Obligatorisk uppgift, del 1
|
|
- Stina Åström
- för 8 år sedan
- Visningar:
Transkript
1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten att produkten skall bli felaktig på ett eller annat sätt är 0,02. Vad är sannolikheten att högst 2 exemplar blir felaktiga vid tillverkning av 250 stycken om vi antar att de olika exemplaren blir felaktiga oberoende av varandra? Gör en lämplig a) Poissonapproximation. b) Normalapproximation. c) Gör en exakt beräkning av den sökta sannolikheten. d) Vilken approximation blev bäst? 2. Farbror Sid har fem mynt. Ett av dem är falskt och har gubbe på båda sidor. De övriga mynten är välgjorda, dvs för dessa mynt gäller att P(gubbe) = P(krona) = 0,5. Sid väljer slumpmässigt ett av mynten och singlar det fem gånger. a) Vad är sannolikheten att Sid väljer det falska myntet? b) Vad är sannolikheten att Sid får gubbe fem gånger? c) Sid fick gubbe fem gånger. Vad är sannolikheten att kasten har utförts med det falska myntet? 3. En maskin förpackar kaffe. På förpackningarna står det att nettovikten är l000 gram. Anta att nettovikten varierar som en normalfördelad slumpvariabel med väntevärdet 1000 gram och standardavvikelsen 5 gram. a) Vad är sannolikheten att en slumpmässigt utvald förpackning har en nettovikt som är mindre än 990,2 gram? b) Antag att man slumpmässigt väljer ut 200 förpackningar. Vad är sannolikheten att högst 80 av de utvalda förpackningarna har nettovikt mindre än 997,8 gram? 2
2 Obligatorisk uppgift, del 2 Uppgiften går ut på att genom simulering illustrera innebörden av begreppen samplingfördelning och konfidensintervall. Med hjälp av MINITAB skall sammanlagt 100 stickprov om vardera 25 oberoende observationer dras från en normalfördelning med väntevärdet µ = 100 och standardavvikelsen σ = 5. För varje stickprov beräknas dels ett stickprovsmedelvärde, dels ett konfidensintervall för µ. De erhållna resultaten skall sedan kommenteras. Uppgiften redovisas i form av en kort rapport skriven i ordbehandlingsprogrammet Word. Gör följande: 1. Rita täthetsfunktionen f(x) för en normalfördelad slumpvariabel som har väntevärdet µ = 100 och standardavvikelsen σ = 5. OBS Nästan hela normalfördelningen finns inom gränserna µ ± 3σ. Om du vill ha med en bit av normalfördelningens svansar kan du låta diagrammet visa f(x)-värden för x i intervallet fr o m µ - 4σ t o m µ + 4σ. MINITAB-tips: Skapa en uppsättning x-värden i kolumn c1: Calc > Make Patterned Data > Simple Set of Numbers... Välj avståndet 0,5 mellan värdena (In steps of 0,5). Beräkna sedan f(x) för varje x i c1, och lägg in värdena i c2: Calc > Probability Distributions. Sätt rubriker på kolumnerna: c1 = x och c2 = f(x). Rita diagram: Graph > Scatterplot... För över diagrammet till rapporten. 2. Generera 100 stickprov av storlek n = 25 från N(100; 5). Nu behöver du inte längre värdena som finns i kolumnerna c1 och c2. Töm dessa kolumner. Vi vill att varje stickprov skall utgöras av en rad i datamatrisen. De 100 stickproven skall alltså bli 100 rader, och i varje rad skall kolumnerna c1-c25 innehålla de 25 observerade värdena i resp. stickprov. Kan åstadkommas på följande sätt: Calc > Random data > Normal Generate: 100 rows Store in: c1-c25 Mean: 100 Standard deviation: 5 3
3 3. Beräkna medelvärde och standardavvikelse för varje stickprov. Lägg medelvärdena i c26 och standardavvikelserna i c27. Kan göras på följande sätt: Calc > Row statistics > Mean Input variables: c1-c25 Store result in: c26 Calc > Row statistics > Standard deviation Input variables: c1-c25 Store result in: c27 4. Gör ett histogram som visar de 100 stickprovsmedelvärdenas fördelning. Görs på vanligt sätt i MINITAB. 5. Beräkna för varje stickprov ett 95% konfidensintervall för µ. Vid beräkning av konfidensintervall antas att σ 2 är okänt. Konfidensintervallets gränser beräknas alltså såsom x ± t s n där lämpligt t-värde hämtas från tabell över t-fördelningen. Lägg för varje stickprov in konfidensintervallets undre och övre gräns i c28 resp. c29. Kan göras på följande sätt: Calc > Calculator Store result in variable: c28 Expression: c26-t*c27/5 Calc > Calculator Store result in variable: c29 Expression: c26+t*c27/5 (OBS Sätt in det numeriska värdet för t ) (OBS Sätt in det numeriska värdet för t ) 4
4 6. Ta reda på hur många av de 100 konfidensintervallen som innehåller det sanna värdet på µ. Vi kan låta MINITAB göra detta. Skapa först (i c30) en indikatorvariabel som för varje stickprov anger om konfidensintervallet innehåller µ eller ej. (Värdet 1 skall alltså betyda att konfidensintervallet innehåller µ, och värdet 0 skall betyda att konfidensintervallet inte innehåller µ.) Kan göras på följande sätt: Calc > Calculator Store result in variable: c30 Expression: c28<=100 And 100<=c29 Ta sedan reda på hur stor andel av de 100 konfidensintervallen som innehåller µ (dvs. hur många av de 100 indikatorvärdena som är ettor): Stat > Tables > Tally individual variables Variables: c30 Display: Counts, Percents 7. Skriv färdig rapporten. Rapporten skall vara på högst tre sidor. Den skall innehålla: a) Ett diagram över den normalfördelning som stickproven dragits från. b) Ett histogram som visar de erhållna stickprovsmedelvärdenas fördelning. c) Kommentar till detta histogram. Vad skulle man ha väntat sig? Blev resultatet som väntat? d) De erhållna konfidensintervallens täckningsgrad. Kommentar till detta. Vad skulle man ha väntat sig? Blev resultatet som väntat? Diagrammen i rapporten skall ha begripliga rubriker och sorter på axlarna. Bifoga till rapporten en fullständig utskrift från datorkörningen. 5
