2.1 Minitab-introduktion
|
|
- Johanna Strömberg
- för 8 år sedan
- Visningar:
Transkript
1 2.1 Minitab-introduktion Betrakta följande mätvärden (observationer):
2 2.1 Minitab-introduktion Antag att mätvärdena är successiva observationer på en vikt som mäts i en tillverkningsprocess. 17,5 I Chart of Vikt 15,0 UCL=15,88 Individual Value 12,5 10,0 7,5 _ X=9,93 5,0 LCL=3, Observation Stat Control Charts Variables Charts for Individuals Individuals
3 Descriptive Statistics Variable Count Mean StDev Variance Minimum Median Maximum Vikt Låt x 1,x 2,, x n beteckna ovanstående n mätvärden (här är n = 50). Medelvärde (Mean) - Summan av alla mätvärden delat med antalet mätvärden n. x = i=1 n xi = = n 50 Teoretiskt antar vi att det finns en sann viktnivå µ, kallad väntevärde, som vi vill ha kunskap om (se kap 4). Om tillverkningsprocessen är stabil och under kontroll bör detta medelvärde ligga nära väntevärdet µ. Stat Basic Statistics Display Descriptive Statistics
4 2.1 Minitab-introduktion 17,5 I Chart of Vikt (10 mätvärden) 15,0 UCL=15,98 Individual Value 12,5 10,0 7,5 _ X=10,32 5,0 LCL=4, Observation Stat Control Charts Variables Charts for Individuals Individuals
5 2.1 Minitab-introduktion I Chart of Vikt (20 mätvärden) 15,0 UCL=15,32 Individual Value 12,5 10,0 _ X=10,38 7,5 5, LCL=5,43 Observation Stat Control Charts Variables Charts for Individuals Individuals
6 2.1 Minitab-introduktion I Chart of Vikt (30 mätvärden) 15,0 UCL=14,94 Individual Value 12,5 10,0 7,5 _ X=10,07 5,0 LCL=5, Observation Stat Control Charts Variables Charts for Individuals Individuals
7 2.1 Minitab-introduktion I Chart of Vikt (40 mätvärden) 15,0 UCL=15,66 Individual Value 12,5 10,0 7,5 _ X=10,06 5,0 LCL=4, Observation Stat Control Charts Variables Charts for Individuals Individuals
8 2.1 Minitab-introduktion 17,5 I Chart of Vikt (50 mätvärden) 15,0 UCL=15,88 Individual Value 12,5 10,0 7,5 _ X=9,93 5,0 LCL=3, Observation Stat Control Charts Variables Charts for Individuals Individuals
9 Descriptive Statistics Variable Count Mean StDev Variance Minimum Median Maximum Vikt (10 värden) 10 10,324 1,474 2,172 7,850 10,255 12,690 Vikt (20 värden) 20 10,375 1,333 1,778 7,850 10,365 12,690 Vikt (30 värden) 30 10,067 1,441 2,076 7,460 10,130 12,690 Vikt (40 värden) 40 10,062 1,703 2,901 6,780 10,130 15,130 Vikt (50 värden) 50 9,929 1,760 3,099 5,160 10,050 15,130 Medelvärdet förändras när vi tar med olika många mätvärden. Ju fler mätvärden desto mer information får vi och därför bör medelvärdet bli en bättre uppskattning av väntevärdet µ (den sann viktnivå ). Skulle vi kunna ta oändligt många mätvärden skulle medelvärdet x sammanfalla med väntevärdet µ. Stat Basic Statistics Display Descriptive Statistics
10 Descriptive Statistics Variable Count Mean StDev Variance Minimum Median Maximum Vikt Median - Det i storleksordning mittersta värdet. Om det finns två mittersta värden avses medelvärdet av dessa. Medelvärde och median är s k lägesmått och säger oss ungefär hur stora mätvärden vi kan förvänta oss.
