6.1 Process capability
|
|
- Ingrid Gunnarsson
- för 8 år sedan
- Visningar:
Transkript
1 6.1 Process capability Produktkvalitet: Två produkter som har samma användning men som är utformade på olika sätt kan vara av olika specifikationskvalitet. Om enheter överensstämmer väl med specifikationerna har man god utförandekvalitet. Utförandekvalitet = graden av överensstämmelse mellan produkten och de för produkten gällande specifikationerna. Duglighetsanalys (kapabilitetsanalys) handlar om att mäta utförandekvaliteten hos olika egenskaper (kritiska mått, CTQ). CTQ = Critical To Qualtity
2 6.1 Process capability Ett kritiskt mått för T-bulten kan vara dess bredd på huvudet. Toleransgränser (specifikationsgränser) : LSL = (Lower Specification Limit) och USL = (Upper Specification Limit). Ett rimligt målvärde (börvärde, riktvärde, target) är Om en produkts (uppmätta) specifikationsvärde ligger utanför specifikationsgränserna föreligger fel (avvikelse, defekt). Bestämningen av specifikationsgränser (toleransgränser) sker i regel under produktens utvecklingsfas.
3 6.1 Process capability s LSL m USL En verksamhets processer ska vara ändamålsenliga och dugliga, vilket betyder att de ska vara i stånd till att framställa produkter som uppfyller ställda krav och mål. Denna förmåga brukar kallas duglighet eller kapabilitet. I en duglighetsstudie jämförs processens förmåga (väntevärdet m och standardavvikelsen s) med de krav som satts på den i form av givna specifikationsgränser (toleransgränser) LSL och USL. Ej att förväxla med kontrollgränserna UCL och LCL!
4 Betrakta en egenskap (mått) som är normalfördelad med väntevärde m och standardavvikelse s. För ett sådant mått är sannolikheten att få ett värde större än m + 3s eller mindre än m - 3s cirka Vi säger att de naturliga toleransgränserna är: NUSL= m + 3s NLSL= m - 3s För en process som är under kontroll bör 99.73% av observationerna hamna innanför de naturliga specifikations-gränserna. M a o, inom de naturliga toleransgränserna bör i stort sett alla framtida observationer hamna. Den naturliga toleransbredden är följaktligen 6s.
5 För att processen ska anses duglig bör observationerna med god marginal ligga innanför de faktiska specifikationsgränserna USL och LSL, dvs den naturliga toleransgränserna bör ligga innanför de faktiska specifikationsgränserna. Kundernas toleransbredd är USL LSL. Den naturliga toleransbredden 6s bör rymmas innanför kundernas toleransbredd, dvs USL LSL 6σ > 1
6 Två saker kan noteras: % utanför dessa gränser låter lite men utgör 2700 felaktiga per 1 miljon tillverkade. 2. Om processen inte är normalfördelad kan andelen utanför gränserna skilja sig mycket från 0.27% Om vi har många observationer är histogrammet tillsammans med medelvärdet och standardavvikelsen för observationerna ett utmärkt sätt att uppskatta de naturliga toleransgränserna m 3s.