5 Obligatorisk uppgift, del 3 Uppgiften (som har okänt ursprung) är en övning i regressionsanalys med hjälp av programpaketet MINITAB. Förutsättningarna tänks vara följande. En marknadsledande tillverkare av tvättmedel vill veta hur försäljningen av dess största produkt påverkas av marknadsföringsinsatser och eget pris i förhållande till konkurrenternas priser. Företaget har 650 återförsäljare, alla med ungefär samma försäljningsvolym. Till huvudkontoret rapporteras från återförsäljarna (som har en egen pris- och marknadsföringspolitik) värden på följande fem variabler för en viss vecka: Antal sålda förpackningar. Genomsnittligt pris (kr) per förpackning för den egna produkten. Genomsnittligt pris (kr) per förpackning för konkurrerande produkter. Utgifter för marknadsföring (kr) av den egna produkten i butikerna. (Denna typ av marknadsföring antas främst ha kortsiktiga effekter på konsumtionsmönstret för den aktuella produkten.) Uppgift om extraerbjudande eller ej (1 = extraerbjudande och 0 = ej extraerbjudande). Analysen skall göras med hjälp av data för dessa fem variabler från ett slumpmässigt urval av 30 återförsäljare. Din tilldelade datafil ligger i katalogen m:\gk\teori. Filen heter regrx.mtw där X ersätts med ett tal Läraren bestämmer vilket tal just din arbetsgrupp skall tilldelas. Innan du sätter igång med själva analysarbetet, gör följande: Kontrollera att du har 30 observationer i var och en av kolumnerna c1-c5. Bilda en ny variabel c6 som visar differensen mellan den egna produktens genomsnittliga pris och det genomsnittliga priset för konkurrenternas produkter. MINITAB-tips: Calc > Calculator... Sätt rubriker på kolumnerna. Spara materialet i en MINITAB-fil på din diskett. Nu kommer uppgifterna. Tabeller och diagram skall redovisas i den skriftliga rapporten (se uppgift 12 nedan): 1. Beräkna korrelationsmatrisen för samtliga variabler i datamatrisen. MINITAB-tips: Stat > Basic Statistics... Variables: cl-c6 6
6 2. Gör spridningsdiagram. Plotta variablerna c2, c3, c4, c5 och c6 i tur och ordning mot c1. MINITAB-tips: Graph > Scatterplot Välj en bästa regressionsmodell. Med ledning av resultaten i 1 och 2 ovan, välj den bästa regressionsmodellen med c1 som beroende variabel och en enda oberoende (förklarande) variabel. Motivera valet av oberoende variabel. Varför anser du att just denna modell är den bästa? 4. Anpassa den bästa regressionsmodellen. Anpassa den enkla regressionsmodell, som du i uppgift 3 tyckte var bäst. Tolka värdena på a och b i termer av de aktuella variablerna. MINITAB-tips: Stat > Regression > Regression. 5. Beräkna ett 95%-igt konfidensintervall för β. Beräkna (med utnyttjande av utskriften från uppgift 4) ett 95% konfidensintervall för regressionskoefficienten β. Tolka resultatet i ord. Vilka förutsättningar måste vara uppfyllda för att konfidensintervallet skall ha den angivna konfidensgraden? 6. Plotta residualerna i din modell mot den oberoende variabeln. Finns det fog för att ifrågasätta den valda modellen? Motivera! MINITAB-tips: Stat > Regression > Regression. Välj därefter Graphs. 7. Välj den bästa multipla regressionsmodellen. Vilken kombination av oberoende variabler väljer du? Motivera! MINITAB-tips : Stat > Regression > Best Subsets... Eftersom c2, c3 och c6 är starkt korrelerade måste man först välja bort någon av dem, t ex c3. Response: c1 Free Predictors: c2 c4-c6 7
7 8. Anpassa den bästa multipla regressionsmodellen. Anpassa den multipla regressionsmodell som du i uppgift 7 tyckte var bäst. Tolka också värdena på a, b 1, b 2, i termer av de aktuella variablerna. 9. Beräkna 95% konfidensintervall för var och en av regressionskoefficienterna β 1, β 2,. Utnyttja utskriften från uppgift 8. Tolka intervallen i ord. Vilka förutsättningar måste vara uppfyllda för att konfidensintervallen skall ha den angivna konfidensgraden? 10. Är regressionen som helhet signifikant? Undersök om den i uppgift 7 valda modellen är signifikant förklarande, dvs. undersök om regressionen som helhet är signifikant. Ställ upp hypoteser och gör sedan en hypotesprövning på signifikansnivån 1%. Vilken blir din slutsats? Anta att förutsättningarna enligt uppgift 9 är uppfyllda. 11. Prognos. Hur många förpackningar kommer en enskild återförsäljare att sälja en vecka då det genomsnittliga priset för den egna produkten är 25,60 kr, det genomsnittliga priset för konkurrerande produkter är kr, utgifterna for marknadsföring av den egna produkten ar 6250 kr och extraerbjudande inte förekommer (extraerbjudande = 0)? Gör prognoser för försäljningen enligt de valda modellerna i uppg. 3 och 7, dels punktprognoser, dels prediktionsintervall, som har tillförlitligheten 95%. Jämför och tolka resultaten. Anta att förutsättningarna enligt uppgift 9 är uppfyllda. MINITAB-tips: Stat > Regression > Regression... Välj Options: Prediction intervals for new observations Fyll här i de numeriska värdena på de valda oberoende variablerna. 12. Gör en skriftlig rapport. Uppgifterna 1-11 skall besvaras. Text plus tabeller och diagram. Glöm inte tabellerna i uppgifterna 1, 4, 7, 8 och 11 samt diagrammen i uppgifterna 2 och 6. 8
