Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen
|
|
- Mattias Karlsson
- för 8 år sedan
- Visningar:
Transkript
1 Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 8) Multipel Regressionsmodellen Syfte: Undersöka linjär samband mellan beroende variabel (Y) & eller flera förklarande variabler (X i ) Multipel Regressionsmodell med k förklarande variabler: Y Y-intercept (skärning) Population slopes (lutningar) Random Error (slumpfel) = + X + X + K+ kxk + Linjärkomponent Fel komponent
2 Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y Skattad skärning Skattade lutningskoefficienter y ˆ = b + b x + b x + K+ b i i I kursen ska datorprogram (Minitab, SAS, Excel) användas för att skatta koefficienterna och andra resultat. i k x ki E[ Standard Antagande i Multipel Regression E[ Förklarande variablerna x i och feltermerna i är oberoende Feltermerna i är stokastiska variabler med medelvärde och konstant varians σ. ] i = och i ] = för (i =, K, n) (egenskapen konstant varians kallas för homoscedasticitet) Feltermerna, i, är inte korrelerade med varandra: E[ i j] = för alla i j
3 Exempel med förklarande variabler Försäljaren vill veta faktorer som kan påverka efterfrågan av paj: Beroende variabel: Y = # sålda paj (enheter) per vecka Förklarande variabler: X = Pris (i $) X = Marknadsföring ($ s) Data över 5 veckor ger följande tabell: Exempel med förklarande variabler Vecka (i) Y i X i X i Multipel regression ekvation: Y i = b + b X i + b X i
4 Exempel: Skattning av koefficienterna & andra resultat Vi ska andvända Minitab för att skatta relevanta koefficienter och andra resultat: Anta att vi har sparat Y i (beroende variabeln) i första kolumnen (C) och förklarande variablerna X i och X i i andra resp. tredje kolumner (C resp c3) Då kan vi ge kommandot Regr c c c3 eller gå genom menyn stat-regression-regression och ange c som response och c-c3 som predictors. Multipel Regression - output Regression Statistics Multiple R.73 R Square.548 Adjusted R Square.447 Standard Error Observations 5 Y i = (Xi) (Xi) ANOVA df SS MS F Significance F Regression Residual Total Coefficients Standard Error T-value P-value Intercept Price Advertising
5 Skattade Ekvationen Y i = (X i ) (X i ) där Y i = # paj enheter sålda under vecka i (i =,, 5) X i = pris (i $) i vecka i X i = marknadsföring i $ s under vecka i. b = : försäljning minskar i genomsnitt med paj (enheter) per vecka för varje $ ökning i priset, efter man har tagit hänsyn till förändringen i försäljning p.g.a. marknadsföring. b = 74.3: försäljning ökar i genomsnitt med 74.3 paj (enheter) per vecka för varje $ ökning i utgifter för marknadsföring, efter man har tagit hänsyn till förändringen i försäljning p.g.a. pris. Förklaringsgraden, R Ger andelen av total variationen i Y (försäljning) som förklarar (är relaterad till) alla förklarande variabler tillsammans. SSR R = = SST regression sum of squares total sum of squares Resten (-R ) är andelen av variationen som är oförklarad av regressionsekvationen (är relaterad till andra faktorer representerade av fel termen)
6 Förklaringsgraden, R Multiple R R Adjusted SquareR Square Regression Statistics Standard Error Observations SSR 946. R = = =.548 SST % av variationen i försäljningen av paj förklaras av variation i pris och marknadsföring. ANOVA Regression Residual Total Intercept Price Advertising df 4 Coefficients SS Standard Error MS t Stat F P-value Significance F. Lower 95% Upper 95% Testa för signifikans av individuell Regressionskoefficienter Använd t-test för de individuella koefficienter Man testar om ett specifikt förklarande variabel är viktigt givet (i närvaro av) de andra variabler Hypotes: H : j = (ingen linjär samband mellan Y & X j ) H : j (finns linjär samband mellan Y & X j )