11 Lägesmåttet säger inget om hur mätvärdena sprider sig. Till detta har vi spridningsmått. Descriptive Statistics Variable Count Mean StDev Variance Minimum Median Maximum Vikt Variationsvidd (Range): R = x max - x min. Detta är ett enkelt spridningsmått som blir ineffektivt om vi har många mätvärden. Det utnyttjas främst då n < 10. I exemplet: R = = 9.97
12 Descriptive Statistics Variable Count Mean StDev Variance Minimum Median Maximum vikt Ett mer effektivt och vanligare använt spridningsmått är: Stickprovs-standardavvikelse (Sample Standard Deviation): Mäter mätvärdenas förhållande (avstånd) till medelvärdet genom uttrycket s = n i=1 X i X 2 n 1
13 Individual Value Plot of Vikt x i x 5,0 7,5 10,0 Vikt 12,5 15,0 s = n i=1 X i X 2 n 1 =1.760
14 5,0 7,5 Individual Value Plot of Vikt 10,0 Vikt 12,5 15,0 2.2 Beskrivande statistik Tolkning av s: Om man gör nya mätningar bör ungefär 95% av dessa ligga i ett intervall av längd 4s = Individual 4*1.76 Value = 7.04 Plot of och Viktcentrerad runt x = x ± 2s = 9.93 ± = 9.93 ± 3.52 = (6.41, 13.45) 5,0 7,5 10,0 Vikt 12,5 15,0
15 Descriptive Statistics Variable Count Mean StDev Variance Minimum Median Maximum vikt Ett annat relaterat spridningsmått är: Stickprovs-variansen (Sample Variance): s 2 = i=1 n X i X 2 n 1 (vars enhet är variabelns enheten i kvadrat, t ex kg 2 )
16 Descriptive Statistics Variable Count Mean StDev Variance Minimum Median Maximum Vikt (10 värden) 10 10,324 1,474 2,172 7,850 10,255 12,690 Vikt (20 värden) 20 10,375 1,333 1,778 7,850 10,365 12,690 Vikt (30 värden) 30 10,067 1,441 2,076 7,460 10,130 12,690 Vikt (40 värden) 40 10,062 1,703 2,901 6,780 10,130 15,130 Vikt (50 värden) 50 9,929 1,760 3,099 5,160 10,050 15,130 På samma sätt som för medelvärdet förändras stickprovstandardavvikelsen (stickprovs-variansen) när vi tar med olika många mätvärden. Skulle vi kunna ta oändligt många mätvärden skulle stickprovstandardavvikelsen (stickprovs-variansen) sammanfalla med den så kallade sanna standardavvikelsen s (sanna variansen s 2 ). Stat Basic Statistics Display Descriptive Statistics
17 En annan visuell bild av hur datamaterialet sprider sig kring medelvärdet ges av diagrammet Histogram. Histogram of Vikt Frequency Vikt Graph Histogram
18 Boxplot är ytterligare en annan visuell bild på hur datamaterialet sprider sig, men här kring medianen (se kap 3.1.3). Graph Boxplot
19 Via Help i Minitab kan man t.ex. få information om utskrifter. Graph Boxplot
20 Brushing är en teknik för att identifiera mätvärden i grafer (se kap 3.1.4). Är det bara ett mätvärde räcker det med att bara peka på det. Höger-klicka på grafen Brush
21 Jämförelse av olika stickprov Histogram of Vikt; Vikt2; Vikt3; Vikt4 Vikt Vikt Frequency 30 Vikt3 Vikt Graph Histogram
22 Dotplot of Vikt; Vikt2; Vikt3; Vikt4 Vikt Vikt2 Vikt3 Vikt4 2,5 5,0 7,5 10,0 Data 12,5 15,0 17,5 20,0 Graph Histogram
23 Descriptive Statistics: Vikt; Vikt2; Vikt3; Vikt4 Variable N Mean StDev Variance Median Vikt 50 9,929 1,760 3,099 10,050 Vikt ,143 1,786 3,190 15,069 Vikt ,488 3,329 11,080 10,379 Vikt4 50 5,073 0,764 0,583 5,097 Dotplot of Vikt; Vikt2; Vikt3; Vikt4 Vikt Vikt2 Vikt3 Vikt4 2,5 5,0 7,5 10,0 Data 12,5 15,0 17,5 20,0 Graph Histogram
24 Individual Value Plot of Vikt; Vikt2; Vikt3; Vikt Data 10 5 Vikt Vikt2 Vikt3 Vikt4 Graph Individual Value Plot
25 Boxplot of Vikt; Vikt2; Vikt3; Vikt Data 10 5 Vikt Vikt2 Vikt3 Vikt4 Graph Boxplot
26 Descriptive Statistics: Skev Variable N Mean StDev Variance Median Skev 50 15,05 16,80 282,09 10,48 Histogram of Skev Frequency Skev Graph Histogram
27 En sammanställning av beskrivande statistik kan erhållas genom Stat Basic Statistics Graphical Summary Summary Report for Vikt Anderson-Darling Normality Test A-Squared 0,24 P-Value 0,771 Mean 9,9294 StDev 1,7603 Variance 3,0988 Skewness 0, Kurtosis 0, N Minimum 5,1600 1st Quartile 8,8000 Median 10,0500 3rd Quartile 11,3250 Maximum 15, % Confidence Interval for Mean 9, , % Confidence Interval for Median 9, , % Confidence Interval for StDev 1,4705 2, % Confidence Intervals Mean Median 9,2 9,4 9,6 9,8 10,0 10,2 10,4
