopp Summatecknet Potensräkning Logaritmer och exponentialfunktionen Kombinatorik 2013-09-03 Michael

Läs mer

Finansiell statistik, vt-05. Bayes sats. Bayes sats; forts. F3 Sannolikhetsteori. Exempel: antag att vi har tre skålar P( ) = 0 P( ) = 2/5 P( ) = 4/5

Finansiell statistik, vt-05. Bayes sats. Bayes sats; forts. F3 Sannolikhetsteori. Exempel: antag att vi har tre skålar P( ) = 0 P( ) = 2/5 P( ) = 4/5 Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt- F Sannolikhetsteori Bayes sats Exempel: antag att vi har tre skålar / 4/ och någon väljer skål m slh: / /6 /

Läs mer

Betingad sannolikhet och oberoende händelser

Betingad sannolikhet och oberoende händelser Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger

Läs mer

Slumpförsök för åk 1-3

Slumpförsök för åk 1-3 Modul: Sannolikhet och statistik Del 3: Att utmana elevers resonemang om slump Slumpförsök för åk 1-3 Cecilia Kilhamn, Göteborgs Universitet Andreas Eckert, Linnéuniversitetet I följande text beskrivs

Läs mer

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2015 Jan Grandell & Timo Koski () Matematisk statistik 21.01.2015 1 / 1 Repetition:

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad

Läs mer

15.1 Mer om betingad sannolikhet

15.1 Mer om betingad sannolikhet 15.1 Mer om betingad sannolikhet Exempel 1. En vanlig tärning kastas Låt A tärningen visar 1 Låt B tärningen visar ett udda poängantal Bestäm P(A). Bestäm P(A B), det vill säga: Hur stor är sannolikheten

Läs mer

LKT325/LMA521: Faktorförsök

LKT325/LMA521: Faktorförsök Föreläsning 3 Innehåll Reducerade försöksplaner Generatorer Denierande relationer Ord Upplösning Reducerade försöksplaner Varje mätning kommer med en kostnad. I många fall är den kostnaden så dyr att man

Läs mer

LMA201/LMA521: Faktorförsök

LMA201/LMA521: Faktorförsök Föreläsning 3 Innehåll Reducerade försöksplaner Generatorer Denierande relationer Ord Upplösning Reducerade försöksplaner Varje mätning kommer med en kostnad. I många fall är den kostnaden så dyr att man

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Kursinformation 13 föreläsningar: Måns Thulin, mans.thulin@statistik.uu.se 3 h: normalt 2 h föreläsning + 1 h räknestuga 7 räkneövningar:

Läs mer

14.1 Diskret sannolikhetslära

14.1 Diskret sannolikhetslära 14.1 Diskret sannolikhetslära 14.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av utfall kallas försökets utfallsrum. Varje delmängd av

Läs mer

SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket

Läs mer

Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift

Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter

Läs mer

Föreläsning 1: Introduktion

Föreläsning 1: Introduktion Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology Mars 23, 2015 Lärare och kurslitteratur : Rum: E-mail: Anders Hildeman: Rum: E-mail: Kursansvarig och föreläsare H3018

Läs mer

5. BERÄKNING AV SANNOLIKHETER

5. BERÄKNING AV SANNOLIKHETER 5. BERÄKNING AV SANNOLIKHETER 5.1 Additionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt

Läs mer

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel

Läs mer

Föreläsning 1: Introduktion

Föreläsning 1: Introduktion Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att

Läs mer

Föreläsning 12: Repetition

Föreläsning 12: Repetition Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse

Läs mer

5. BERÄKNING AV SANNOLIKHETER

5. BERÄKNING AV SANNOLIKHETER 5. BERÄKNING V SNNOLIKHETER 5.1 dditionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar

Läs mer

Föreläsning 1: Introduktion

Föreläsning 1: Introduktion Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology August 29, 2016 Lärare : Rum: E-mail: Anders Hildeman: Rum: E-mail: Sandra Eriksson Barman: Rum: E-mail: Kursansvarig

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 3. TK 3.11.2017 TK Matematisk statistik 3.11.2017 1 / 53 Probability: What is it? Probability is a number between 0 and 1 that predicts the (relative) frequency

Läs mer

Föreläsning 6, Repetition Sannolikhetslära

Föreläsning 6, Repetition Sannolikhetslära Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Anna: Bertil: Cecilia:

Anna: Bertil: Cecilia: Marco Kuhlmann 1 Osäkerhet 1.01 1.02 1.03 1.04 1.05 Intelligenta agenter måste kunna hantera osäkerhet. Världen är endast delvist observerbar och stokastisk. (Jmf. Russell och Norvig, 2014, avsnitt 2.3.2.)

Läs mer

SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.

SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök. Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009 Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,

Läs mer

7-1 Sannolikhet. Namn:.

7-1 Sannolikhet. Namn:. 7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser

Läs mer

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall

Läs mer

Föreläsning 2, Matematisk statistik för M

Föreläsning 2, Matematisk statistik för M Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR KOMBINATORIK I kombinatoriken sysslar man huvudsakligen med beräkningar av antalet sätt på vilket element i en given lista kan arrangeras i dellistor. Centrala frågor i kombinatoriken är: " Bestäm antalet..."

Läs mer

STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar

STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar 2007-10-08 sida 1 # 1 STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar Sven Erick Alm och Tom Britton Typsatt med liber1ab 2007-10-08 1 2007-10-08 sida 2 # 2 2007-10-08 sida i # 3 Innehåll

Läs mer

Dagens Teori. A) Försöket att kasta en tärning har sex utfall, vilka vi kan beteckna 1, 2, 3, 4, 5, 6. Utfallsrummet

Dagens Teori. A) Försöket att kasta en tärning har sex utfall, vilka vi kan beteckna 1, 2, 3, 4, 5, 6. Utfallsrummet Dagens Teori 8.1 Diskret sannolikhetslära 8.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av alla utfall kallas försökets utfallsrum. Varje

Läs mer

Matematisk statistik

Matematisk statistik Matematisk statistik för STS vt 2004 2004-03 - 23 Bengt Rosén Matematisk statistik Ämnet matematisk statistik omfattar de två delområdena Sannolikhetsteori Statistikteori Bloms A - bok behandlar sannolikhetsteori,

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 1 GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK Tatjana Pavlenko 23 mars, 2015 KURSINFORMATION Blom m.fl. Sannolokhetsteori och statistikteori

Läs mer

Experimentera i sannolikhet från teoretisk sannolikhet till data

Experimentera i sannolikhet från teoretisk sannolikhet till data Modul: Sannolikhet och statistik Del 3. Sannolikhet kopplingen mellan teoretisk modell och data Experimentera i sannolikhet från teoretisk sannolikhet till data Per Nilsson, Örebro universitet Sannolikhet

Läs mer