7 Ex: Längder i mm hos 20 stickprov om vardera 5 kamaxlar, från två olika leverantörer (supp1 och supp2). (Dataset: Camshaft2.mtw) Specifikationsgränser: mm, dvs LSL = 598, USL = 602 Xbar-R Chart of Supp1 Sample Mean 600,5 600,0 599,5 UCL=600,332 _ X=599, ,0 LCL=598, Sample 3 UCL=2,876 Sample Range 2 1 _ R=1,36 0 LCL= Sample Stat Control Charts Variabels Charts for Subgroups Xbar-R
8 Summary Report for Supp1 597,75 598,50 599,25 600,00 600,75 95% Confidence Intervals Mean Median 599,40 599,45 599,50 599,55 599,60 599,65 599,70 Anderson-Darling Normality Test A-Squared 0,84 P-Value 0,029 Mean 599,55 StDev 0,62 Variance 0,38 Skewness -0, Kurtosis 0, N 100 Minimum 597,80 1st Quartile 599,20 Median 599,60 3rd Quartile 600,00 Maximum 601,20 95% Confidence Interval for Mean 599,43 599,67 95% Confidence Interval for Median 599,40 599,60 95% Confidence Interval for StDev 0,54 0,72 6s = = USL LSL = = = 4 USL LSL s = = Histogrammet och testet av normalitet stöder inte att kamaxellängderna från leverantör 1 är normalfördelade (p-värde = 0.029). Vi kan inte säkert påstå att 99,73% av längderna kommer att ligga inom 6s. Stat Basic Statistics Graphical Summary
9 Man skiljer på två typer av standardavvikelser; overall resp within. Processens within-standardavvikelse uppskattas med den så kallade poolade standardavvikelsen s p = i=1 m s i 2 m = s2 Overall-standardavvikelsen baseras på stickprovsstandardavvikelsen s uträknad med alla observationerna. s = 0.62 Stat Quality Tools Run Chart
10 Overall-standardavvikelsen baseras på alla observationerna och om processen är under kontroll speglar den den variation som konsumenten upplever. Within-standardavvikelse mäter inte den variation som kunden upplever utan den variation man skulle ha om man inte hade någon variation mellan stickprov (det bästa processen kan förmå under rådande förhållande). Det kan t ex vara så att varje stickprov härrör från olika stickprov (råvaruleverantörer, olika utförare ) som skapar en variation mellan stickprov. Within-standardavvikelsen tar inte hänsyn till variationen mellan stickprov, bara variationen inom stickprov.
11 Vissa hävdar att man aldrig ska använda overallstandardavvikelsen. Har man variation mellan stickprov så anses processen inte vara under kontroll och då mäter man något icke definierbart. Har man ingen (eller liten) variation mellan stickprov kommer within- och overall-standardavvikelsen att mer eller mindre överensstämma. Det räcker med within-standardavvikelsen. Har man en process med en variation mellan stickprov som är av en slumpmässig natur anser andra att man ska använda overall-standardavvikelsen för att verkligen mäta den variation som kunden upplever. Vissa hävdar att man ska använda overall-standardavvikelsen även då processen inte är under kontroll. Det känns väldigt tveksamt då man inte vet vad man egentligen mäter (skattar) med overall-standardavvikelsen. Overall- och within-standardavvikelsen brukar också benämnas long-term respektive short-term estimates of s.
12 Stat Quality Tools Capability Analysis Normal
13 Stat Quality Tools Capability Analysis Normal
14 Beroende på hur vi väljer att skatta standardavvikelsen s kan vi nu uppskatta de naturliga toleransbredd Vi kan antingen använda = (597.69, ) eller = (597.81, ). Detta kan jämföras med de i exemplet givna specifikationsgränserna 598 respektive 602, vilka ger att kundernas toleransbredd är 4 (USL-LSL= ). Vi kan notera att vi har en produktion som ligger i genomsnitt lägre i värde än vad som avses. (Här kan man fråga sig om börvärdet m är 600 eller om m är närmare 599.5)
15 Ett mått på processens kapabilitet (duglighet) är kvoten Kundernas tolernasbredd Naturlig toleransbredd där USL och LSL är specifikationsgränserna. USL LSL = 6σ Om within-standardavvikelsen används betecknas kvoten C p och benämns potentiell kapabilitet (potential capability). Om overall-standardavvikelsen används betecknas kvoten P p och benämns potentiell utförande-kapabilitet (process performance).
16 (1/Cp)*100 anger hur stor procentuell andel av specifikationsbredden som används av processen Capability analysis Cp och Pp är båda mått på förmågan (om processen ligger i medeltal rätt) hos processen att tillverka produkter som uppfyller specifikationerna. Cp > 1 innebär att de flesta enheterna uppfyller specifikationsgränserna (om processen är centrerat runt önskat väntevärde µ). Cp 1 innebär att cirka 99.73% av enheterna uppfyller specifikationsgränserna (om processen är centrerat runt önskat väntevärde µ). Cp < 1 innebär att en låg andel av enheterna uppfyller specifikations-gränserna. Tumregel (enligt MINITAB) Cp > 1.33.