7 Testa för signifikans av individuell Regressionskoefficienter H : j = (ingen linjär samband ) H : j Testvariabel: (finns linjär samband) t = b j S b j (df = n k ) Testa för signifikans av individuell Regressionskoefficienter Regression Statistics Multiple R.73 R Square.548 Adjusted R Square.447 Standard Error Observations 5 t-värde för pris är t = -.36, med p-värde på.398. t-värde för marknadsföring är t =.855, med p-värde.45 ANOVA df SS MS F Significance F Regression Residual Total Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept Price Advertising
8 H : j = H : j d.f. = 5-- = α =.5 t,.5 =.788 α/=.5 Förkasta H Testa för signifikans av individuell Regressionskoefficienter Pris Marknadsföring Ej Förkasta H -t / t / Coefficients Standard Error T-value Testvariabeln för varje förklarande variabel hamnar i Rejection Region (eller p-värde <.5) α/=.5 Förkasta H Beslut: P-value Förkasta H för varje variabel Slutsats: Det finns bevis att både pris och marknadsföring påverkar försäljningen av paj (på α =.5) Testa för signifikans av alla Regressionskoefficienter (i helheten) Använd F-test för att testa för allmän signifikans (modellen i helheten) Testet visar om det finns linjär samband mellan Y och all förklarande variablerna (alla X) tillsammans. Hypotes: H : = = = k = (ingen linjär samband) H : åtminstone ett i (finns linjär samband mellan Y och åtminstone en förklarande variabel)
9 Testvariabel: MSR F = = MSE Testa för signifikans av alla Regressionskoefficienter (i helheten) där F har k frihetsgrader i täljaren och (n K-) frihetsgrader i nämnaren Beslutregel är MSR s e Förkasta H om SSR/K = SSE/(n K ) F > F k,n K, Testa för signifikans av alla Regressionskoefficienter (i helheten) Regression Statistics Multiple R.73 R Square.548 Adjusted R Square.447 Standard Error Observations 5 MSR 473. F = = = MSE 5.8 med df i täljaren och df i nämnaren. P-värde för F-testet ANOVA df SS MS F P-value Regression Residual Total Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept Price Advertising
10 F-test för helheten (forts ) H : = = H : och inte både lika med noll α =.5 df = df = Kritiskvärde: F α = Testvariable: MSR F = = MSE Beslut: Eftersom den skattade testvariabeln hamnar i Rejection Region (p-värde <.5), förkastar vi H. α =.5 Ej förkasta H Förkasta H F.5 = F Slutsats: Det finns bevis att åtminstone en av förklarande variablerna påverkar beroende variabeln Y. Prognos (Prediction) Efter vi har skattat regressionsmodellen kan vi använda den för att göra prognos (prediction). För givet värde av förklarande variabler (x,n+, x,n+,..., x K,n+ ), ett prognos på beroende variabeln y n+ ges enligt is ˆ y n+ = b + bx,n + + bx,n+ + L+ bkxk,n+ ^
11 Prognos (Prediction) Gör ett prognos på paj försäljningen i en vecka där priset är $5.5 och utgifter för marknadsföring är $35: Yi = (X i ) (X i ) = (5.5) (3.5) = 48.6 Predicerad försäljning är 48.6 paj. Obs: eftersom marknadsföring mäts i $ s, $35 betyder att X = 3.5. Dummy Variabler Ett dummy variabel är ett kategorisk förklarande med två möjliga värde: Ja eller Nej, On eller Off, Man eller Kvinna, o.s.v. Kodas som eller Om ett dummy variabel är signifikant i ett regressionsekvation innebär det att skärningarna är olika för de olika kategorier (värde av dummy variabeln) Lutningarna för de andra variabler är samma Om ett kategorisk variabel har n (n > ) värden kan dessa kodas till n- dummy variabler
12 Dummy Variabler: Exempel Låt: y = Paj försäljning x = Pris yˆ = b + b x + b x x = Helg (X = om ett helgdag inträffades under veckan) (X = det fanns ingen helgdag under veckan) Dummy Variabler: Exempel yˆ = b yˆ = b y (försäljning) b + b b + b x + b x + b () = (b + b () = Helg (x = ) + b b Olika Skärningar Ingen helg (x = ) ) + b x x (pris) + b x Samma lutning Helg ingen helg Om vi förkastar H : =, det betyder att Helg har signifikant påverkan på försäljningen
13 Dummy Variabler: Exempel Example: Sales = 3-3(Price) + 5(Holiday) b = 5: I genomsnitt var försäljningen 5 paj (enheter) högre under en vecka där det inträffades en helgdag än en vecka där det inte fanns någon helgdag.
Multipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs mer732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet
732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merTillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1
Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett
Läs merLinjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
Läs merFöreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Läs merLösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Läs merF16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data
Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler
Läs merFöreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merMultipel regression och Partiella korrelationer
Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare
Läs merKorrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merFöreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B
Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7
Läs merFöreläsning 14: Försöksplanering
Föreläsning 14: Försöksplanering Matematisk statistik Chalmers University of Technology Oktober 14, 2015 Modellbeskrivning Vi har gjort mätningar av en responsvariabel Y för fixerade värden på förklarande
Läs merTENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS
STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan
Läs merRegression med kvalitativa variabler. Jesper Rydén
Regression med kvalitativa variabler Jesper Rydén 1 2 UPPSALA UNIVERSITET Matematiska institutionen Jesper Rydén Matematisk statistik 1MS026 Tillämpad statistik vt 2013 REGRESSION MED KVALITATIVA VARIABLER
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Läs merNedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin
Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin Inledning I denna miniundersökning analyseras hur studietiden är relaterad till attityder
Läs mera) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?
Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten
Läs merRegressions- och Tidsserieanalys - F4
Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1
Läs merKvalster. Korrelation och regression: lineära modeller för bivariata samband. Spridningsdiagram. Bivariata samband
Kvalster och regression: lineära modeller för bivariata samband Matematik och statistik för biologer, 10 hp En viss sorts kvalster (Demodex folliculorum) trivs bra i människors hårsäckar. Enligt en studie
Läs merStatistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..
TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad
Läs merJesper Rydén. Matematiska institutionen, Uppsala universitet jesper@math.uu.se. Tillämpad statistik för STS vt 2014
Föreläsning 8. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 Exempel: Pris och boyta Samband mellan två eller flera variabler? Spridningsdiagram
Läs merDatorlaboration 2 Konfidensintervall & hypotesprövning
Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Läs mer2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Läs merStatistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Läs merFöreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Läs merUppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs mer732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Läs merSkriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Läs merFinansiell statistik. Multipel regression. 4 maj 2011
Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi
Läs merInstuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8
1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
Läs mer1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Läs merFöreläsning 7 och 8: Regressionsanalys
Föreläsning 7 och 8: Pär Nyman par.nyman@statsvet.uu.se 12 september 2014-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.
Läs merÖvningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Läs merRegressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merSkrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove
Läs merStatistiska analyser C2 Inferensstatistik. Wieland Wermke
+ Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga
Läs mer1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.
Läs merTT091A, TVJ22A, NVJA02 By, Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 By, Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-01-11
Läs merLUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA
Läs merSkrivning i ekonometri lördagen den 25 augusti 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA
Läs merMultipel linjär regression. Geometrisk tolkning. Tolkning av β k MSG Staffan Nilsson, Chalmers 1
Multipel linjär regression l: Y= β 0 + β X + β 2 X 2 + + β p X p + ε Välj β 0,β,β 2,, β p så att de minimerar summan av residualkvadraterna (Y i -β 0 -β X i - -β p X pi ) 2 Geometrisk tolkning Med Y=β
Läs merKA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14
KA RKUNSKAP Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc Vad vet samhällsvetarna om sin kår? STAA31 HT14 Handledare: Peter Gustafsson Ekonomihögskolan, Statistiska institutionen Innehållsförteckning
Läs merExtrauppgifter. Uppgifter. 1. Den stokastiska variabeln Y t(10). Bestäm c så att P ( c < Y < c) = 0.95.
Extrauppgifter Uppgifter 1. Den stokastiska variabeln Y t(10). Bestäm c så att P ( c < Y < c) = 0.95. 2. De stokastiska variablerna X och Y är oberoende och χ 2 (5) respektive χ 2 (7). (a) Bestäm a och
Läs merAvveckling Ekeby skola. Förslag till beslut Ekeby skola avvecklas 31 december 2015.