28 3.2 Bivariat och multivariat data Vi ska betrakta två eller flera variabler som beror på varandra. 130 Scatterplot of Vikt vs Längd Vikt ,5 1,6 1,7 1,8 1,9 Längd Graph Scatterplot Relativt starkt positivt beroende (ju längre desto tyngre)
29 3.2 Bivariat och multivariat data Korrelation är ett mått på hur starkt det linjära beroendet är (betecknas ofta med r, formel hittas i kap 3.2.2). Correlation: Längd; Vikt Pearson correlation of Längd and Vikt = 0, Scatterplot of Vikt vs Längd Vikt ,5 1,6 1,7 Längd 1,8 1,9 Stat Basic Statistics Correlation Graph Scatterplot
30 3.2 Bivariat och multivariat data
31 3.2 Bivariat och multivariat data Correlation: Längd; Vikt Pearson correlation of Längd and Vikt = 0,306 (män) Pearson correlation of Längd and Vikt = 0,447 (kvinnor) Data Split Worksheet, Graph Scatterplot Stat Basic Statistics Correlation
32 3.2 Bivariat och multivariat data Correlation: Längd; Vikt; BMI Längd Vikt Vikt 0,645 BMI 0,143 0,844 Matrix Plot of Längd; Vikt; BMI BMI = Vikt(kg) Längd 2 (m 2 ) ,9 1,7 Längd 1,5 120 Vikt BMI 20 1,5 1,7 1, Calc Calculator, Graph Matrix Plot Stat Basic Statistics Correlation
33 3.2 Bivariat och multivariat data Matrix Plot of Längd; Vikt; BMI ,9 Kön Kvinna Man 1,7 Längd 1,5 120 Vikt BMI 20 1,5 1,7 1, Graph Matrix Plot
34 3.3.1 Pareto-diagram Paretodiagram Analys med hjälp av ett paretodiagram är ett effektivt sätt att hitta de största förbättringsmöjligheterna i en process. Hittar man de få väsentliga orsakerna kan man med relativt små insatser åstadkomma stora förbättringar. Paretodiagrammet används när man kan dela upp data i kategorier, t ex reklamationer fördelade på olika feltyper, olika typer av kundklagomål, felkostnader fördelade på olika delsystem. Man talar om "the vital few and the trivial many" eller regeln (20% av kategorierna bidrar med 80% av variationen). Graph Matrix Plot
35 3.3.1 Pareto-diagram Stat Quality Tools Pareto Chart (MINITAB data: EXH_QC.MTW)
6.1 Process capability
6.1 Process capability Produktkvalitet: Två produkter som har samma användning men som är utformade på olika sätt kan vara av olika specifikationskvalitet. Om enheter överensstämmer väl med specifikationerna
Läs merBetrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Läs mer6.1 Process capability
6.1 Process capability σ LSL µ USL Kapabiliteten eller dugligheten jämför förmågan hos en process (med väntevärde µ och standardavvikelse σ) med de krav vi har på den i form av givna specifikationsgränser
Läs merKroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Läs mer5. Kontrolldiagram. I Chart of T-bolt. Observation UCL=0, , , ,74825 _ X=0, , , ,74750 LCL=0,747479
5. Kontrolldiagram Om man är delaktig i en produktionsprocess (kanske mitt i), hur kan man då veta att det man gör inte bidrar till en kvalitetsbrist hos slutprodukten? Genom att specificera nödvändiga
Läs merLaboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
Läs merLUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Läs merStyr- och kontrolldiagram ( )
Styr- och kontrolldiagram (8.3-8.5) När vi nu skall konstruera kontrolldiagram eller styrdiagram är det viktigt att vi har en process som är under kontroll! Iden med styrdiagram är att med jämna tidsmellanrum
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
Läs mer7.3.3 Nonparametric Mann-Whitney test
7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merLABORATION 1. Syfte: Syftet med laborationen är att
LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa
Läs merFöljande resultat erhålls (enhet: 1000psi):
Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.
Läs mer2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel
Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram
Läs merBearbetning och Presentation
Bearbetning och Presentation Vid en bottenfaunaundersökning i Nydalasjön räknade man antalet ringmaskar i 5 vattenprover. Följande värden erhölls:,,,4,,,5,,8,4,,,0,3, Det verkar vara diskreta observationer.