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, HT 2006 Den obligatoriska
Del 2 tillsammans med förberedelsefrågor - tid för inlämning och återlämning meddelas senare.
STOCKHOLMS UNIVERSITET Statistiska institutionen VT 2009 Tatjana Pavlenko och Bertil Wegmann OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, VT 2009 Den obligatoriska inlämningsuppgiften,
Introduktion och laboration : Minitab
Robert Parviainen, Tel. 471 31 86 E-post: robert@math.uu.se Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt
LABORATION 1. Syfte: Syftet med laborationen är att
LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa
Laboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Laboration 2 Inferens S0005M VT18
Laboration 2 Inferens S0005M VT18 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna
F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Föreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
1. Lära sig beräkna kon densintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera centrala gränsvärdessatsen
Datorövning 2 Statistikens Grunder 2 Syfte 1. Lära sig beräkna kon densintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera centrala gränsvärdessatsen Exempel Beräkna
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig
Laboration 2: Normalfo rdelning, regressionsanalys och korstabeller
S0004M Statistik 1 Undersökningsmetodik. Laboration 2: Normalfo rdelning, regressionsanalys och korstabeller Till denna laboration ska det angivna datamaterialet användas och bearbetas med den statistiska
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15
Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )
TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare
Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.
UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med
TAMS28 DATORÖVNING 1-2015 VT1
TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson och
2.1 Minitab-introduktion
2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46
Parade och oparade test
Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
LABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistik-programmet
Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:
Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
F19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola
Multipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Stockholms Universitet Statistiska institutionen Termeh Shafie
Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade
Laboration 2 Inferens S0005M VT16
Laboration 2 Inferens S0005M VT16 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna
Föreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
TVM-Matematik Adam Jonsson
TVM-Matematik Adam Jonsson 014-1-09 LABORATION 3 I MATEMATISK STATISTIK, S0001M REGRESSIONSANALYS I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistikprogrammet
Datorövning 1 Enkel linjär regressionsanalys
Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband
10. Konfidensintervall vid två oberoende stickprov
TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,
Instruktioner till Inlämningsuppgift 1 och Datorövning 1
STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och
Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning
Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Silvelyn Zwanzig, Matematiska Statistik NV1, 2005-03-03 1. Datamaterial I de uppgifter som f ljer skall du l ra dig hur Minitab anv ndas f r
1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-01-17 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: Adam Jonsson, Mykola
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 5Hp 41I12B KINAF13, KINAR13, KINLO13,KMASK13 7,5 högskolepoäng Tentamensdatum: 30 oktober
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper
Studietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Övningstentamen i kursen Statistik och sannolikhetslära (LMA120)
Övningstentamen i kursen Statistik sannolikhetslära (LMA0). Beräkna ( ) 04.. Malin har precis yttat, ska skruva ihop sitt rektangulära skrivbord igen. Bordet har ett ben i varje hörn, har två långsidor
Enkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
TMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.
Laboration 5 Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter. Deluppgift 1: Enkel linjär regression Övning Under denna uppgift ska enkel
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-08-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Målet för D2 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 2 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
Laboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola
Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer
Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-03-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Niklas
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 ( uppgifter) Tentamensdatum 2018-08-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Niklas Grip Jourhavande
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P