Lars-Göran Almgren E-post: lars-goran.almgren@vasteras.se Kopia till TJÄNSTESKRIVELSE 1 (3) 2015-12-02 Dnr: Grundskolenämnden Avveckling Ekeby skola Förslag till beslut Ekeby skola avvecklas 31 december
Läs merStatistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera
Läs merTentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är
Läs merHöftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys
Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,
Läs merSamhällsvetenskaplig metod, 7,5 hp
Samhällsvetenskaplig metod, 7,5 hp Provmoment: Individuell skriftlig tentamen kvantitativ metod, 2,0 hp Ladokkod: 11OA63 Tentamen ges för: OPUS kull H13 termin 6 TentamensKod: Tentamensdatum: Fredag 24
Läs merÖvningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Läs merEnkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler
UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,
Läs merF19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Läs merANOVA Mellangruppsdesign
ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,
Läs merAnalys av bostadsrättspriset i Stockholms innerstad
Analys av bostadsrättspriset i Stockholms innerstad En multipel linjär regression Kandidatexamensarbete i Teknisk Fysik Anda Zhang andaz@kth.se Handledare Boualem Djehiche Avdelningen för Matematisk Statistik
Läs merRegressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Läs mer732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Läs merparametriska test Mätning Ordinalskala: Nominalskala:
Icke- parametriska test Icke- parametriska test En avgörande skillnad mellan icke-parametriska och s.k. parametriska test, som t.ex. t-test, är att de icke-parametriska testen kräver färre antaganden Icke-parametriska
Läs merLösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen?
Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001 1. Månadslönerna för 10 lärare vid en viss skola är 1 17 700 19 800 19 900 20 200 20 800 16 100 17 000 23 500 19 700 21 100 Beräkna medelvärdet,
Läs merSpridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.
Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:
Läs merResultatet läggs in i ladok senast 13 juni 2014.
Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar
Läs merFöreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B
Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så
Läs merANOVA Faktoriell (tvåvägs)
ANOVA Faktoriell (tvåvägs) Faktoriell ANOVA (tvåvägs) Två oberoende variabel ( tvåvägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier, dvs. betingelser.
Läs merEnvägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Läs merLathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
Läs merElementa om Variansanalys
Elementa om Variansanalys för kursen sf9, Statistik för bioteknik Harald Lang 06 Envägs variansanalys. Kapitel tio beskrev metoder för att testa om x,, xk och y, ym kommer från fördelningar med samma väntevärde
Läs merSTOCKHOLMS UNIVERSITET Sociologiska institutionen
STOCKHOLMS UNIVERSITET Sociologiska institutionen Skrivning i METOD (Analys) för fortsättningskursen i Sociologi, AoA, PAO, US och Samhällsplanerarlinjen, 12 april 2008, 9.00-13.00. Skrivtid: 4 timmar
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Läs merSTOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
Läs merRäkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.
Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas
Läs mer1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
Läs merF11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
Läs merEn rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Läs merT-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas
Läs merFöljande resultat erhålls (enhet: 1000psi):
Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.
Läs merStatistiska Institutionen Gebrenegus Ghilagaber (docent)
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas
Läs merREGRESSIONSANALYS. Exempel från F6. Statistiska institutionen, Stockholms universitet 1/11
1/11 REGRESSIONSANALYS Exempel från F6 Linda Wänström Statistiska institutionen, Stockholms universitet 2/11 Datamaterial Amerikanskt datamaterial från 1970 "Income guarantees and the working poor" där
Läs merSF1625 Envariabelanalys
Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
Läs merTENTAMEN I STATISTIK B,
732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen
Läs merUnder denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.
Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel
Läs merRepetition och ANOVA. nbib44
Repetition och ANOVA nbib44 Repetition: Labb 2 Du har observerat: f(aa)=0.36, f(aa+aa)=0.64 Kan man testa om fenotypfrekvensen är i Hardy Weinberg jämvikt? Nej! Kan man testa om f(aa) är skiljt från någonting
Läs merFigur 1: R e g r e s s i o n A n a l y s i s : S k u l d v e r s u s t. The r e g r e s s i o n e q u a t i o n i s S k u l d = 2,94 0,861 t
1. Ned i avgrunden (12p). Greklands ekonomi har minst sagt varit på tapeten det senaste året på grund av landets problem med statsskulden. Vill man ha aktuella data för EU-länderna så är Eurostats 1 databaser
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs merObligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Läs merRegressionsanalys av huspriser i Vaxholm
Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se
Läs merFöreläsning 9: Hypotesprövning
Föreläsning 9: Hypotesprövning Matematisk statistik David Bolin Chalmers University of Technology Maj 5, 2014 Statistik Stickprov Ett stickprov av storlek n är n oberoende observationer av en slumpvariabel
Läs mer