Läs merIntroduktion och laboration : Minitab
Robert Parviainen, Tel. 471 31 86 E-post: robert@math.uu.se Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt
Läs merObligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Läs merDatorövning Power curve 0,0305 0, Kvantiler, kritiska regioner
. Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%
Läs merExaminationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Läs merIdag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?
Läs merTvå innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Läs merEn rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Läs merEnkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
Läs merTentamen i matematisk statistik
Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:
Läs merDatorövning 1 Enkel linjär regressionsanalys
Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband
Läs merIdag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar
Läs merLaboration med MINITAB, Del 2 Om Fyris ns global uppv rmning
Laboration med MINITAB, Del 2 Om Fyris ns global uppv rmning Silvelyn Zwanzig, Matematiska Statistik NV1, 2005-03-03 1. Datamaterial I de uppgifter som f ljer skall du l ra dig hur Minitab anv ndas f r
Läs merStatistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder och 2, GN, hp, deltid, kvällskurs TE/RC Datorövning 3 Syfte:. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med proc univariate 3. Lära sig rita
Läs merLaborationer i statistik för A:1, Lab 1
Mittuniversitetet 2006-08-31 1 Laborationer i statistik för A:1, Lab 1 Laborationsanvisningar Genomförande Gå igenom laborationen i basgruppen och diskutera vilka lärandemål ni eventuellt behöver tillföra
Läs merStatistik för teknologer, 5 poäng Skrivtid:
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,
Läs merTentamen i matematisk statistik
Sid (5) i matematisk statistik Statistisk processtyrning 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-3.00 ger maximalt 2 poäng. För godkänt krävs
Läs merTentamen i Statistik, STA A13 Deltentamen 1, 4p 27 mars 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 7 mars 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:
Läs merMVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Läs merTypvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.
Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median
Läs merBeskrivande statistik Kapitel 19. (totalt 12 sidor)
Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande
Läs merD. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Läs merTENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
Läs merFörra gången (F4-F5)
F6 Standardiseringsmetoder Etiska regler och lagregler Förra gången (F4-F5) Lägesmått: aritmetiskt medelvärde (minst intervall), median (minst ordinal), typvärde (alla nivåer) När vi vill beskriva tyngdpunkten
Läs merIdiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488
Idiotens guide till Håkan Lyckeborgs SPSS-föreläsning 4/12 2008 Av: Markus Ederwall, 21488 1. Starta SPSS! 2. Hitta din datamängd på Kurs 601\downloads\datamängd A på studentwebben 3. När du hittat datamängden
Läs mer7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
Läs merSTOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, HT 2006 Den obligatoriska
Läs merFÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Läs mer3.1 Beskrivande statistik
3.1 Beskrivande statistik En sammanställning av beskrivande statistik Summary for Vikt A nderson-darling Normality Test A -Squared 0.24 P-V alue 0.771 Mean 9.9294 StDev 1.7603 V ariance 3.0988 Skew ness
Läs merMiniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.
UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med
Läs merLaboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Läs mer7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
Läs merDeskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng
Kognitiv psykologi Moment 1: Statistik, 3 poäng VT 27 Lärare: Maria Karlsson Deskription (Kapitel 2 i Howell) Beskrivande mått, tabeller och diagram 1 2 Tabeller Tabell- och kolumnrubriker bör vara fullständiga
Läs merMatematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.
Läs merMINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems
MINITAB i korthet release 16 Jan-Eric Englund SLU Alnarp Kompendium 2011 Område Agrosystem Course notes Swedish University of Agricultural Sciences Department of Agrosystems Jan-Eric Englund är universitetslektor
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs mer2 Dataanalys och beskrivande statistik
2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merDATORÖVNING 3: MER OM STATISTISK INFERENS.
DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett
Läs merMatematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11 Laboration Statistiska test 2011-11-15/16 2 Syftet med laborationen är att: Ni skall bekanta er med lite av de funktioner som finns
Läs merLUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA
Läs merIntroduktion till. Minitab version 14
Statistiska institutionen LW n/pei/jb Introduktion till Minitab version 14 Innehållsförteckning 1 Introduktion Worksheeten datafönstret Minitabs menyer och Session-fönstret Att spara och öppna Minitab-filer
Läs merUppgift 1. Produktmomentkorrelationskoefficienten
Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill
Läs mer10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Läs merSociologi GR (A) Sociologisk Metod Examination #2 Peter Axelsson. N Minimum Maximum Mean Std. Deviation
Uppgift 1 Vikt Vikt är en variabel på kvotskalan. Det gör att vi kan räkna med aritmetiskt medelvärde (m) som centralmått (Djurefeldt, 2003:59). Medelvärdet är 35,85 kg. Det saknas värden för två observationer,
Läs merFöreläsning 1. 732G60 Statistiska metoder
Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt
Läs merKontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen akut och kronisk variation.