17 I exemplet blir Cp = ( )/( ) = (within) Pp = ( )/( ) = (overall) Cp (Pp) tar inte hänsyn till var processens läge är lokaliserat i förhållande till specifikationsgränserna. Cp (Pp) mäter endast processens 6-s:a utbredningen i förhållande till specifikationsvidden. Om processen har ett medelvärde som avviker från centrum av specifikationen kommer den aktuella kapabiliteten att vara lägre än Cp (Pp).
18 Ett mått på den aktuella kapabiliteten är min USL μ μ LSL, = min C 3σ 3σ PU, C PL där μ = x. μ μ 3σ 3σ 18
19 Ett mått på den aktuella kapabiliteten är min USL μ μ LSL, = min C 3σ 3σ PU, C PL där μ = x. I exemplet får vi med within -skattningen C pk = min , = min[1.42, 0.90] = = På motsvarande sätt får vi med overall-skattningen att P pk =
20 Stat Quality Tools Capability Analysis Normal
21 Betraktar vi grafen finner man att en observation var lägre än LSL medan ingen var större än USL. Vi observerade 1 på 100 som var mindre än LSL, dvs ppm (parts per million) Vi fann också att 0 ppm var större än USL. Totalt: ppm var utanför toleransgränserna
22 Eftersom vi antar att observationerna är normalfördelade kan vi bestämma sannolikheterna att en observation skall hamna utanför toleransgränserna. P(Obs < LSL) = P(Obs < 598) = Vi förväntar oss i genomsnitt att finna av en miljon observationer nedanför LSL. Räknar vi med StDev (Overall) = får vi att P(Obs < LSL) =
23 Stat Quality Tools Capability Sixpack Normal
24 Eftersom kapabilitetsanalys (duglighetsanalys) inte har något med att övervaka processen så ska styrdiagrammen i Sixpack-grafen användas för att bedöma om processen är under kontroll. För att sannolikheter, test och konfidensintervall skall vara pålitliga så bör observationerna vara normalfördelade. Om de inte är normalfördelade, känner vi kanske till den korrekta fördelningen. Då kan vi utnyttja detta vid konstruktionen av kapabilitetsanalysen. Skulle vi inte känna till den korrekta fördelningen kan vi försöka att transformera data till att likna normalfördelade data.
25 Assistant Capability analysis
6.1 Process capability
6.1 Process capability σ LSL µ USL Kapabiliteten eller dugligheten jämför förmågan hos en process (med väntevärde µ och standardavvikelse σ) med de krav vi har på den i form av givna specifikationsgränser
Läs merKapabilitet eller duglighet jämför förmågan hos en process (väntevärdet μ och standardavvikelsen σ) med de krav vi har på den i form av givna
σ LSL μ USL Kapabilitet eller duglighet jämför förmågan hos en process (väntevärdet μ och standardavvikelsen σ) med de krav vi har på den i form av givna specifikationsgränser (LSL, USL). Det är vanligtvis
Läs mer2.1 Minitab-introduktion
2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46
Läs mer3.1 Beskrivande statistik
3.1 Beskrivande statistik En sammanställning av beskrivande statistik Summary for Vikt A nderson-darling Normality Test A -Squared 0.24 P-V alue 0.771 Mean 9.9294 StDev 1.7603 V ariance 3.0988 Skew ness
Läs merKontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen akut och kronisk variation.