5. Kontrolldiagram Variation Tillverkade produkter uppvisar variation. Kvalitetsökning en minskning av dessa variationer. Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen
Läs merRäkneövning 3 Variansanalys
Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras
Läs merF8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Läs merInnehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,
Läs merTAMS28 DATORÖVNING 1-2015 VT1
TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa
Läs merF5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Läs merLektion 1: Fördelningar och deskriptiv analys
Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över
Läs mer7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Läs mer13.1 Matematisk statistik
13.1 Matematisk statistik 13.1.1 Grundläggande begrepp I den här föreläsningen kommer vi att definiera och exemplifiera ett antal begrepp som sedan kommer att följa oss genom hela kursen. Det är därför
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merTAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge
Läs merStatistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik
Statistik Lars Walter Fil.lic. Statistik Linköping universitet Stockholms universitet Karolinska sjukhuset Sveriges Lantbruksuniversitet Linköpings universitet Folkhälsocentrum, LiÖ FoU-enheten, LiÖ Statistik
Läs merRichard Öhrvall, http://richardohrvall.com/ 1
Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden
Läs merMarknadsinformationsmetodik Inlämningsuppgift
Marknadsinformationsmetodik Inlämningsuppgift Uppgiften löses med hjälp av SPSS. Klistra in tabeller och diagram från SPSS i ett Worddokument och kommentera där. Använd ett försättsblad till den slutgiltiga
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?
Läs merLaboration 2 Inferens S0005M VT16
Laboration 2 Inferens S0005M VT16 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna
Läs merI vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merKursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument)
Kursens upplägg v40 - inledande föreläsningar och börja skriva PM 19/12 - deadline PM till examinatorn 15/1- PM examinationer, grupp 1 18/1 - Forskningsetik, riktlinjer uppsatsarbetet 10/3 - deadline uppsats
Läs merLABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl.
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk Statistik Statistiska Metoder 5MS010, 7.5 hp Kadri Meister Rafael Björk LABORATIONER Detta dokument innehåller beskrivningar av de tre laborationerna
Läs merMatematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Läs merMata in data i Excel och bearbeta i SPSS
Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är
Läs merSOPA62 - Kunskapsproduktion i socialt arbete
SOPA62 - Kunskapsproduktion i socialt arbete 1. Beskrivande statistik och lite hypotesprövning 1 Kvantitativ vs Kvalitativ metod Kvantitativt: Man definierar precisa begrepp och ställer därefter frågor
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs mera) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal
Läs merDatorövning 1 Introduktion till Minitab och Excel
Datorövning 1 Introduktion till Minitab och Excel Allmänt Hittills under statistikkursen har vi ägnat oss åt metoder för att illustrera och beskriva datamaterial. Du har kanske börjat öva på att räkna
Läs merFöreläsning 2 Deskription (forts). Index Deskription: diagram som stapeldiagram, histogram mm (tex spridningsdiagram, Mera om mätnivåer
Föreläsning 2 Deskription (forts). Index Deskription: diagram som stapeldiagram, histogram mm (tex spridningsdiagram, boxplot ) Deskription: lägesmått, spridningsmått Indexserie med bastidpunkt, förändring,
Läs merExempel 1 på multipelregression
Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Läs merGrundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet
Grundläggande Biostatistik Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Formell analys Informell data analys Design and mätning Problem Formell analys Informell data analys Hur
Läs merDATORÖVNING 3: MER OM STATISTISK INFERENS.
DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Läs mer1. Lära sig utföra hypotestest för populationsproportionen. 2. Lära sig utföra test för populationsmedelvärdet
Datorövning 3 Statistikens Grunder 2 Syfte 1. Lära sig utföra hypotestest för populationsproportionen 2. Lära sig utföra test för populationsmedelvärdet 3. Lära sig utföra test för skillnaden mellan två
Läs mer8.1 General factorial experiments
Exempel: Vid ett tillfälle ville man på ett laboratorium jämföra fyra olika metoder att bestämma kopparhalten i malmprover. Man är även intresserad av hur laboratoriets tre laboranter genomför sina uppgifter.
Läs merUppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
Läs mer