5. Kontrolldiagram Variation Tillverkade produkter uppvisar variation. Kvalitetsökning en minskning av dessa variationer. Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen
Läs merStyr- och kontrolldiagram ( )
Styr- och kontrolldiagram (8.3-8.5) När vi nu skall konstruera kontrolldiagram eller styrdiagram är det viktigt att vi har en process som är under kontroll! Iden med styrdiagram är att med jämna tidsmellanrum
Läs mer5. Kontrolldiagram. I Chart of T-bolt. Observation UCL=0, , , ,74825 _ X=0, , , ,74750 LCL=0,747479
5. Kontrolldiagram Om man är delaktig i en produktionsprocess (kanske mitt i), hur kan man då veta att det man gör inte bidrar till en kvalitetsbrist hos slutprodukten? Genom att specificera nödvändiga
Läs merTentamen i matematisk statistik
Sid (5) i matematisk statistik Statistisk processtyrning 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-3.00 ger maximalt 2 poäng. För godkänt krävs
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs mer7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Läs merBetrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merLMA521: Statistisk kvalitetsstyrning
Föreläsning: Kapabilitet Föregående material Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram
Läs mer7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
Läs merDatorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se
Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens
Läs mer7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 5Hp 41I12B KINAF13, KINAR13, KINLO13,KMASK13 7,5 högskolepoäng Tentamensdatum: 30 oktober
Läs merStatistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:
Statistical Quality Control Statistisk kvalitetsstyrning 7,5 högskolepoäng Ladok code: 41T05A, The exam is given to: 41I02B IBE11, Pu2, Af2-ma Name: Personal number: Date of exam: 1 June Time: 9-13 Hjälpmedel
Läs merD. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Läs merLaboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs mer7.3.3 Nonparametric Mann-Whitney test
7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi
Läs merFöljande resultat erhålls (enhet: 1000psi):
Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.
Läs merLMA521: Statistisk kvalitetsstyrning
Föreläsning 7 Föregående föreläsningar Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram Dagens
Läs merFÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Läs merStatistik för teknologer, 5 poäng Skrivtid:
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs merKroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs merEn scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Läs merLaboration 2 Inferens S0005M VT16
Laboration 2 Inferens S0005M VT16 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merFöreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-10-29 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Mykola
Läs merLaboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
Läs merFöreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs mer, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Läs merTentamen i matematisk statistik
Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:
Läs merLaboration 2 Inferens S0005M VT18
Laboration 2 Inferens S0005M VT18 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna
Läs merDATORÖVNING 3: MER OM STATISTISK INFERENS.
DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN
Läs merSamplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Läs merDatorövning Power curve 0,0305 0, Kvantiler, kritiska regioner
. Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
Läs merGRUPPARBETE. - Sex sigma, ett förbättringsprojekt. IEK215 Statistisk processtyrning och sex sigma 2006-01-04
GRUPPARBETE - Sex sigma, ett förbättringsprojekt IEK215 Statistisk processtyrning och sex sigma 2006-01-04 Magnus Blomberg Moa Hedestig Johan Jonsson Hannah Öhman Luleå tekniska universitet Institutionen
Läs merIntroduktion och laboration : Minitab
Robert Parviainen, Tel. 471 31 86 E-post: robert@math.uu.se Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt
Läs merLektion 1: Fördelningar och deskriptiv analys
Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över
Läs merF8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Läs merExaminationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola
Läs merTentamen i matematisk statistik
Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merLMA521: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Läs merMiniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.
UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merLMA522: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merTMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Läs merDATORÖVNING 3: MER OM STATISTISK INFERENS.
DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2014-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Inge
Läs merIntroduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Läs merDatorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:
Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Läs merTentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 005 Uppgift 1: Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens
Läs merTMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Läs merTT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:
Läs merDATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merANOVA Mellangruppsdesign
ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,
Läs merMVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merVi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
Läs merTentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Läs mer10. Konfidensintervall vid två oberoende stickprov
TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs merTMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Läs merTENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
Läs merUppgift 1. Produktmomentkorrelationskoefficienten
Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill
Läs merFÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Läs merSF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för
Läs merUppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Läs mer9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
Läs merLUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
Läs merRäkneövning 3 Variansanalys
Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras
Läs merMatematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Läs merTMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Läs merTAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge
Läs merDet elliptiska säkerhetsområdets robusthet
Det elliptiska säkerhetsområdets robusthet Hur robust är metoden med de elliptiska säkerhetsområdena för ett symmetriskt men icke normalfördelat datamaterial? Andreas Tano Bask Johan Jaurin Student VT
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Läs merEXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Läs mer7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
Läs merSF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Läs merFöreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
Läs mer